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Core-projection operators have been included in the one-electron effective Hamiltonian of the frozen- 
core formalism developed by Richardson et al. (J. W. Richardson, T. F. Soules, D. M. Vaught, and R. 
R. Powell, Phys. Rev. B 4, 1721 (1971)) for transition-metal clusters. Projected and unprojected 
valence-only calculations have been carried out in CrFi- to evaluate the projection effects of the 
cluster ulg nuclear potential in the neighborhood of the equilibrium geometry. These calculations show 
that the dependence of the predicted geometry on the type of core-valence partition adopted in the 
unprojected description is due to insufficient core-valence orthogonal&y. Such dependence is practi- 
cally removed by the action of the core-projection operators. The cluster geometry can be accurately 
computed with a metallic valence set formed by the 3d orbitals and the empty 4s and 4p AOs. e 1% 
Academic Press, Inc. 

Introduction 

The open-shell SCF MO theory devel- 
oped by Richardson and collaborators (I) 
has been an important contribution to the 
theoretical understanding of the structural, 
optical, and magnetic properties of transi- 
tion-metal ions in ionic lattices. This the- 
ory, based upon the cluster model and the 
spin- and symmetry-restricted Hartree- 
Fock-Roothaan (HFR) SCF equations for 
open-shell systems, permits the calculation 
of MO wavefunctions and energies of any 
electronic state coming from the open-shell 
configurations of those systems. Combined 
with a useful, approximate HF basis set (2), 
the theory has given very good results in 
the interpretation of the d-d spectrum (3, 
4), electronic delocalization and covalency 
(3, 4), transferred hypertine interaction (5, 

7c), and neutron magnetic form factors (6). 
The theory can also be a useful tool in the 
study of the cluster-lattice interaction in 
those systems (4, 7). 
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All these calculations have been carried 
out within the frozen-core approximation 
described as an economical version of the 
all-electron formulation (I). For most pur- 
poses, these valence-only SCF calculations 
turn out to be accurate enough to offer sat- 
isfactory descriptions of the experimental 
observations. In the calculation of the al8 
nuclear potentials of the octahedral ML6 
systems, necessary for predicting the equi- 
librium metal-ligand distance, we have 
found, however, that the curvature of these 
nuclear potentials can noticeably depend 
upon the type of core-valence partition 
used in the frozen-core calculation. In this 
paper we show that this dependence is a 
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consequence of an insufficient core-va- 
lence o~ogon~ity appearing in the va- 
lence-only calculations. We also show that 
this problem can be appropriately corrected 
by using adequate core-projection opera- 
tors in the effective one-electron Hamil- 
tonian. 

This nono~hogon~ity appears because 
in Richardson’s theory (I) the valence AOs 
are orthogonal to the core AOs of the same 
center but their nonorthogonality to the 
core AOs of all other centers is neglected. 
In consequence, this approximation works 
well when the atomic core and the valence 
shell give negligible two-center contribu- 
tions to the core-valence overlap. Other- 
wise, it tends to break down. A clear exam- 
ple of insufficient orthogonality is found 
when the 3s and 3p metallic AOs are kept 
frozen in the core because their overlap 
with the ligand components of the valence 
shell is not at all negligible at ordinary 
metal-ligand separations. 

in connection with this problem, Hu- 
zinaga and collabo~tors (8) have recently 
shown that the use of appropriate projec- 
tion operators, constructed with core AOs 
found in all-electron calculations, enforces 
the necessary core-valence orthogonality in 
valence-only calculations. The theoretical 
justification of this fact is well known (9). 
Core-projection operators have also been 
used as preservers of orthogonality by 
Wahlgren, Gropen, and collaborators in 
their effective core potential calculations 
on small molecules containing transition 
metal atoms (10) and four period main 
group elements (I I ) . Furthermore, Vincent 
and Murrell (12) have remarked that the 
collapse of the molecular valence into the 
cores, produced by the core-valence non- 
o~hogon~ity, can be considerably avoided 
by means of suitable pseudopotentials that 
repel the valence densities. 

Accordingly, it seems natural to incorpo- 
rate the ideas of these authors into the the- 
ory of Richardson et al. (I), in order to 

remove, or at least to attenuate, the 
~culties commented above. We have or- 
ganized such a program in two steps. On 
the one hand, we have performed “pro- 
jected” calculations in which the frozen- 
core Hamiltonian of Richardson et al. (I) is 
augmented with core-projection operators. 
In this way the effects of such operators 
can be easily obtained and evaluated. Such 
study is reported in this paper. On the other 
hand, we plan to introduce the model po- 
tential technique of Huzinaga and collabo- 
rators (8) into Richardson’s theory, in order 
to deal with the core-valence separation. 
In connection with this second step, model 
potentials of the exponential form for the 
first-row transition metals are reported 
elsewhere (13). 

We have separated the study of the pro- 
jected frozen-core calculations from the 
model potential calculations because we 
understand these two schemes as appropri- 
ate for different types of transition-metal 
compounds. The results of this paper sug- 
gest that the projected frozen-core formal- 
ism would be a useful theoretical scheme to 
investigate, in 3d transition metalfluorides 
and oxides, not only the optical spectros- 
copy and electronic charge distributions but 
also such interesting problems as the ef- 
fects of the external pressure on the elec- 
tronic spectra and the cluster-lattice inter- 
action in terms of geometry-relaxed lattice 
models. The latter studies become problem- 
atic in the unprojected frozen-core scheme. 
On the other hand, inclusion of one-particle 
model potentials into Richardson’s method- 
ology would make this type of studies feasi- 
ble for systems such as 4d transition-metal 
fluorides and oxides and 3d transition-metal 
chlorides. This research is now in progress 
in our laboratory. 

We describe in the next section the de- 
tails of the projected calculations and the 
quantities considered for the evaluation of 
the projection effects on the unprojected 
description. In the rest of the paper we 
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present the results of projected and unpro- 
jetted calculations of the nuclear potential 
of the CrFd-, taken as example, performed 
with three different core-valence parti- 
tions. The two main conclusions of this 
work are (a) the partition dependence of the 
equilibrium geometry, found in the unpro- 
jetted results, is essentially due to insuffi- 
cient core-valence orthogonality; and (b) 
this dependence is practically eliminated by 
the action of appropriate core-projection 
operators. In this way, the octahedral value 
of R, for CrI$ can be satisfactorily pre- 
dicted by a valence-only calculation in 
which the metallic valence contains only 
the 3d orbitals and the empty 4s and 4p 
AOs. 

Core-Projection Operators in the 
Frozen-Core Approximation 

Following Ref. (8), we can define the 
one-particle core-projection operator: 

where the indices, a, c run over centers and 
core orbitals, respectively. We will use 
B(a,c) = -2&(a,c), E(U,C) being the orbital 
energy of the atomic core orbital I,!@,c), fol- 
lowing the theoretical analysis of Hojer and 
Chung (9), and recent work of Sakai and 
Huzinaga (8d). Both $(a,~) and E(U,C) are 
usually taken from all-electron calculations 
(8). 

In molecular calculations it is more con- 

venient to define the core-projection opera- 
tors in terms of symmetry adapted core 
orbitals x(iIy), transforming as the y 
subspecies of the I irreducible representa- 
tion of the group of interest, namely 

core 
WY) = z B(ir)lX(iry))(X(iry)l. (2) 

In dealing with octahedral ML6 clusters, 
the X(X$ are immediately found by means 

of the well-known unitary transformations 
of the multicenter atomic set (I). The B(S) 
are evidently the B(u,c) of Eq. (1). 

The frozen-core approximation is per- 
formed by introducing the effective one- 
electron Hamiltonian matrix Xc” (Eq. (40) 
of Ref. (I)). In this paper we will refer to 
this matrix as the unprojected Hamiltonian 
matrix and will designate it by X”. Its ma- 
trix element connecting symmetry-adapted 
valence functions h(kIy) and X(II’y) is 

X”(r;k,l) = %e(r;k,l) 
core 

+ 2 c, dr, P(T’;i,ilr;k,l). (3) 
iT 

In this equation, X(I;k,l) contains the ki- 
netic energy, the nuclear attractions en- 
ergy, and the interaction energy with the 
external lattice potentials of the k,l distribu- 
tion. The second term collects the (frozen) 
core-valence electron repulsions. 

Now we incorporate the h projection op- 
erator into the effective Hamiltonian and 
obtain the projected matrix Xp, with ele- 
ments 

XP(r;k,l) = X”(T;k,l) + R(T;k,l) (4) 

where 

w;k,o = (h(kry)l~(ry)lh(lr)). (5) 

At this point we recall that the atomic 
basis functions used in molecular calcula- 
tions are not always the solutions of an all- 
electron atomic calculation. In some cases, 
for instance, the basis set is formed by ap- 
proximate HF orbitals that satisfy some 
convenient conditions, such as the simula- 
tion of high-quality HF AOs (2). In those 
cases, the approximate atomic functions 
used for the calculation of the core-valence 
repulsions in the second term of Eq. (3) 
should also be used in Eq. (5). Further- 
more, the projection constants B(X) in Eq. 
(2), should be, in any case, high enough to 
effectively prevent the collapse of the va- 
lence orbitals into the core (Sd, 9, 14). 
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In this paper we will analyze the effects 
of the core projection on the alg nuclear 
potential of an octahedral cluster, the 
CrG-. To do that, we will use the quantity 
E”“‘V?) = Ep(R) - E”(R) as a direct mea- 
sure of these effects. Ep(R) and E’-‘(R) are 
the total valence energy of the cluster in the 
projected and unprojected calculations, re- 
spectively. 

A second index for evaluating the effects 
of the projection can be the energy associ- 
ated with the projection operators them- 
selves. We will define such energy as a 
weighted sum of the expectation values of 
the core projectors over the set of occupied 
MOs, $~(iTy), namely 

In Eq. (6) the first sum runs over all the 
symmetry blocks having occupied MOs; 
n(zT’$ is the electron occupation number of 
NW. 

Inserting the definition of &(ry), Eq. (2), 
into Eq. (6) we have 

core 
two = C C E ~w3xr) r i jry 

kwa4ir3w. (7) 

Equation (7) clearly shows that if the 
core-valence orthogonality is complete, 
E"(R) vanishes. For that reason this energy 
is a measure of the core-valence ortho- 
gonality reached after the core projected, 
valence calculation. 

Results and Discussion 

We present here our different calcula- 
tions of the ulg nuclear potential of the 
t&e/E, electronic ground state of the 
CrG- ion. We will limit ourselves to the 
study of the effects of the core projection 
on the valence electronic energy of the 

cluster in ULICUO, without considering the 
cluster-lattice interaction. 

Since we want to know the influence of 
the core-valence partition in the predicted 
equilibrium geometry of the cluster, we 
have considered in this work three different 
partitions. Their definitions are as follows: 

Partition Metallic core AOs Metallic valence AOs 

SPDD Is, 2s, 2p 3s, 3p, 3d, 3d’ 
SPDDSP Is, 2s, 2p 3s, 3p, 3d, 3d’, 4s, 4p 
DDSP Is, 2s, 2p, 3s, 3p 3d, 3d’, 4s, 4p 

In all these cases, the 1s AOs of the 
fluorides are core orbitals and the 2s and 2p 
fluoride AOs are valence orbitals. 

We will add a U or P to the name of the 
partition to designate unprojected or pro- 
jected calculations, respectively. 

We have used the ST0 basis set of 
Richardson et al. (2) for the chromium or- 
bitals, except for the 4s A0 that has been 
taken from Ref. (4). The fluoride basis has 
also been taken from Ref. (4). In the parti- 
tions above, the 3d’ function is the inner 
ST0 of the regular 2-5 3d A0 (2). SPDD 
and DDSP partitions have been used in pre- 

TABLE I 

VALUES OF THE PROJECTION 
CONSTANTS USED IN THE 

F’KUECTED CALCULATIONS 

Ion A0 -2E (au.) 

Cr*+ ’ 1s 442.4898 
2s 54.17370 
3s 8.273619 
2P 46.03194 
3P 5.783535 

F-b IS 51.65904 

0 From the HFR calcula- 
tions of Watson in the average 
of configurations state of d’- 
Cr*+ Ref (18) > . . 

b From the extended basis 
HFR calculation of Clementi 
and Roetti, Ref. (16). 
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TABLE II 

RESULTS OF THE UNPROJECTED AND PROJECTED CALCULATIONS ON THE GROUND-STATE VALENCE 
ENERGY OF CrG-, AT DIFFERENT Cr2+-F- DISTANCES, USING SPDD, SPDDSP, AND DDSP BASES 

R (au.) 

Basis 3.26 3.425 3.59 3.772 3.99 4.19 4.39 

SPDD E”” -0.57937 -0.68548 -0.73519 -0.74766 -0.72689 -0.68809 -0.638% 
EP -0.46452 -0.62105 -0.69847 -0.72764 -0.71710 -0.68297 -0.63628 

EMb 0.11485 0.06443 0.03672 0.02082 0.08979 0.00512 0.00268 
E” 0.10983 0.06253 0.03599 0.01976 0.08972 0.00509 0.00267 

SPDDSP E” -1.38682 -1.39874 -1.38581 -1.35071 -1.28891 -1.21%1 -1.14247 
EP -1.03021 -1.14690 -1.20358 -1.22045 -1.20018 -1.15674 -1.09789 

~“h0 0.35661 0.25184 0.18223 0.13026 0.08873 0.06287 0.04458 
E” 0.27852 0.20242 0.15096 0.11147 0.07862 0.05723 0.04148 

DDSP” E” -1.84949 -1.67430 -1.54727 -1.43711 -1.32565 -1.23210 -1.14166 
EP -0.80255 -1.01248 -1.12636 -1.17790 -1.17657 -1.13968 -1.08285 

E- 1.04694 0.66182 0.42091 0.25921 0.14908 0.09242 0.05881 
E” 0.99308 0.63367 0.40306 0.24716 0.14154 0.08774 0.05606 

D The tabulated values correspond to the valence total energy plus 224. au. 
b The core energy corresponding to the 3s and 3p atomic orbitals has been included in the calculation 

of E” and EP. 

vious unprojected calculations (3-7). An 
extension of the original programs devel- 
oped by Richardson and collaborators has 
been necessary to allow for the inclusion of 
the 4s and 4p AOs into the SPDDSP parti- 
tion (15). 

The projection constants B(iI) needed in 
this calculation have been taken, for the 
Cr*+ ion, from the atomic HF results of 
Watson (Z8), because Richardson’s basis 
(2) is a simulation of Watson’s. For the flu- 
oride ion we have used the orbital energies 
of Clementi and Roetti (16). These projec- 
tion constants are collected in Table I. 
Their values are large enough to prevent 
the collapse of the valence orbitals into the 
core (14). 

Results of the &projected Calculations 

We will give the results of these calcula- 
tions, performed at seven different Cr*+-F- 
distances, from 3.26 a.u. (1.73 A> to 4.39 

a.u. (2.32 A). This range of R covers most 
values of R, observed in chromium fluo- 
rides and hexalluorochromates. 

The unprojected nuclear potentials 
E”(R) corresponding to the three partitions 
quoted above have been collected in Table 
II. To display the “partition effect” in the 
value of R,, we have plotted these E’-‘(R) in 
Fig. 1. The information in this figure is quite 
disturbing. In passing from the U-SPDD 
potential to the U-SPDDSP one, we find the 
expected variational gain in valence elec- 
tronic energy but the predicted value of R, 
is shifted from 3.755 to 3.414 a.u. (values 
deduced from a cubic interpolation). As we 
discuss below, this shift is not a physical 
effect produced by the presence of the 4s 
and 4p empty AOs, but a consequence of 
the insufficient core-valence orthogonality 
in the SPDDSP partition. Still more shock- 
ing is the result of the U-DDSP calculation: 
a nuclear potential continuously attractive, 
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FIG. 1. Projected (0) and unprojected (A) SPDD, 
SPDDSP, and DDSP nuclear potentials (plus 224 a.u.) 
corresponding to the ground state t&e,-%, of the 
C& ion. 

down to the lower value of R explored here. 
From this result one could conclude that 
the DDSP partition is unable to give a bond- 
ing image of the C&- ion. However, the 
results we present below show that this par- 
tition can give such a bonding image if the 
core projection is included in the calcula- 
tion. 

The large variations of R, with the core- 
valence partition were the reason that moti- 
vated the research reported in this work. 

Effects of the Core Projection in the 
tige,-SEg Nuclear Potential 

The values of Ep(R), EorthO(R), and E”(R) 
computed in the three partitions at seven 
different 0*+-F- distances are collected in 
Table II. The Ep(R) functions are also plot- 
ted in Fig. 1. 

We first notice, from Table II, that Eonho 
is always positive, i.e., the projection raises 
the nuclear potential energy. This effect in- 
creases when R decreases, as the two-cen- 
ter overlap integrals do. In the SPDD parti- 
tion Eortho is rather small, indicating a 
comparatively minor effect of the core pro- 
jection on the U-SPDD potential. As a con- 
sequence, the P-SPDD and U-SPDD nu- 
clear potentials are quite similar in the 
equilibrium region: R, = 3.755 (U-SPDD) 
vs 3.813 a.u. (P-SPDD); $ar,) = 486 
(U-SPDD) vs 520 cm-’ (P-SPDD). 

The effects of the projection are greater 
in the SPDDSP basis. Eotiho(SPDDSP) is 
uniformly larger than Eotiho(SPDD), and the 
projected and unprojected potentials are 
noticeably different (see Fig. l), giving 
R,(U-SPDDSP) = 3.414 vs R,(P-SPDDSP) 
= 3.770 a.u. and I+,,) = 438 cm-r 
(U-SPDDSP) vs SO5 cm-r (P-SPDDSP). 

A most interesting result is that the 
P-SPDDSP and P-SPDD nuclear potentials 
are almost parallel in the range of R investi- 
gated here and give practically the same R, 
(3.79 + 0.02 a.u.). Furthermore, this theo- 
retical R, agrees with the equatorial Cr*+- 
F- distances observed in the Jahn-Teller 
distorted KCrF,, R, = 3.78 a.u. (27). In 
comparing these two partitions, we finally 
remark that the nuclear potentials obtained 
after the core projection do agree with the 
variational effect intuitively expected when 
the valence segment is extended with the 4s 
and 4p empty orbitals, a rather uniform en- 
ergy stabilization around the equilibrium 
value of R,. 

Let us now comment on the projection 
effects in the DDSP partition. Our results 
show that inclusion of the 3s and 3p AOs 
into the core gives rise to a significant col- 
lapse of the ligand valence into these AOs, 
particularly at small distances. On the other 
hand, the appropriate core projectors cre- 
ate a barrier that efficiently prevent such a 
collapse, restore the bonding image found 
within the other two partitions, and give 
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comparable values of R, (3.858 a.u.) and 
i&J (569 cm-r). 

We finalize this discussion by remarking 
that the promotion of the 3s and 3p AOs 
into the valence segment (DDSP + 
SPDDSP) implies two different effects. 
First, there is the variational improvement 
produced by the increase of the valence set. 
Such effect would result in a SPDDSP nu- 
clear potential more stable than the DDSP 
one. The second effect refers to the ortho- 
gonality of the 3s and 3p AOs with the va- 
lence MOs. In the DDSP partition this 
orthogonality is forced through the action 
of the core-projection operators, although, 
as we have seen, it is not fully accom- 
plished (E”(R) # 0). In the SPDDSP parti- 
tion this orthogonality is secured by means 
of the SCF procedure in the valence 
segment. Insufficient core-valence ortho- 
gonality in the DDSP partition would make 
the P-DDSP potential more stable than the 
P-SPDDSP one. Our results show that in 
Cre- the variational effect is dominant. 

As a consequence of these two effects 
the promotion of the 3s and 3p AOs into the 
valence set does change the curvature of 
the nuclear potential. However, this change 
is rather small and we can conclude that the 
three partitions considered here predict an 
uig nuclear potential for CrI$ at equilib- 
rium quite consistently (R, = 3.81 2 0.05 
a.u., i~(ar& = 536 + 34 cm-‘). 

From this work we have learned that the 
core projection tends to make the calcula- 
tion of the equilibrium geometry partition 
independent, a situation rather different 
from that found in the unprojected descrip- 
tion. We could expect that an improvement 
in the quality of the core orbitals would im- 
prove the efficiency of the whole projection 
procedure, through the definition of fi and 
the evaluation of the core-valence repul- 
sions. We are presently working in this 
question (13), as well as in the study of the 
effects of the projection in other properties 
and in other systems, Preliminary results 

indicate that the electronic excited states of 
these octahedral systems suffer projection 
effects analogous to those described here 
for the ground state. Consequently, the the- 
oretical values of the vertical electronic 
transition energies would be slightly altered 
by the projection. This is a rather welcome 
result because the optical spectra of such 
systems can be very accurately described 
by means of unprojected calculations (3). 
On the other hand, the variation with R of 
different properties like transition energies 
(19), covalency parameters, and trans- 
ferred hyperfine interactions (7c), could be 
seriously affected by the projection. 
Results for several systems will be reported 
soon. 
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