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The structures of chemical compounds are predicted on the basis of energy calculations with the help 
of the concentration wave approach. The method predicts both the structures of the most stable oxides 
with fixed valencies and the structures of the so-called homologous series of Magntli phases. To 
exemplify the procedure, the atomic structures of the Ti and V oxides are considered. The rutile and (Y- 
Pb02 structures are shown to be the most stable ones for tetravalent cations while the corundum 
structure is most stable for trivalent cations. Q 19% Academic Press, Inc. 

It is known (see, for example, (I)) that 
many metal oxides, halcogenides, fluo- 
rides, and other compounds may be treated 
as completely ordered solid solutions. This 
fact enables us to use the Ising model to 
analyze the structure and stability of chemi- 
cal compounds (at least to within small 
atomic displacements caused by ordering). 
We may then employ the concentration 
wave method (2-4) to combine the symme- 
try and thermodynamic aspects of the prob- 
lem and predict the structures of the most 
stable chemical compounds. This new ap- 
proach is developed for the structures of 
the titanium and vanadium oxides which, as 
will be shown, can be considered as a com- 
pletely ordered interstitial solution on a 
body-centered cubic host lattice of oxygen 
atoms. 

1. Conditions for the Formation of Stable 
Oxides 

We will now describe the basic concepts 

of the concentration wave approach as it is 
applied to fully ordered atomic distribu- 
tions in substitutional and interstitial sys- 
tems. For specificity we shall confine the 
discussion to binary interstitial solid solu- 
tions. The principal results given below are, 
however, applicable to substitutional solid 
solutions and can be extended to multicom- 
ponent solutions. 

Let atoms of a certain kind be distributed 
over crystal lattice sites that are specified 
by the indices (p, R), where R denotes the 
position of the origin of the unit cell of the 
host lattice and p labels the atom positions 
within the unit cell. We shall assume that all 
the atom positions (p = 1, . . . , g, where 
g is the position multiplicity) are crystallo- 
graphically equivalent, i.e., that they can 
be brought into coincidence with one an- 
other by applying the host lattice symmetry 
operations. The atomic distribution over 
the sites (p, R} is then described by the 
probability, n@, R), of finding a solute 
atom in the position (p, R). 
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In a fully ordered interstitial solid solu- 
tion (or chemical compound) the function 
n(p, R) describes a specific distribution of 
atoms; it has the value 1 if the position (p, 
R) is occupied by an interstitial atom and is 
0 if the position is vacant. As shown in ref- 
erences (2-4) such a distribution can be 
written as a superposition of static concen- 
tration waves: 

n(p, R) = c u,(k) exp[2+k . R] 
k 

= cp + 2 ’ a,(k) exp[2rik . R] (1) 
k 

where u,(O) = c, is the “occupancy” of the 
pth sublattice, u,(k) is the amplitude of the 
plane concentration wave that modulates 
the distribution of interstitial atoms over 
the pth sublattice formed by all positions of 
the type p, 2rk is the superstructure wave 
vector determined in the first Brillouin zone 
of the host lattice, and the prime on the 
second summation on the right hand side 
means that the term corresponding to k = 0 
is omitted. Since the function n(p, R) as- 
sumes only the two values 0 and 1, it retains 
its value after being raised to any power, m: 

MP, RN” = dp, RI. (2) 

The properties of the function n(p, R) 
impose the following two restrictions on the 
concentration waves entering Eq. (1): (a) 
the sum of any two wave vectors entering 
Eq. (1) must equal either one of the super- 
structure vectors entering this distribution 
or zero, to within an additive reciprocal lat- 
tice vector, H; (b) the squares of the con- 
centration wave amplitudes satisfy the 
summation rule 

T lqOd12 = cp (3) 

irrespective of the type of the atomic distri- 
bution. 

The pairwise interaction model gives the 
following equation for the configurational 

energy of interaction of the interstitial at- 
oms (2-4): 

E=gxCC 
P q RR’ 

Wpq(R - R’MP, RMq, R’) (4) 

where the indices p and q label the g atom 
sites, the summations over b,, R} and {q, 
R’} are carried out over all crystal inter- 
stices, and Wpq(R - R’) is the pairwise in- 
teraction energy between the interstitial 
atoms occupying the sites (p, R) and (q, 
R’). 

The distribution function, n(p, R), can be 
expressed in terms of normal concentration 
waves, u,(p, k) exp(2rik . R): 

4~3 RI = 2 2 
cr k 

yAWu&, W exp&zk * R) (5) 
where the u&, k), u = 1, . . . , g, are 
orthogonal unit “polarization vectors” that 
are the eigenvectors of the pairwise interac- 
tion energy and the y,(k) are amplitudes. 
The g polarization vectors are determined 
by the equation 

2 VpqWcAq, k) = Mkh&, k) (6) 9 
where V,,(k) is the Fourier transform of the 
pairwise interaction energy, 

V,,(k) = 2 W,,(R) exp[-2rrik - R] (7) 
R 

and the A,(k) are the eigenvalues of V,,(k). 
The substitution of Eqs. (5) and (6) into Eq. 
(4) gives 

E = W/2) 2 c ~,(W~r&)12 (8) D k 

where the summation over k is carried out 
over the first Brillouin zone and N is the 
total number of unit cells. 

This paper treats structures that remain 
fully ordered up to the crystal melting 
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point. It follows that (at least in the modi- 
fied Ising model) the relative stability of the 
various possible superstructures is gov- 
erned by the internal energy. The most sta- 
ble superstructure is that which has the 
lowest energy per interstitial, i.e., the mini- 
mum binding energy. The binding energy 
can be evaluated from Eq. (8): 

c = x Cp = Ni”tIN 
P 

and Ni”, is the total number of interstitial 
atoms. Using the orthogonality of the ei- 
genfunctions of the Hermetian matrix 
V,,(k) and the fact that n(p, R) is equal to 
either 0 or 1 the following summation rule 
follows from Eq. (3): 

3 h4d12/c = 1. (10) 

Each coefficient lym(k)12/c determines the 
partial contribution (weight) of the eigen- 
value h,(k) to the binding energy, Eq. (9). 

The binding energy, Ei,t, has its minimum 
value when the major contribution to the 
sum on the right hand side of Eq. (9) is 
made by the smallest eigenvalue, A,e(k”) 
[min A,,(k) = A,@O)]. Since there may be 
several wave vectors in the star of k”, the 
distribution function n(p, R) may include 
several concentration waves that are re- 
lated to the smallest eigenvalue, A,p(kO). We 
shall call these “dominant waves.” The 
partial contribution of the smallest eigen- 
value is 

where j is the index number of the wave 
vectors of dominant waves in the star {k”}. 
It is easy to see that the energy (9) is mini- 
mized if the sum of the squares of the am- 

plitudes associated with the dominant con- 
centration waves, Zjj(y&kio)12, assumes its 
maximum possible value for the given con- 
centration, c. According to Eq. (10) this oc- 
curs when the squares of the nondominant 
waves that are related to the larger eigen- 
values, A,(k), are reduced to a minimum. 
The condition that a maximum of the sum 
Xj](y,+(kjo)/2 minimizes the configurational 
energy will be referred to as the maximum 
amplitude principal. 

It follows from Eq. (10) that the energeti- 
cally most favorable case is realized when 
the amplitudes of all nondominant waves 
vanish. The sum of the squared moduli of 
the dominant wave amplitudes then as- 
sumes the maximum value possible for a 
given composition, i.e., the maximum am- 
plitude principal is fulfilled as completely as 
possible. 

The minimal set of dominant concentra- 
tion waves always includes at least two 
waves, (u”,ko) and (u”,-k”), (j = 1,2). The 
presence of the conjugate wave, (a”, -k”), 
with the amplitude r$(k”), follows immedi- 
ately from the reality of the density func- 
tion, n(p, R). The only case in which the 
conjugate vector need not explicitly appear 
is when the vectors k” and -k” differ from 
one another by a reciprocal lattice vector, 
H, i.e., if k” = H/2. When the density func- 
tion depends on two conjugate dominant 
waves it has the form 

ndom(P, R) = C/g 

+ f{~JkO)uC~(p, k”) exp[2v& . R] 
+ r$(kO)u,$Jp, k”) exp[-2nrk * RI} (11) 

where g is the number of sublattices avail- 
able for the interstitial atoms. 

Equation (11) provides the simplest rep- 
resentation of an interstitial distribution 
based on dominant concentration waves. 
But it does not always satisfy the condition 
that the function n(p, R) be equal to 0 or 1 
at every atom site. If it does not we must 
introduce additional concentration waves, 
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(o,k), into (11) while trying ‘to keep their 
number as small as possible to maximize 
the partial fraction of the minimal eigen- 
value in the sum (9). 

The most favorable modification of Eq. 
(11) to permit appropriate values at the in- 
terstitial atom positions is almost always 
the addition of concentration waves with 
wave vectors equal to sk”, where s is an 
integer that varies from 0 to s1 - 1, S’ is the 
smallest integer that satisfies the equality 

s’k” = H 2 (12) 

and H is a reciprocal vector of the host lat- 
tice. This choice of additional wave vectors 
satisfies the requirement that the sum of 
any two vectors in the distribution also ap- 
pear in the distribution. The function n(p, 
R) may then be written 

s’-1 
n(p, R) = c a,(skO) exp[2hk0 - R] (13) 

s=o 

where 

a,(skO) = 2 y,(skO)u,(p, sk”). (14) 
cl 

Since all the wave vectors Sk0 entering Eq. 
(13) are collinear, the distribution function 
(13) yields a layered structure with alter- 
nate planes of filled and vacant interstices 
normal to the vector k”. 

The common preference for layered su- 
perstructures follows directly from the 
maximum amplitude principle. 

The distribution function given in Eq. 
(11) generates a layered superstructure be- 
cause, of all the dominant waves, only the 
two conjugate parallel waves ((TO, k”) and 
(u”, -k”) were utilized. The vectors of the 
star {k”} that were not parallel to the first 
two were omitted. This choice of vectors 
for constructing the distribution function 
conforms to the maximal amplitude princi- 
ple. The maximal value of the sum of the 
squares of the amplitudes of the dominant 
waves is achieved when the distribution in- 
volves the minimum number of additional 

concentration waves. To see this, let the 
distribution function include noncollinear 
dominant waves from the star {k”}. The 
sums of these wave vectors, which must 
also appear in the distribution, would gen- 
erate two- and three-dimensional networks 
of nondominant wave vectors in reciprocal 
space. 

The distribution function (13) was con- 
structed from Eq. (11) to provide the flexi- 
bility needed to ensure an occupancy of 0 
or 1 at each atom site. The distribution 
function (13) generates a one-dimensional 
network whose points divide the reciprocal 
lattice vector, H, into s1 segments of equal 
length. In the usual case this division intro- 
duces a much smaller number of nondomi- 
nant waves than would appear if noncolli- 
near vectors were included. The energetic 
preference for layered superstructures is vi- 
olated only rarely, when the star {k”} that 
provides a minimum of X,(k) contains only 
vectors that sum to a vector of the same 
star or to zero. 

Now let us consider the most favorable 
case when a superstructure is generated by 
the dominant waves alone. This case allows 
the maximum amplitude principle to be ful- 
filled as completely as possible. 

The simplest distribution has sr = 2. 
Then 

k” = H/2. 

(Here and below the vector k” need not nec- 
essarily lie within the first Brillouin zone.) 
The sublattices, p, that are occupied by in- 
terstitial atoms have the distribution 

n(p, R) = B + B exp[2& * RI 
= i + 4 exp[mH - R] (15) 

Since, by the definition of the reciprocal lat- 
tice, the product, H * R, is an integer for 
any lattice translation, R, the function (15) 
is equal to 0 or 1 for every lattice transla- 
tion. The distribution (15) corresponds to c, 
= 4; one-half of the interstitial sites on the 
pth sublattice are occupied. 
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A second favorable case is that of s1 = 3 
when 

k” = HI3 

and 2k” = -ko to within H. The distribution 
of atoms over the occupied interstitial sub- 
lattices is then given by 

n(p, R) = Q + 8 cos[27rk” . R] 
= Q + f cos[27rH * R/3]. (16) 

This function also assumes the values 0 and 
1 for lattice translations, R. The distribu- 
tion (16) describes a layered structure hav- 
ing the occupancy c, = 4. Every third inter- 
stitial plane normal to H is filled. 

A third simple case has s1 = 4, k” = H/4. 
The corresponding distribution function, 

n(p, R) = 4 + f {cos[rH * R/2] 
+ sin[rrH * R/2]} (17) 

also takes the values 0 and 1, but does not 
contain concentration waves with the mul- 
tiple vector 2k”. The occupancy of the pth 
interstitial lattice is c, = f. 

The procedure outlined above leads to 
the determination of the dominant concen- 
tration waves that generate the primary su- 
perstructure. This procedure is the starting 
point for the determination of the stable ox- 
ide structures. But the primary superstruc- 
ture has a natural stoichiometry that usu- 
ally will not correspond to the oxide 
stoichiometry that satisfies valence con- 
straints. It is then necessary to remove a 
certain number of the interstitial atoms to 
achieve a composition match. 

The resulting vacancies on the interstitial 
sublattice can undergo a secondary order- 
ing to decrease the configurational energy 
further. The superstructure formed in the 
secondary ordering can be determined in 
the same way as was the primary super- 
structure. The only difference is that the 
matrices, I$‘& - r’), their eigenvalues, 
A,(k), and densities, n(p, r), should not be 
determined at all the host lattice interstices 

(p, R}, but only on the subset of “permit- 
ted” interstices, do, r}. 

This procedure should be applied repeat- 
edly, through sequential interstitial order- 
ing reactions, until a superstructure is 
achieved whose natural occupancy satisfies 
the valency rule. This superstructure is the 
minimum-energy structure of the oxide. 

2. Interstitial Superstructures Based on the 
bee Lattice in the Ti-0 System 

The procedure for identifying the stable 
oxide phases will be illustrated below and 
applied to determine the oxide structures 
formed by ordering metal atoms over octa- 
hedral interstices in a bee host lattice 
formed by oxygen atoms. The system Ti-0 
is used as a specific example. 

There are three octahedral interstices for 
each site in the bee structure. These are 
usually designated 0,) 0,) and 0,. They are 
displaced by the vectors [a/2, 0, 01, [0, a/2, 
01, and [O, 0, a/2] from the bee host lattice 
sites, where a is the lattice parameter of the 
bee cell. Each of these interstices generates 
a bee sublattice of interstices under the lat- 
tice translations of the bee structure. The 
three sublattices will be labelled by the indi- 
ces p = 1, 2, 3. Each octahedral interstice 
has four nearest-neighbor interstices that 
are removed from it by the distance, rl = a/ 
2, eight interstices in a second coordination 
shell at r2 = a/21’2, eight interstices in the 
third coordination shell at r3 = 31’2a/2, and 
six interstices in the fourth coordination 
shell at r4 = a. 

The interaction between ions placed on 
neighboring interstices is expected to be re- 
pulsive, and should be the sum of the direct 
repulsion due to the overlap of electron 
clouds and the Coulomb repulsion due to 
the interaction of like charges. The direct 
repulsion should be the dominant interac- 
tion between typical metal ions placed in 
adjacent interstitial sites. Since the distance 
ri is less than the atomic diameter of most 
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metals, this repulsion should be very 
strong. Since the direct repulsion decreases 
rapidly with distance, the dominant interac- 
tion between metal ions placed on second- 
and higher-neighbor sites should be the 
Coulomb repulsion. However, the Cou- 
lomb interaction is screened by the polar- 
ization of the oxygen atoms on the host lat- 
tice, and should become negligible when 
the ions are separated by several lattice dis- 
tances . 

The V,,,(k) matrix components may easily 
be expressed in terms of the interaction en- 
ergies WI, W,, W3, W, by substituting the 
coordinates of the 01s from the first, sec- 
ond, and third coordination shells into (7). 
This yields 

V,,(k) = 8W3 * cos nk, * cos nky . cos rkZ 
+ 2W4 * (cos 2rrk, + cos 2nk, + cos 2nkJ 

V&k> = (2W, . cos rk, + 4W2 * cos rk, 

These considerations lead us to select a 
model in which the interaction is nonzero 
only out to the fourth coordination shell. 
The repulsion between interstitial ions in 
the nearest-neighbor positions is assumed 
large, and that between ions in the second, 
third, and fourth shells is assumed to be 
given approximately by the Coulomb inter- 
action. Hence 

* cos rk,) *exp(ir(kX - k,)), (21) 

where k = k,aT + k,ab + k,aF, a?, a;, and 
a: are the basis vectors of the reciprocal 
bee crystal lattice along the directions 
[lOOI, [OlOl, and [OOll, respectively. The 
other elements of the matrix (20) may be 
derived from (21) by cyclic permutation. 

w, 9 w, > w, > w, > 0 
Wi - e2/ri (i = 2, 3, 4) (18) 
Wi - 0 (i > 4) 

where Wi represents the repulsive interac- 
tion energies of pairs of atoms that are sep- 
arated by the distance ri and i designates the 
ith coordination shell. 

In a bee-based interstitial alloy, the prin- 
ciple of maximum amplitude generates two 
types of dominant waves which could pro- 
duce the ordered distribution without addi- 
tional nondominant waves. The first is the 
wave 

We shall consider examples of titanium 
oxide with titanium valency in the range 3 
to 4. The oxides with the limiting Ti valen- 
ties +3 and +4 have the stoichiometric 
compositions T&03 and Ti02, respectively. 
Oxides that include Ti with intermediate 
valence have compositions between these 
limits. The Ti/O ratio in the phases under 
consideration thus lies in the range 

t s Ti/O 5 $. (19) 

The V,,(k) matrix for the three sublattices 
pertaining to the octahedral interstices (01) 
in the bee lattice has the form 

= -& (I, 1, I)e’2mhR (22) 

corresponding to the wave vector k,, = 
(11 l), with the corresponding eigenvalue 

wo) = Vll(W + 2V12@0) 

= -4W1 + SW2 - SW3 + 6W4 < 0. 

For brevity, here and below we shall use 
the designations k = (k,k,k,) and H = 
(H,H,H,) in place of the correct k = 
(lla)(k,, ky, k,) and H = (lla)(H,H,H,). 

The second dominant wave which gener- 
ates the superstructure is 

u2(P, 0) = (u2(1,0), u2WV, u2(3,W 

VI dk) Vdk) Vdk) 

V,,(k) = Vt(k) Vdk) 
i 

V&) . (20) 

\ VtW V&(k) %3(k)/ and to the eigenvalue 

= -& (i, i, 2). (23) 

It corresponds to the wave vector ko = 0 
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X2(0) = Vll(O) - V12(0) 

= -2W, - 4W2 + SW, + 6W4 < 0. 

Both eigenvalues h2(0) and A&) are nega- 
tive because of the assumed relation (18a). 
Therefore, the formation of the superstruc- 
tures via both dominant waves reduces the 
configurational energy. 

Consider first the dominant wave (22). 
According to (1 l), it generates the distribu- 
tion 

noti, R) = Bc + Y&O) . udp, kde’2TLoR 
(24) 

where vi@, kg)ei;?lrbR is given by (22). The 
function (24) assumes the two values, 0 and 
1, only if c = c,, = 3, y&J = d/2, for 
which Eq. (24) yields 

noU, RI = no(2, R) = not39 R) 
= ; + ~e12a(x+Y+z), (25) 

where bR = x + y + z, since 

R = xal + ya2 + za3. (26) 

Here aI, a2, and a3 are unit vectors of the 
bee lattice along [loo], [OlO], and [OOl] di- 
rections, respectively; (x, y, z) are bee lat- 
tice site coordinates (for instance, (lOO), 
(lb*)), (W), and so on). The Ti atoms are 
placed at octahedral sites where no(p, R) = 
1. 

The distribution (25) corresponds to the 
ratio c,, = Ti/O = 3. This ratio lies outside 
the range (19). To shift the Ti/O ratio into 
the range (19) one should remove a fraction 
of the Ti atoms. There is additional reduc- 
tion in the configurational energy produced 
by secondary ordering of vacancies over 

noti, R)=fri 

the “permitted” 01 formed by the removal 
of the Ti atoms. The secondary ordering 
along (p, r} sites “permitted” by the distri- 
bution (25) can be generated solely by the 
dominant wave of the form 

where kl = (kkk). Otherwise, the distribu- 
tions of Ti atoms would be different in O,, 
O,, and 0, interstices and we would then 
have to introduce the additional wave (23) 
which controls the redistribution of Ti at- 
oms between OX, 0, , and 0, sublattices. 

To find the eigenvalue corresponding to 
the eigenvector ul(p, k,) = (l/fi)( 1, 1, 1) 
we should calculate the matrix VP&k) de- 
fined at the “permitted” interstices (p, r}. 
It may be readily shown that in this case the 
eigenvector (27) of the dominant wave cor- 
responds to the eigenvalue 

= 6 Wd cos 2rkl + 8 W2 cos2nk. 

Since the inequality W., < W2 is assumed, 
hl(kl) > 0, so that the development of the 
secondary superstructure generated by the 
dominant wave (27) would increase the con- 
figurational energy. In such a case the sec- 
ondary superstructures meeting the maximal 
amplitude principle cannot be formed. 

Therefore we should give up consider- 
ation of secondary superstructures based 
on the distribution (25) and should consider 
only the primary superstructure generated 
by the dominant wave (23). According to 
(1 l), the corresponding distribution is 

f c - 79(O) -!- at p = 1 
v% 

Y2Kv & 

1 
2Y2(0) G 

atp = 2 

atp = 3, 

(281 
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since v = 3. The distribution (28) assumes 
two values, 0 and 1, in two cases only: (i) if 
ic = f, ~(0) = G/3, and (ii) if&c = #, y*(O) 
= -(V&3). In the first instance 

&I, R) = 42, R) = 0, no(3, R) = I 
Pa) 

and we have the superstructure where all 
0, interstices are occupied and all 0, and 
0, interstices are vacant (Ti/O = 1). In the 
second case 

~(1, R) = no(2, R) = 1, ~(3, R) = 0. 
(29b) 

Since the Ti/O ratio for both structures 
(29a) and (29b) is outside the range (19), we 
must remove a fraction of Ti atoms from 
the relevant stoichiometric superstruc- 
tures. An additional energy decrease may 
be attained by secondary ordering of vacan- 
cies formed after removal of excess Ti 
atoms. The ordering should involve “per- 
mitted” Ti octahedral interstices, i.e., 
interstices (p, r} for which n&, R) = 1. 

The two primary superstructures (29a,b) 
are thus “predecessors” of two families of 
secondary superstructures formed by or- 
dering nonstoichiometric vacancies over 
the primary superstructures. In all super- 
structures derived from (29a) interstitial at- 
oms occupy one 0, sublattice with p = 3 
only. This causes considerable tetragonal 

-X 

extension along the [OOl]h,, axis of the bee 
host lattice. Because of the large radius of 
interstitial Ti atoms, the tetragonal distor- 
tion is very strong and produces an instabil- 
ity in the bee host lattice which should, for 
that reason, undergo a transformation to an 
fee lattice (one should bear in mind that the 
fee lattice is merely a tetragonal bee lattice 
having the tetragonal axial ratio c/a = fi 
= 1.41). The bee to fee host lattice rear- 
rangement of the structure described by 
Eq. (29a) produces the classical NaCl-type 
structure (Fig. la), one of the most fre- 
quently encountered structures, as in diva- 
lent oxides (MgO, CaO etc.). Therefore, all 
secondary superstructures arising from the 
nonstoichiometric primary superstructure 
(29a) should be secondary superstructures 
of the NaCl structure type. Bearing this in 
mind, we shall analyze ordering in the bee 
host lattices in conformity with the primary 
superstructure (29b) only. 

As in the primary structure (29b), only 
the 0, and 0, sublattices are permitted (p = 
1 andp = 2); the V,,(k) matrix has the sim- 
plified form 

where the matrix components are specified 
by (20 

‘Y 

-x’ /z 
FIG. 1. (a) Primary superstructure (Eq. (29a)) resulting in the NaCl structure. The bee unit cell is 

contoured by the solid line. Axes x, y, z are related to the fee unit cell, axes x’, y’, z’ to the fee unit cell; 
O-host atom; X-interstitial atom. (b) NiAs-type secondary superstructure (Eq. (36)): O-host 
atom; O-interstitial atom. 
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The lower branch of eigenvalues of the 
matrix (30) is 

AC-,(k) = SW, cos nk, . cos rky . cos rrk, 
+ 2W&os 2rk, + cos 2rk, + cos 2rkJ 
- (2 W, cos rk, + 2 W2 cos rk, . cos rrky (. 

(31) 
As mentioned above, a stable secondary su- 
perstructure should be generated by the 
sole dominant wave to satisfy the maximal 
amplitude principle. It has been shown that 
the latter condition is only satisfied if the 
wave vectors of the dominant wave are ;H, 
QH, and $H and also ifk = 0. Being reduced 
into the first Brillouin zone of the bee host 
lattice all such vectors produce the series of 
stars: 

OLkykJ = WON, {W, CHOW, M8, 
{it@, t+OO), {%OO}, {#O}, {ff;}. (32) 

Substitution of the vectors k from (32) in 
(31) yields the spectrum of eigenvalues. If 
the dependence 

Wi - z (2 5 i 5 4), i.e., 
I 

is assumed, we may readily see that the 
lowest eigenvalue of the resulting spectrum 
is 

A(-)(k& = -2w, - 2w4. (33) 

It is realized at a value 

4l = cm (344 

and corresponds to the eigenvector of the 
matrix (30) 

= -& (1, 1). (34b) 

Using the maximal amplitude principle, we 
may construct the secondary distribution 
ni(p, R) generated by the wave u(-)(p, 

ko)e’*“‘@ where ko and UC-@, k& are given 
by (34). According to (1 I), this distribution 
is 

(35) 

Substituting yc-&) = lIti, v = 2, and c/v 
= c/2 = 4 into (35) to set n,(p, R) equal to 
either 1 or 0, we have 

&, W = 
nl(l, R) = ) + feidX-Y) 

nl(2, R) = f + $eidx-Y) 
(36) 

where bR = x - y. Since clv = cl2 = i, we 
have c = TilO = 1; thus, the stoichiometric 
formula is TiO. Placing Ti atoms at the 
“permitted” sites (p, R) where ~(1), R) = 
1 we obtain the superstructure shown in 
Fig. lb. 

It is noteworthy that with 0, and 0, sub- 
lattices having the same occupancies, a te- 
tragonal distortion of the bee lattice takes 
place: the lattice undergoes the same uni- 
form extension along the [lOO] and [OlO] di- 
rections. At the same time, according to the 
crystal lattice statics theory, the ordered 
distribution of atoms within the sublattices 
produces a displacement of each second 
(170) plane of the oxygen bee host lattice in 
the [l lo]&, direction (5). If the tetragonal 
axial ratio is equal to a = 0.816, and the 
displacement along the [ 1 lo&,,, axis is equal 
to l/12 of the [110],,,, translation, the bee 
host lattice becomes the hcp one, and the 
structure (36) is transformed into the NiAs- 
type structure (6). The NiAs structure is 
widely encountered among the binary metal 
chalcogenides. 

Distribution (36) corresponds to TV0 = 1 
which falls beyond the range of Ti/O stoi- 
chiometries (19). For that reason, some 
fraction of the Ti atoms should again be re- 
moved, and the resulting nonstoichiometric 
vacancies should be ordered over the “per- 
mitted” interstices of structure (36) in a 
manner that provides the maximal reduc- 
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tion of configuratio@ energy. To express 
the elements of the V,,(k) matrix at the sites 
“permitted” in the secondary superstruc- 
ture (36) through the interaction constants 
Wi the relation 

cp,(k) = c Wpq(r)e-i2nkr = iv,,(k) 

+ V,,(k - WY(-,&~)q-,(q, ko) (37) 

has to be used (see section 2.7 of (4)). The 
coefficients yc-@) = l/V? and u(-,(q, ko) 
= (l/fi)(l, 1) in (37) are taken from (34b), 
(39, and (36) describing the positions of 
“permitted” sites in the secondary super- 
structure. Substitution of these parameters 
into (37) yields 

where 

f,,(k) = 4W3 cos n(k, + k,) - cos rk, 
+ 2W4 cos 2rkz 

5 
VIZ(k) = 2W2 cos n(k, - k,) 

exp(ir(kX - k,)). (39) 

The lower branch of eigenvalues of matrix 
(38) is 

khk) = f,,(k) - (fn(k)l 
= 4W3 cos r(k, + k,) 

cos mk, + 2W4 cos 2rk, 
- 2W&os r(k, - kJ. (40a) 

This eigenvalue corresponds to the eigen- 
vector 

1 
~(43, k) = 3 (1, -~dkYl~n(k)l). 

(4Ob) 

The minimal value of x(-,(k) is -4W3 - 2W2 
+ 2W4, which is attained at k, = (t&O). Ac- 
cording to (4Ob) the corresponding eigen- 
vector is given by 

w(P, W = ti , L (1 i). (41) 

The wave u(-,(p, k,)enskJ generates the 
stoichiometric distribution 

d2’(p, r) = i + L u(-,(p, k,)e”“kr’ 
2 ti 

1 f + re 12mkrr at p = 1 
= 

1 t - ze 2drr (42) at p = 2 

where r represents the “permitted” site co- 
ordinates of the primary superstructure (36) 
and where nr(p, R) = 1. To write out the 
distribution (42) in terms of arbitrary bee 
site coordinates R, i.e., to introduce the 
host lattice sites R instead of the secondary 
structure sites r, Eq. (42) should be trans- 
formed into 

n2@, RI = ndp, R) . IZ’~‘(~, R) 

d2)(p,r) atR=r 
= 

0 at R # r. 
(43) 

Equation (43) holds because, by the defini- 
tion (36), the function n(p, R) = 1 on the 
“permitted” secondary superstructure 
sites when R = r, and vanishes on all the 
other sites when R f r. The substitution of 
(42) and (36) into (43) yields 

f + $e’*mx + 
n2h RI = 

i[e Mx+y) + eiMx-Y)] at p = 1 

a- 1 i2m _ I ae 4e [ idx+y) _ eW-Y)] at p = 2. 
(44 

On injecting Ti atoms into interstices 0, n2(p, R) function given by (44) is equal to 
and 0, of the first and second sublattices of unity, and leaving the other interstices va- 
the oxygen bee host lattice on which the cant, we obtain the atomic structure shown 
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FIG. 2. Rutile tertiary superstructure; (a) Atomic lattice: O-oxygen atoms composing the bee host 
lattice; l -Ti atoms in octahedral interstices, 0, and 0,. The conventional unit cell of the rutile 
structure is shown by the solid line; (b) Reciprocal lattice pattern: O-fundamental reciprocal lattice 
points related to the bee host lattice; O-superlattice points of the secondary superstructure (36) 
generated by the wave vector 4 = (&JO) of the dominant concentration wave resulting in the NiAs 
structure: x -superlattice points generated by the tertiary ordering resulting in the rutile structure. 

in Fig. 2. This structure corresponds to the 
stoichiometric formula TiOz and therefore 
corresponds to the Ti valency state +4. The 
structure so determined is thus the most 
stable structure for the stoichiometric com- 
position TiOz. The atomic distribution 
shown in Fig. 2 is actually encountered to 
within the small displacements caused by 
ordered distribution of interstitial atoms in 
the r-utile structure (7). The rutile structure 
is the most widely spread oxide structure 
based on the bee lattice, as, for example, in 
Ti02, VOz, CrOa, Mn02, SiOz-stishevite, 
Ta02, Ru02, As02, GeOz, Sn02, PbO2, and 
Ir02 and in slightly distorted structures 
WOz, MoOz, TeOz, and ReOz. The rutile 
structure is also observed in metal fluorides 
such as MgF2, MnFt, FeF2, CoF2, NiF2, 
PdF2, and ZnF:!. 

3. Alternatives to the Rutile Structure 

Within the model of interatomic interac- 
tions we have assumed, the rutile structure 
has the lowest configurational energy and 
therefore, the largest stability at the compo- 
sition TiOz; however, this model is rather 
approximate, and contributions from long- 
range potentials may change this conclu- 
sion and thereby render one of the alterna- 
tive structures more stable. It seems clear 
that the energy of the alternative possible 

structure calculated in the frame of the 
present model should be only slightly 
higher than that of the r-utile structure. Oth- 
erwise it would be improbable that slight 
long-range interactions neglected by the 
model might outbalance the energy in- 
crease in structures far exceeding the rutile 
structure in energy. We thus arrive at a 
rather simple procedure for the determina- 
tion of possible alternative structures with- 
out extending the simplest model of inter- 
atomic interactions considered above (the 
latter circumstance is of utmost importance 
because as a rule, the necessary informa- 
tion for refinement of that model is lacking: 
we must array alternative structures in or- 
der of increasing energy and choose those 
that follow rutile in the series thus ob- 
tained. This procedure will be exemplified 
below. 

To determine structures alternative to 
rutile one, we must return to ordering of 
vacancies in the secondary structure de- 
scribed by the distribution (36). 

As mentioned in Section 1, the condition 
of the maximal amplitude for the dominant 
wave is realized if the structure is produced 
by the only “polarization” of the dominant 
concentration wave. For this condition to 
be met we take advantage of the fact that 
the n(p, r) function of a fully ordered distri- 
bution remains unaffected by raising it to 
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any power. Hence, raising the dominant 
wave, ~$3, We r;??rklr that generates the 
tertiary superstructure to a power of s1 + 1 
should produce the same wave 

(UC-)(P, kde ihrk,r ) s,+ I 
= uf~&,, k,)ei2sHrei2nklr 

= @;‘(p, k,)eQdv 

= Puc-)(P, Me 2Wkl’. (45) 

Bearing in mind (46), the above condition 
may be written as 

4$‘h W = PJ-,(P, kd (46) 

where fi is a dimensionless quantity. Using 
(40b) we find that (46) is satisfied if 

( 
=* Vdkd $1 

-m =I* 1 (47) 

Using (12) and substituting (39) into (47) we 
obtain 

$1 = - I cos r(k,, - k,,) 
lcos dhx - h,)l 1 . e-idH,-Hv) = 1. 

(48) 

With thEmode (18) the spectrum of eigen- 
values, h(-)(k), given by (40a) reaches its 
minimal value at k, = (@O). Refinement of 
the model by introduction of additional in- 
teractions may shift the minimum of r;(-)(k) 
to the point kt . The shift r in the minimum 
(supposing the minimum does shift) can be 
determined according to the assumption 
that it produces the lowest increase of the 
eigenvalue x(-,(k), which may be compen- 
sated by “switching on” the additional 
long-range interaction. Let us introduce the 
shift vector with its origin at (f&O), 

T = kl - k,, (49) 

where kt is the sought dominant wave vec- 
tor of the alternative structure. The substi- 
tution of (49) into (40a) yields 

+,(k, + T) = -4W3 cos ~(7, + TJCOS 7~7, 
+ 2w4 cos 27rr, - 2w&os 7r(T, - TJ, 

(50) 

where l/a (r,, rY, 7,) are the shift vector 
components. Using (49) in (12) we obtain 

H 
r= --kk,= H - slkr 

SI SI . 
(51) 

If $1 is an even number, the numerator on 
the right-hand side of (51) represents a sec- 
ondary structure reciprocal lattice vector 
H’ (because k, = (&lo)). The vector ($$O), 
like any other vector differing by a funda- 
mental reciprocal lattice vector of the bee 
crystal is, by definition, the secondary su- 
perstructure (36) reciprocal lattice vector. 
It thus follows from (51) 

where 

r = H’/sl (524 

H’ = H - s,k,. (52b) 

The substitution of (52a) into (50) yields 

A(-,(k, + T) = -4W3 cos ; (H; + H;) 

* cos ; H; + 2Wq cos 5 H; 

- 2W+os : (H: - H;)j. (53) 

The atomic structure of the tertiary su- 
perstructure will again be determined using 
the maximal amplitude principle. As men- 
tioned in Section 1, the maximal concentra- 
tion wave amplitude corresponds to s1 = 2, 
3, or 4. As we analyze even values of sl, we 
shall consider the cases s1 = 2 and sI = 4. 

To find the vector H’ and, therefore, the 
vector kl of the dominant wave, substitute 
kl = k, + r = k, + HI/s, into (48); this 
yields 

cos r(H: - H;)lq 
- lcos n(H: - H;>/s,l I 

81 

e -Wf:-H;) = 1. (54) 
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Equation (54) provides the limiting condi- 
tion for H’. In the case sr = 2 and s1 = 4 Eq. 
(54) holds when 

H: - H; = 21 (55) 

where 1 is an integer. Note that by definition 
the shift vector r is defined within the first 
Brillouin zone of the secondary superstruc- 
ture (36). The latter condition, definition 
(52b), and condition (55) with sr = 2 and sI 
= 4 impose severe limitations on the recip- 
rocal lattice vectors H’, only a few of which 
meet all these limitations: 

H’ = (ggi), (Go), (110), @I), (002), (112) 
at sr = 4 (56a) 

and 

H’ = (Ml) at s1 = 2. (56b) 

The analysis of the spectrum (53) at H’ 
listed in (56) under the above-assumed con- 
dition W, > W3 > W, shows that the mini- 

mal eigenvalue is realized at the reciprocal 
lattice vector H’ = @ii) and s1 = 4, where 
it is equal to min h(-,(k, + T) = -2W2 - 
2W3. According to (49) and (52a) the corre- 
sponding vector kr is 

k, = k, + r = k, + iH&+g 
= (440) + a(M) = (gd). (57) 

Reduction of kl into the first Brillouin zone 
of the secondary superstructure by sub- 
tracting from (57) the reciprocal lattice vec- 
tor (#i) yields 

k, = (Q&8 = Q(116) = Q&6). (58) 

It follows from (40b) and (58) that 

MP, kd = & (1, iI. (59) 

According to (17) and (59) the sought 
stoichiometric distribution for s1 = 4 has 
the form 

d3’(p, r) = A + 1 [@/4 

2 2ti 
UC-)(p, k&‘2mklr + e-i”‘4uT_,(p, kl)e-““klr] 

4 + &(cos 27rk,r - sin 2rktr) at p = 1 
= 

i - f(cos 2Tkfr + sin 27rkp) at p = 2 (@a 

where r are the site vectors of bee lattice resented in a form similar to (43): 
sites “permitted” in the secondary super- 
structure (36). n3(P, RI = ~I(P, RW3’0,, RI. (61) 

To write distribution (60) as a function of The substitution of (60) and (36) into (61) 
arbitrary bee sites R Eq. (60) should be rep- yields 

1 ei?r(x-y) + _ 
4 ( 

cos 

+ ; ( cos ; (5x 

1 &d-y) _ - 
4 ( 

cos 

1 
- ;? ( co+5x 

$ (X + y + 62) - sin T (x + 

- 3y + 6z) - sin T (5x - 3y 

f (x + y + 62) - sin $ (x + 

- 3y + 62) - Sin 3 (5X - 3y 

Y + 62) 1 

+ 62) 1 

Y + 62) 1 

+ 6z) 1 

atp= 1 

atp = 2 (62) 
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where (x, y, z) are again the coordinates of 
bee lattice sites. Injecting interstitial atoms 
into the interstices on which n&, R) = 1 
we obtain the atomic configuration shown 
in Fig. 3. This configuration describes the 
new polymorph of the Ti02 structure accu- 
rately to within small displacements of oxy- 
gen atoms. This is the so-called a-PbOz 
structure frequently occurring in oxides of 
the composition MO2 (8). 

The theory described above thus predicts 
the a-PbOz structure as an alternative struc- 
ture to t-utile. The cr-PbOz structures are, as 
a rule, stable under high pressures, whereas 
the t-utile structure is stable under normal 
pressure conditions. For many synthetic 
mixed oxides and naturally occurring min- 
erals (in particular, for columbites and tan- 
talites) both polymorphs are known; their 
transformations to each other are associ- 
ated with small variations of external ther- 
modynamic parameters. 

We now turn to the case of odd sl values, 

written as sI = 2n - 1, where n = 2, 3, 4, 
. . . . Equation (51) may then be cast in 
the form 

2H - 2slk, 
7= 

2H - 2(2n - l)k, 
2s, = 2(2n - 1) * 

(63) 

Introduce the fundamental reciprocal lat- 
tice points H, meeting the condition 

$H, = k, + H. w 

With accuracy to an arbitrary secondary 
structure reciprocal lattice vector, H, &H, 
coincides with k,. Equation (64) may also 
be rewritten in the form 

H, = 2k, + 2H. (65) 

Using (65) we may substitute 2k, in (63). 
The result is 

H, - 2(nH, + 2H’) 
7= 2(2n - 1) 

(b) 

FIG. 3. The cr-PbOr tertiary superstructure; (a) Atomic lattice: O-oxygen atoms composing the bee 
host lattice; O-metal atoms in 0, and 0, octahedral interstices. The superstructure unit cell is 
contoured with the solid line. (b) Reciprocal lattice (the (llO)* plane section); size of the reciprocal 
lattice points is proportional to their intensities in the diffraction pattern. 
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TABLE I 

LIST OF RECIPROCAL LATTICE VECTORS H, IN THE bee HOST LATTICE ARRANGED IN 
THE ORDER OF IHr[ MAGNITUDE 

No. 

110 
200 
112 
3io 
222 
312 
114 

No. VL H’y KJ 

8 330 
9 420 

10 402 
11 204 
12 332 
13 510 
14 3i4 

No. No. 

15 512 22 li6 
16 530 23 532 
17 334 24 514 
18 600 25 226 
19 006 26 622 
20 424 27 316 
21 442 28 710 

where H’ = nH, + 2H is also the secondary 
superstructure reciprocal lattice vector. It 
follows from (65) that the vector H, is deter- 
mined to within twice an arbitrary recipro- 
cal lattice vector. Without the loss of gener- 
ality, we may therefore use the substitution 
H, - 2H’ + H, in the numerator of (66). 
This substitution gives 

H, 
T = 2(2n - 1) (67) 

where H, is one of the vectors determined 
by (65) and listed in Table I. 

In certain cases the vector kl is located 
outside the first Brillouin zone. It is re- 
moved by the distance [1/2(2n - l)] . H, 
from the nearest “rutile” point 1/2H, which 
is also located outside the Brillouin zone. 
The latter follows from Eq. (64) which dem- 
onstrates that (1/2)H, differs by the recipro- 
cal lattice vector H from k, = ($40). 

Taking these facts into account we have 

1 1 1 
kl=~Hr+7=~H,+2(2n-1)H’ (68a) 

or 

k, = n H,. 2n-1 (68b) 

According to the definition (65), H, - Hri 
is an even number. Hence, the substitution 

of (68a) into (48) yields 

cos[d2(2n- l)](H, - H,) 
- (cos[d2(2n-l)](H, - H,,,)I 

Interest centers on the superstructures with 
s1 = 3, the only superstructures with odd s1 
generated by a single dominant wave and, 
therefore, with the maximal amplitude for 
that wave. As SI = 2n - 1, we have II = 2 
for s1 = 3. Therefore, according to (67), 

r = iH,. (70) 

By definition, requirement (70) places r in 
the first Brillouin zone of the secondary su- 
perstructure (36); this, combined with the 
restriction (69) at n = 2, enables us to select 
th_e suitable H, from Table I. They are (200) 
(112), and (312) only. Since ki = (n/2n- 1) . 
H,, we have at n = 2 the series 

ki = 3(200), 3(li2), Q(312). (71) 

Substitution of the vectors ki from (71) to 
(4Oa) shows that the minimal eigenvalue, 
AC-,(ki) = -2W3 - WZ - W4 is realized at kl 
= (%#). We then have, according to (4Ob) 

1 
UC-,(P, k,) =: x (I, e-457/3). 

The total distribution function has the form 
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2 lh 
n(3)(p, r) = - - - lh 

3 3 UC-,(p, kJ . exp(i2rkg) - 3 u(*-,(p, k,) exp(-i2wklr) 

ifp = 1 

if p = 2 
(72) 

where r = a . (5, , 82, &) are the coordinates from (42) to (44), distribution (72) may be 
of the bee lattice sites “permitted” in the rewritten in terms of the sites of the initial 
primary structure. bee lattice {R}: 

Using the same procedure as in going 

ns(p, W = MP, R)~(“(P, RI 
- i cos tf (x - y + 22) - f cos ; (x - y - 42) at p = 1 

- f cos f (x - y + 22 - 1) - ; cos 5 (X - y - 42 + 2) 

The concentration of occupied positions in 
0, and 0, sublattices is equal to l/3, as fol- 
lows from (73). The oxide phase formula 
may therefore be written M203 or [Mu3 
q 1,331,2[M12/3O1,331,2O. For the Ti-0 system, 
we have Ti/O = 3, i.e., the ratio corre- 
sponding to the trivalent titanium state. In- 
jecting Ti atoms in 0, and 0, sites where 
the n&, R) function (73) is equal to unity 
we obtain the structure shown in Fig. 4. 
Within small displacements of oxygen at- 
oms this configuration coincides with the 
corundum structure, cr-Al203, typical for 
trivalent transition metal oxides formed by 
elements of the first transition metal series 
(7). For a more accurate description of the 
real corundum structure, the oxygen atoms 
must be displaced fro_m the bee host lattice 
sites in alternating (1 lo)&, planes along the 
[llO]t,,, direction by l/12 [llOl. In addition, 
the bee oxygen host lattice undergoes uni- 
form tetragonal distortion with c/a < 1. 
Both distortions may easily be obtained by 

atp = 2. 
(73) 

static displacements in the bee host lattice 
caused by an ordered distribution (73) of 
interstitial atoms. These displacements 
result in instability of the bee host lattice 
causing its transformation to an hcp lattice. 
Irrespective of the displacements of oxygen 
atoms, the general atomic arrangement re- 
mains the same and may be described by 
(73). 

Summing up the foregoing, one should 
note that the concentration wave approach 
and, particularly, the maximal amplitude 
principle, combined with the simplest 
short-range interaction model enables us to 
predict the atomic structure of oxides for 
which metal atoms have integer valencies. 
As applied to the Ti-0 system, the theory 
provides the correct structures for all the 
observed oxides with fixed stoichiometry: 
r-utile, its a-Pb02 polymorph, and corun- 
dum. What is more, the theoretical deriva- 
tion does not predict any “incorrect” struc- 
ture. i.e., a structure which would not be 
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(b) c f WI 

FIG. 4. The TizOl tertiary superstructure (corundum); (a) Reciprocal lattice pattern in the (llO)* 
plane section. Large size circles are fundamental reciprocal lattice points of the bee host crystal. Size 
of the reciprocal lattice points is proportional to their intensities in the diffraction pattern. (b) Atomic 
lattice; thin lines show the bee host lattice frame. Solid line shows the conventional unit cell of the 
corundum structure: a-Ti. 

observed experimentally. It has been 4. 
shown that the predicted phases are the 
most stable bee-based interstitial super- 5. 
structures whose stoichiometry fits the sim- 6 
ple valency rule with metal atoms having ’ 
integer valencies +3 and +4. 

7. 
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