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The techniques used for the preparation of metal-rich chalcides by high-temperature techniques are 
discussed. The two newest metal-rich compounds, two ternary metal-rich sulfides with novel struc- 
tures, are described. 0 1986 Academic Press, Inc. 

Introduction 

The preparation of new binary metal-rich 
sulfides and selenides with novel structures 
and stoichiometrics (Table I) has been ac- 
complished by taking samples initially pre- 
pared at about 725 K in evacuated, sealed 
fused silica tubes to temperatures in excess 
of 1700 K. High-temperature techniques 
may yield new materials for two basic rea- 
sons. One is thermodynamic: the solid in 
question may form endothermically and en- 
doentropically from neighboring phases 
and thus form spontaneously only when T 
> AHYAS O. The other is kinetic: diffusion of 
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The technique used to achieve the high- 
temperature environment has generally 
been induction heating of a tungsten Knud- 
sen cell under a high-vacuum (Fig. 1). This 
technique has two advantages that derive 
from the use of an open system. One advan- 
tage is that the stoichiometry of the solids 
can be varied and controlled. For example, 
in the Ta-S system, Ta$ can be prepared 
by controlled decomposition of TaLx: 

2 Ta&(s) = Ta$(s) + (3 - 2x) S(g) (1) 

and Ta,$ can be prepared by controlled de- 
composition of Ta#(s): 
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3 Ta$(s) = T&S(s) + 2 S(s). (2) 

By quantitative study of the decomposition 
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either transition metal or nonmetal in the 
compounds has activation energies for dif- 
fusion which fall roughly in the range of 70 
to 140 kJ mole-‘, and thus the formation 
process is approximately 200 to 50,000 
times faster at 1500 K than it is at 1000 K. 

Experimental Technique 
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TABLE I” 

NEW BINARY METAL-RICH 
SULFIDES AND SELENIDES 

T&S3 
T&S, T&Se 

Zr9S2 

Zr2S, Zr2Se 

a-V3S 
P-v3s 

Nbdh 

NbIS8 
Nb2Se 

Hf2S ‘hS 
Ta2S 

a Ref. (5). 

against in order to achieve precise stoichi- 
ometry. 

reactions it has been determined (I) that Ps 
over reaction (2) is, for example, 5.6 x 10m7 
atm at 1750 K. This pressure provides a 
slow but useable loss of sulfur from a typi- 
cal Knudsen cell. 

The second advantage derives from the 
fact that the large dissociation energies of 
typical transition-metal oxides (e.g., 168 kJ/ 
mole for TiO (2)) result in large values of 
equilibrium constants for reactions such as 
the following example appropriate to TiS(s) 
preparation 

The techniques of high-temperature 
chemistry, including both the Knudsen ef- 
fusion and the arc-melting technique have 
been used in a series of studies investigat- 
ing the synthesis of the binary metal-rich 
sulfides (and a few selenides) of the group 
III, IV, and V transition metals (Table I). 
The structures of these chalcides and those 
of a number of related metal-rich solids 
(phosphides, nitrides, carbides, oxides) are 
discussed in a 1978 review (5). Since that 
review appeared two new types of metal- 
rich compounds have been prepared, These 
compounds were all prepared by arc-melt- 
ing pellets of Ta$S and the appropriate tran- 
sition-metal or by heating at about 1700°C 
for lo-20 hr in a tungsten container under a 
high vacuum. 

Ti (in TiS) + 0 (impurity in TIS) = TiO(g) 

for which the equilibrium constant is K = 
PrioIXrio . This is an example of the general 
phenomenon of “suboxide vaporization” 
that has been discussed previously (3) and 
is known in some cases such as TiS vapor- 
ization (4) to lead to substantial reduction 
of oxygen impurities during high-tempera- 
ture sample preparation. 

Residual pressure = 

10-6 iorr 

r W crucible 

The use of tungsten as a container mate- 
rial has, in the case of sulfide preparation, 
the advantage that there are no stable sul- 
fides of tungsten, either solid or gaseous, at 
temperatures above 1000 K under high vac- 
uum. The most serious problems in the syn- 
thesis of transition-metal sulfides in a tung- 
sten container is the solution of transition 
metals, such as Ti, V, etc., into the solid 
crucible. This is a relatively slow process, 

FIG. 1. Experimental apparatus for high-tempera- 
ture synthesis of refractory solids in an inductively 

but nonetheless one that must be guarded heated Knudsen cell. 

Results 

The structure type (Ta,-,M,)S can be 
viewed as a substitutional solid solution of 
early 3d transition metal in Ta&. This 
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structure type exhibits space group C21c 
with a = 755 pm, b = 1290 pm, c = 507 pm, 
and p = 111.5”. The structure type is 
known for M = V and Cr with on the order 
of 20% of the tantalum substituted by Cr or 
V. The structure of Tas-,M,S is similar to 
that of Ta.$ (Fig. 2), consisting of a close 
packing of metal columns made up of inter- 
penetrating icosahedra and sulfur in some 
of the resulting interstices. In the case of 
TQ.J~V~.&S the central tantalum atoms are 
about 60% substituted and the four shaded 
tantalum atoms in Fig. 2 are about 30% sub- 
stituted and the remaining tantalum atom 
positions are unsubstituted. A major differ- 
ence between T&S and Ta,&4,S is in the 
relative vertical positioning of the column 
clusters, and a resultant difference in the 
sulfur coordination. In Ta$ the sulfur is 
seven-coordinate in a monocapped trigonal 
prism, while the sulfur in Ta,-,M,S is eight- 
coordinate (four fully occupied Ta positions 
and four partially occupied (30%) Ta posi- 
tions) . 

FIG. 2. View down the intermetallic columns of ico- 
sahedral coordinated metal atoms in Tix-,M,S (M = 
V, Cr). Shaded circles indicate positions that are 
jointly occupied by Ta and 3d element. 

8 

-0 

FIG. 3. View down the columns of tricapped trigonal 
prismatic M atoms in MZTa&, (M = Fe, Co, and Ni) 
and FerNb&. Shaded circles indicate atom positions 
at z = 0, unshaded circles indicate atom positions at z 
= l/2. 

The second of these (Z&Ta& (6) with 
M = Fe, Co, and Ni and FeZNbgS6) occurs 
as a hexagonal network of MT+ tricapped 
trigonal prisms sharing capping atoms (Fig. 
3) with sulfur on the exterior of the network 
and surrounding a large channel. The space 
group is P62m with a = 1030 pm and c = 
329 pm. 

Discussion 

The importance of these ternary com- 
pounds is that their existence extends to 
substitutional alloys and intermetallics the 
concept of metal modification through 
metal-rich compound formation. The 
metal-rich binary sulfides (Table I) provide 
a variety of metal-metal bonded structures 
which can be thought of as modified metals, 
i.e., metals modified structurally and elec- 
tronically by interaction with a minority 
quantity of sulfur. Ta,+,M,S and i&Ta& 
extend our knowledge of such materials to 
alloys and intermetallics. 

The most important feature of the new 
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ternary compounds is their extensive 
metal-metal bonding. For example, the 12 
metal atoms (six Ta only and six a distribu- 
tion of Ta and M) surrounding the central 
metal in a distorted isocahedron in 
Ta&&S are at distances between 253 
and 296 pm indicating substantial inter- 
metallic bonding. In the &Ta& com- 
pounds, N&Ta&, for example, the Ni 
atom is in a tricapped trigonal prism, with 
six Ta neighbors at 249.5 pm forming a tri- 
gonal prism and three Ta capping atoms at 
296.1 pm. 
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