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1. The Structure of Homologous Series of 
Chemical Compounds 

The concentration wave approach and, 
particularly, the maximal amplitude princi- 
ple has earlier been applied for the theoreti- 
cal prediction of the structure of chemical 
compounds (oxides in particular) with 
metal atoms having fixed integer valences 
(I). In this scheme the compounds were re- 
garded as a superstructure in which metal 
atoms are located in octahedral interstices 
of the bee host lattice formed by oxygen 
atoms. It has been shown that stable struc- 
tures with fixed stoichiometry are gener- 
ated only by dominant concentration 
waves, with wave vectors given by 0, &H, 
$H and 4H (H is an arbitrary reciprocal lat- 
tice vector of the phase in which ordering 
occurs). The term “dominant concentra- 
tion wave” refers to the eigenfunction 
which corresponds to the minimal eigen- 
value of the matrix W,,(R - R’) describing 
the pairwise interaction energies of intersti- 
tial atoms at the interstices (p, R) and (4, 
R’). The indices p and 4 label the inter- 
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stices related to the nearest host lattice 
sites designated by the reference vectors R 
and R’, respectively. The maximal ampli- 
tude principle mentioned above refers to 
the requirement that the sum of the modu- 
lus squared of the dominant wave ampli- 
tudes should attain the maximal possible 
value. 

In following up on the above it is natural 
to pose the question as to what would hap- 
pen if the wave vector, b, of the dominant 
wave does not meet the above-mentioned 
limitation that it be given by 0, &H, 5H, tH, 
i.e., if ko corresponds to a more general 
point of the reciprocal lattice. As has been 
shown, the dominant waves then produce 
nondominant waves whose wave vectors 
are multiples of b. Together the dominant 
and nondominant concentration waves gen- 
erate layered superstructure (2). The occu- 
pation probabilities, n(p, R) to find an in- 
terstitial atom at the interstice (p, R) for 
such a layer superstructure is 
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n(p, RI = c aP(sb)ea 
s=o 

(1) 



where s1 is the minimal integer meeting the 
equality 

s,h = H (2) 

(See Eqs. (13) and (12) in (1)). H entering 
the definition (2) is the smallest reciprocal 
lattice vector formed by multiplying the 
vector ko by an integer. It is, however, not 
necessarily equal to the smallest reciprocal 
lattice vector H,, in the direction of b but 
may differ from it by an integer multiple of 
SO; i.e., H = soHo. Hence, bearing in mind 
(2), we obtain 

Accordingly, the equation for the ma plane 
normal to the vector k. has the form 

&R=m, m=0,%1,+2,. . . . (4) 

By definition, the waves ~&,)e”“koR and 
a,,((~, - l)k,&+(sl-‘)bR = up(-b)e-‘2+R in 
the sum (1) involve s = 1 and s = sI - 1 in 
describing the dominant waves. 

l $1-1 27rso 
Up(s) = G z. n(p, m) exp -i - sm 

/I- ( ) St . 

(6) 

The substitution of (3) into (1) yields 

S=S,-1 
n(p, R) = n(p, m) = 1 up(s)@W~M 

s-0 

(5) 

where a,(s) stands for a,(&) and n(p, m) is 
the probability that a site of the m* plane in 
the pth sublattice is occupied by an intersti- 
tial atom. 

The variable n(p, m) is equal either to unity 
(if the m* plane of the pth sublattice is filled 
with interstitial atoms) or to zero (if the 
plane is vacant). The integer $1 in Eq. (6) is 
a period expressed in terms of the number 
of planes comprising the superstructure 
translational motif. This is the reason why 
the number of occupied planes mo may be 
easily related to the stoichiometric “occu- 
pancy” of the pth sublattice, c,: 

To determine the structure of a layer 
phase we should: (i) find the sequence of 
occupied and vacant parallel planes within 
the interstice sublattices of the host lattice 
frame, (ii) find the indices of the plane form- 
ing this sequence, and (iii) find the mutual 
position of the layered distribution of inter- 
stitial atoms in the various sublattices. 
More accurate structure determinations 
also require the calculation of small dis- 
placements of host atoms produced by the 
ordered distribution of interstitial atoms. 

c, = mOlsl. (7) 

As n(p, m) is either 1 or 0, the sum in 
(6) is simply a sum of mo exponents, 
exp( -i(271;FoIsI )sm’), taken over the num- 
ber of occupied planes, i.e., 

qh) = ; 2 exp 
rn’ ( -i27r z sm’ 

) (8) 

where m’ are the numbers of occupied 
planes. 

By definition, the amplitude of the domi- 
nant wave with the wave vector ko corre- 

Below we shall show that the first step, sponds to s = 1. Hence 

i.e., the determination of the sequence of 
occupied and vacant layers, can be made by 
application of the maximal amplitude prin- 
ciple. According to this principle, the mini- 
mization of binding energy is possible only 
through a choice of the special distribution 
of filled and vacant layers in the layer su- 
perstructure (5) which provides for the 
maximal amplitudes of the dominant wave, 
at the expense of minimizing the amplitudes 
of the nondominant waves. 

The amplitude of concentration waves of 
a layer superstructure is related to the n(p, 
m) probabilities (here the plane number, m, 

plays the part of the coordinate R) by the 
inverse Fourier transform of Eq. (5): 
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1 
u,(l) = K 2 exp ( -i2?r : m’ . 1 (9) in’ 

To make the modulus of the amplitude (9) 
maximal at a given number of filled planes, 
mo, we must choose the index numbers of 
filled layers, m’, such that the modulus of 
the sum of exponents in (9) be maximal. 
This requires that the difference between 
the phases of the exponents, exp(-27r(so/ 
s,)m’), related to these layers, be minimal. 
Each term in (9) may be represented graphi- 
cally in a circular diagram as a radius-vec- 
tor of the unit circle in the complex plane 
which makes an angle of p(m’) = 24so/ 
s,)m with the real axis (here m’ is the num- 
ber of the layers to which the radius vector 
corresponds). 

Consider first the case of so = 1 and s1 = 
9 (Fig. la). The number drawn near each 
radius-vector in that figure is the index 
number m’ of layers making up the crystal- 
lographic pattern comprising sr = 9 planes; 
the angles between these vectors and the 
real axis are equal to the phase angles, 
tp(m’> = 2r(1/9)m’, of the corresponding 
planes. It is easy to see that the maximal 
value of the modulus of the vector sum of 
mo unit vectors is attained when we choose 
mo nearest vectors that make the smallest 
angles with each other, equal to 27r/sr = 27r/ 
9. The maximal amplitude of the dominant 
concentration wave a,(l) at a given cP = 
molsl is thus determined by expression (9) 

(8) (b) 

FIG. 1. Vector diagram for the determination of the 
sequence of alternating vacant and filled planes in su- 
perstructures of homologous phases (see text): (a) the 
case s,, = 1 and s, = 9; (b) the case s0 = 5 and s, = 9. 

where the summation is carried out from 0 
to m. - 1. The corresponding sum forms a 
geometric progression and may easily be 
calculated. The result for the amplitude of 
the dominant concentration wave is 

up(l) = sm =cp . e-ilr(sdsl)(mo-‘). (10) 
sI sin(7rlsr) 

Similar expressions are obtained for the 
amplitudes of other waves: 

qm = 
sin 7rsc, 

s1 * sin(sa/sr) 
. e-idsds~)(mo-l)e (1 1) 

Hence the squares of amplitude moduli are 
given by 

With SO > 1, each exponential may still be 
related to the radius-vector making an angle 
of c&m’) = 2r(so/sl)m’ with the real axis. 
This situation is illustrated by Fig. lb for s1 
= 9 and SO = 5. As in Fig. la, the numbers 
drawn near the vectors are the plane index 
numbers of filled planes, m’ , and the angles 
made by the vectors and the real axis are 
equal to cp(m’) = 2r(solsl)m’. It follows 
from Fig. lb that, within an accuracy re- 
lated to the numbering of unit vectors, their 
mutual arrangement at so = 5 remains the 
same as with SO = 1. Therefore, as with SO = 
1, the maximal value of the modulus of the 
sum of mo unit vectors shown in Fig. lb is 
attained when neighboring vectors making 
angles of (c = 2~19 with each other are cho- 
sen. The calculation formulae remain the 
same as before. For instance, if the concen- 
tration c, is equal to 5/9, i.e., 5 of 9 planes 
should be filled, it follows from Fig. la that 
in the case so = 1 the numbers of occupied 
planes should be 0, 1, 2, 3, 4. The corre- 
sponding sequence of filled and vacant 
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planes is M M M M Cl Cl Cl Cl Cl M M M. 
. . . Figure lb displays that for the case so 
= 5, the numbers of occupied planes are 0, 
2, 4, 6, 8 with the sequence of filled and 
vacant planes M 0 M 0 M Cl M q M M q 
. . . ) where M and q are symbols desig- 
nating occupied and vacant planes. 

According to the maximal amplitude 
principle, the squared amplitude of the 
dominant wave, l~,(l)[~, may be utilized to 
estimate stabilities of superstructures. 
Equation (12) for j~,(l)/~ has the larger 
value the smaller the translational motif 
period si so that the structure with the 
smaller period will be more stable at a given 
“occupancy” c, of the pth sublattice. The 
formation of superstructures having the 
smallest period consistent with the fraction 
of filled planes, mo, is therefore energeti- 
cally favored. Simple fractions c, = rndsl 
with s1 quantities as denominators make up 
a discrete series of values. Figure 2 shows 
the dependence of la,(I)12 on c, in the c, 
range 0 to 0.5 for sI varying from 2 to 19. 
The other part of the plot corresponding to 
the c range of 0.5 to 1 should, according to 

0.25 

0.20 

0.15 

/ 
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/’ 
/’ 
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(12), be symmetric with respect to the first 
one. To obtain that part, one must substi- 
tute 1 - cP for c, . The dependence in Fig. 2 
reflects the contribution to the internal en- 
ergy from the smallest eigenvalue h,(ko) 
and therefore, characterizes relative stabili- 
ties of superstructures. The maxima of the 
plot correspond to series of homologous 
compositions c, = nl2n - 1 = 8, Q, 4, etc., 
for c, above i and c,, = n/2n + 1 = 8, 3, 4, 
etc., for cP below %. The respresentatives of 
those series should therefore be more stable 
than compounds of other compositions. 
Both series correspond essentially to the 
same superstructures. These superstruc- 
tures are antiisomorphic with respect to 
each other, i.e., superstructures of one se- 
ries may be obtained from those of the 
other by replacing interstitial atoms with 
vacancies and vice versa. In both cases, the 
so-called structures of homologous com- 
pounds arise. Taking into account (7) and 
the composition series obtained, one can 
see that sI = 2n - 1, i.e., the translational 
motif of homologous phases always con- 
sists of an odd number of planes. 

_A-- 
/-- 

__-- 
_--- 

__-- 

\ r 
. . . 

.* 
.’ 

FIG. 2. Squared amplitude, la,(k#, of the concentration wave of the dominant superstructure 
vector k,, vs the stoichiometric composition c, for layered superstructures. The solid line passes 
through points corresponding to the homologous series cP = n/2n - 1. 



158 POKROVSKII AND KHACHATURYAN 

2. Homologous Series of MagntG Phases, 
Ti,Oh-1 and V.OZ~-~ 

A large number of phases having compo- 
sitions intermediate between Ti02 and 
T&O3 occur in the Ti-0 and V-O systems. 
These were first described and studied in 
detail by MagnCli and co-workers (2); they 
became known as “Magneli phases.” Since 
Ti02 and T&O3 with rutile and corundum 
structures, respectively, are formed by or- 
dering of Ti atoms over octahedral inter- 
stices of the oxygen bee lattice, it is natural 
to assume that intermediate phases should 
also be represented as interstitial super- 
structures based on the bee host lattice. 

The compositions and atomic structures 
of these phases may easily be explained and 
as a rule, may be predicted, within the ther- 
modynamic theory of ordering in solid solu- 
tions as described above. The construction 
of superstructures with period, sl, not 
equal to 2, 3, and 4 requires the addition of 
several other concentration waves into the 
density function n(p, R); otherwise, we 
would not be able to render this function 
equal to either 0 or 1 at all crystal lattice 
sites. According to the maximal amplitude 
principle, the stable superstructure should 
involve alternating filled and vacant parallel 
planes (a layer superstructure); the ampli- 
tude of the dominant wave attains its maxi- 
mal value by decreasing amplitudes of all 
nondominant waves. As shown in Section 
1, the maximal value of the dominant ampli- 
tude may be attained in the series of homol- 
ogous compositions c, = n/2n - 1 where n 
= 2, 3, 4, . . . ) with the superstructure 
period, expressed through the number of 
layers, s1 = 2n - 1 forming the translational 
motif. For that reason the configurational 
energy of such superstructures is lowered, 
and the superstructure will be compara- 
tively stable. I 

’ It should be mentioned here that such layer struc- 
tures are less stable than the favorable structures with 
s, = 2,3,4 considered in (I), since the foregoing have 
nonzero amplitudes of nondominant waves. 

Consider compositions intermediate be- 
tween MO;! and M203. Intermediate phases 
should be treated as resulting from tertiary 
ordering in a nonstoichiometric secondary 
ordered phase of the type (M 0)~~ . (M Cl),,, 
0 = MO (distribution (36) in (1)) in which 
metal atoms occupy half of “permitted” 0, 
and 0, interstices with p = 1 and p = 2 in 
the oxygen bee host lattice. We designate 
these with indices (p, r}. As in the cases 
considered above, the dominant wave am- 
plitude becomes maximal if the function 
n(p, r) may be represented in a form which 
includes the only “polarization” of the 
dominant wave. It has been shown in (I) 
that with odd sI = 2n - 1, the n(p, r) func- 
tion may be constructed using the dominant 
wave with one polarization if condition (47) 
of Ref. (I) is met. In that case the dominant 
wave yields the same distribution of inter- 
stitial atoms in both “permitted” sublat- 
tices of the nonstoichiometric structure 
MO. We may then apply the results of the 
theory of homologous series valid for the 
case of one sublattice to each of the two 
“permitted” sublattices of the nonstoi- 
chiometric structure MO. In particular, nl 
(2n - 1) “permitted” sites should be occu- 
pied in each sublattice. Relating that 
number to the total number of 0, or 0, sites 
we obtain cP = t . nl(2n - 1) (we have taken 
into consideration that the number of 
“permitted” sites in the secondary super- 
structure MO is smaller by a factor off than 
the number of 0, and 0, sites in the bee 
lattice). This yields the stoichiometric for- 
mula 

I M n q n-1 M - 
zn-1 2n-I! $j IL 

on-, 0 I 
2 

iPi! 
2 

= M n 0 i.e., M,Oz,-I 
2n-1 

In other words, we have obtained the well 
established stoichiometric formula of the 
homologous Magneli phases, TinOZn-l and 
VnOZn-l. We next have to determine the se- 
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quence of filled and vacant planes in layer 
phases M,Ozn-r, As an example, we ana- 
lyze the homolog of composition T&09. Eq. 
(84b) in (I) shows that the dominant super- 
structure vector may be written 

k, = $q H, = ; H, (13) 

where 

H, = 2k, + 2H (14) 

k, = (t t 0) (13 

and H is the reciprocal lattice vector of the 
secondary superstructure (M q )1/z (M q ),,, 
0. The H vectors include the vector (4 i 0) 
and all other vectors which differ from (3 a 
0) by a reciprocal lattice vector of the bee 
host lattice (I). 

As shown above (Fig. lb) the maximal 
dominant amplitude value is provided with 
the following sequence of SI = 9 filled and 
vacant planes in each of the 0, and 0, octa- 
hedral sublattices “permitted” in the sec- 
ondary structure: -~ 

Ti q Ti 0 Ti 0 Ti q $i T$ 

q Ti 0 Ti Cl Ti 0 Ti Ti Cl . . . . (16) 

Thus, filled and vacant planes should al- 
ternate in the stable T&09 structure, with 
faults occurring in each ninth plane (the 
fault is shown in (16) by dashed line). The 
latter feature may be interpreted as an in- 
terstitial defect: two filled planes are not 
separated by a vacant one. A similar modu- 
lation pattern is observed in other homo- 
logs of the series. 

Lastly, we must determine the direction 
of modulation of atomic planes to complete 
the description of the structural pattern of 
Magneli phases (as mentioned above, this 
description is accurate within small dis- 
placements of oxygen atoms). This is the 
most ambiguous point in our discussion be- 
cause the choice of modulation direction ki 
requires more detailed information about 

interatomic interactions. Within the ap- 
proximate model we can only determine the 
most probable modulation direction which 
coincides with the direction of the recipro- 
cal lattice vector H, (see Eq. (13)). It has 
been shown (I) that the maximal amplitude 
principle implies the following restriction 
on the components of the vector H, = (& 
Hry Hrz): 

4Hrx - KJ 
-cos 2(2n - 1) 

exp - ( ? (H, - H,)) = 1. (17) 

Since k, = (& J 0), it follows from definition 
(14) that H, - Hw is an even number for all 
vectors H,. The condition (17) is met in two 
cases, namely when 

H, - Hv < 2n - 1 

or when 

at Hrx - H,.,, = 41 + 2 (18a) 

Hrx - Ho > 2n - 1 
at Hrx - H,,. = 41 (18b) 

where 1 is an arbitrary integer. 
To select the correct vector H, more in- 

formation is needed about the interatomic 
interaction of interstitial atoms. The short- 
range repulsive interaction model assumed 
in (1) leads to the stable rutile structure 
generated by the dominant wave with the 
wave vector k, = $H, within the accuracy of 
reciprocal lattice vector H (I). This means 
that the absolute minimum of the spectrum 
i(-)(k) of eigenvalues of the interaction ma- 
trix W,,(r - r’) defined on the “permitted” 
sites of the secondary superlattice [M 01~2 
[M l& 0 occurs at kl = $H,. Further re- 
finement of the interaction by introduction 
of the additional long-range interaction 
caused, for example, by conducting elec- 
trons or strain-induced interacion (3) may 
shift the absolute minimum of AC-,(k) by the 
vector r away from *Hr. The sole assump- 
tion about the additional interaction which 
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will be made is that this shift vector c is 
small, i.e., 

k, = tH, + T 

where T e k,. According to Eq. 
(0 

1 
T = 2(2n - 1) Hr* 

(19) 

(64) from 

(20) 

It follows from (20) that small T corre- 
sponds to the case of small reciprocal lat- 
tice vector H, and a large n. Both latter con- 
ditions, small H, and large IZ, are consistent 
with the case (18a). To provide the small 
value (H,( we should choose 1 = 0. There- 
fore the vectors H, should be selected from 
Table 1 in (I) so that they would meet the 
condition 

H,, - H,,, < 2n - 1 at H, - Hq = 2 

or, equivalently, 

H, - Hv = 2 and 2n - 1 > 2. (21) 

The selection of all low index vectors H, (to 
provide small IH,]) from Table 1 in Ref. 
(I) which meet the condition (18a) yields 
the series 

H, = (200), (li2), (312) (22) 

where the crystal lattice plane indices (H, 
Hv Hrz) are related to the bee host lattice. 
Being related to the t-utile axes, these 
planes have indices (1 lo),, (lO1),t and 
(121),, , respectively. Indices in the bee and 
r-utile representation are connected by the 
equations 

i(H,bw - HP) = H$‘, 
f(Hp + Hybcc) = Hyt, 

and &HP = Hy’. 

According to (13) the wave vectors corre- 
sponding to the series (22) are 

k, = & mk & (ii2), 

and $q (3W. (23 

The wave vector of the dominant wave gen- 
erating the most stable superstructure pro- 
vides the minimal eigenvalue &-,(kJ (2). 
This minimum condition determines wave 
vector of the dominant wave from (23). To 
date we do not have enough information 
about interatomic interactions and, thus, 
cannot calculate h(-)(k) with sufficient ac- 
curacy to select unambigiously the wave 
vector kl from (23). Nevertheless, the 
result (23) is consistent with the X-ray de- 
termination (4) of the Magneli phase struc- 
tures. The Magneli phases TinOznel and 
V,,OZ~-, are generated by the (312)b,, plane 
(i.e., (121),, plane) for 4 5 IZ 5 10. The bee 
lattice plane (112) (i.e., the (lO1),t plane) 
which also enters in (23) generates the co- 
rundum structure for TizOJ, at n = 2. 

If the value IZ proves to be too large (the 
case of very small T), the difference be- 
tween corresponding h(-,(k, + T) becomes 
very small since i(-,(k, + T) + &,(k,) at II 
---, 03. In this situation the selection of the 
vector H, or kl = (n/2n-l)H, becomes es- 
pecially difficult. 

To complete the structure determination 
of the Magneli phases the mutual positions 
of the interstitial atom distributions in the 
0, and 0, sublattices should be found. As 
shown in (I), the structure of stable phase 
is always determined by the dominant con- 
centration wave 

UC-)( p, kl)e’2nklr (24) 

where r+)(p, kl) describes the contribu- 
tions of the dominant wave to the distribu- 
tion of interstitial atoms in 0, interstices 
when p = 1 and in 0, interstices when p = 
2. Eq. (40b) from (I) yields 

q-,(p, k,) = -$ (1, e-i’T(klx-kb)) 

= -& (1, e -Mq+qY2) (25) 

where a1 and a2 are unit reference vectors 
along the [lOO] and [OlO] bee lattice direc- 
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tions, respectively. Substitution of (25) into 
(24) yields 

UC-)( p, kl)e’2mk1r & ei2mk,r ifp = 1 
= 

1 z e-i2rrkl(al-a2)/2ei2?rkIr ifp = 2. (26) 

Equation (26) may be identically rewritten 
as 

ifp = 1 

where 

T = n . (a2 - a,). (28) 

In (27) we took into consideratioin the rela- 
tions (28), kl = (n/2n - l)H, and H,(a, - 
a$2 = 21 
integer to 

Equation 

+ 1 (see Eq. 18a)) where 1 is an 
prove the identity 

e-i21rkl(al-n2/2)+T) G 1. 

(27) shows that the dominant 

wave (24) generates the same ordered dis- 
tribution in 0, and OY interstices; however, 
the distribution in 0, interstices is shifted 
rigidly by the reference vector T given in 
(28). In other words, if an 0, interstice re- 
lated to the host lattice site r is occupied by 
a Ti atom, a Ti atom also occupies the 0, 
interstice related to the r + T host lattice 
site. This condition, combined with the 
known sequence of the occupied and va- 
cant planes within the 0, and 0, sublat- 
tices, enables us to construct the complete 
atomic structure of the Magneli phase. 

As an example consider the T&09 struc- 
ture. Comparison of (3) and (13) shows that 
this case corresponds SO = IZ = 5 and sI = 
2n - 1 = 9. When the layered structure is 
generated by the alternating planes (312)s,, 
= uwtlt, the reciprocal lattice of this 
structure is described by the superlattice 
diffraction spots which divide all H, = (312) 
reciprocal lattice vectors by nine equidis- 
tant segments. Figure 3 displays the recip- 
rocal lattice and atomic lattice of the T&O9 
phase which results from the present con- 
sideration. One may easily recognize in 
Fig. 3 the orientational relations between 
the bee host lattice frame and the lattice of 
the T&09 superstructure. The size of the 

TisOg 

202 312 

plane(312) trace 

(iii)*alane (ool)b,, Plane 

FIG. 3. Structure of the T&O9 phase: (a) Reciprocal lattice in the (iii)* plane. Reciprocal lattice 
point size is proportional to the calculated intensity. The fundamental reciprocal lattice points referred 
to the bee host lattice are indexed. (b) Atomic lattice. Solid lines are traces of the planes fitted by Ti 
atoms. Dashed lines are traces of vacant planes. Circles are Ti atoms situated in a (001) plane of the bee 
host lattice. The rutile unit cells are shown by the solid line. 
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TABLE I 

POWDER DIFFRACTION PATTERN OF T&O9 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

d 
(4 

7.81 
5.19 
4.71 
4.03 
3.42 
3.36 
3.34 
3.23 
3.12 
3.07 
2.94 
2.91 
2.72 
2.60 
2.58 

Conventional 
indices 

Wx Hy WiLmo~og 

001 
loi 
100 
1 oz 
101 
120 
02i 
020 
i2i 
151 
022 
lo? 
021 
2oi 
i22 

Reflection indices 
related to the 

reciprocal lattice of 
the bee host crystal 

f&f 
gft& 
i Ais 
%i?li 
ii%?5 
$284 
i?4 389 
01% 
rfi 
ii+84 
Fits -_ 
97$8 
3iv3 I 5 8 
$38 - 
8+#$ 

Harmonic s 
of the wave vector 

k = WWtxc 

2 
3 
4 
1 
2 
1 
4 
3 
3 
1 
2 
1 
1 
1 
4 

Relative 
intensity 

Experim. Calu- 
(5) lation 

VW 2.8 
W 10 
VW 4.2 
st 83 
VW 2.8 
vst 83 
VW 4.2 
W 10 
W 10 
vst 83 
W 10 
vst 83 
m 83 
st 83 
VW 4.2 

reciprocal lattice point is proportional to 
the calculated intensities of the X-ray 
spots. Table I enables us to compare the 
relative intensities of the diffraction spots 
obtained on the powder diffraction pattern 
(5) and intensities measured in arbitrary 
units which follow from the proposed 
model. Table I demonstrates the good 
agreement between X-ray data and calcula- 
tions despite the fact that displacements of 
oxygen atoms have not been taken into 
consideration. The same agreement is ob- 
served between the proposed model and 
the single crystal X-ray data. 

Summing up the foregoing, the theoreti- 
cal determination based on the maximal 
amplitude principle combined with the sim- 
ple short-range interaction model results in 
the correct prediction of the structure of the 
Magneli phases: 

(i) it yields the layered structure in 0, 

and 0, sublattices with the correct se- 
quence of filled and vacant planes of the 
type of (16); 

(ii) it provides the correct mutual loca- 
tion of these sequences in the 0, and 0, 
sublattices; and 

(iii) it specifies the short list of the most 
probable planes whose alternation gener- 
ates the layered structure, the planes (172) 
and (312) observed for the Magneli phases 
contained in this list. 

The proposed interpretation of the 
MagnCli phases differs from the conven- 
tional one based on the crystallographic 
shear mechanism (4). According to the lat- 
ter, a Magneli phase is produced from the 
i-utile structure by the shear along the paral- 
lel regularly spaced shear planes, the Miller 
indices of the shear planes coinciding with 
above-mentioned alternating filled and va- 
cant planes. 
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Although the atomic structures of the 
MagnCli phases based on both interpreta- 
tions are the same, the proposed thermody- 
namic approach, proceeding from the fact 
that the MagnCli phases are long-period in- 
terstitial layer superstructures in the bee 
host oxygen lattice, seems to be more real- 
istic. Actually, according to our consider- 
ation, mutual transformations between 
rutile, a-PbOz structure, corundum, and 
Magneli phases are reduced to mere redis- 
tributions of Ti atoms within octahedral in- 
terstices of the same bee host lattice com- 
posed of 0 atoms. It does not require the 
artificial introduction of crystallographic 
shear which is difficult to justify. Further- 
more, the proposed theory enables us to 

predict the atomc structure of phases aris- 
ing in the Ti-0 system using a simple 
model of interatomic interactions. 
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