BRIEF COMMUNICATIONS

Cristallisation et caractérisation du polyphosphate de béryllium

M. RZAIGUI ET N. KBIR ARIGUIB

Laboratoire de Physico-Chimie Minérale, 43, Rue de la Liberté, le Bardo, Tunis(Tunisie)

Received August 29, 1985; in revised form November 4, 1985

Single crystals of Be(PO₃)₂, variety I, have been grown, for the first time, from a BeCO₃-(NH₄)₂HPO₄ mixture. Its IR absorption spectrum is characteristic of linear polyphosphate. This beryllium polyphosphate variety crystallizes with a tetragonal unit cell, a = b = 9.217 (4), c = 21.082 (9) Å, V = 1790.98 Å³, Z = 16, space group P4/nnc and $D_x = 2.48$ g/cm³. © 1986 Academic Press, Inc.

Introduction

Les composés du béryllium pourraient avoir des propriétés physicochimiques particulièrement interessantes (1). Toutefois, comparé à de nombreux autres éléments, le béryllium est rarement rencontré dans le domaine des phosphates condensés. Ceci revient, probablement, à la tendance de cet élément à favoriser la formation de produits mal définis et rarement cristallisés. Nous rapportons ici la préparation de monocristaux du polyphosphate Be(PO₃)₂ ainsi que ses principales caractéristiques cristallographiques et d'absorption IR. Une poudre de ce composé a été préparée auparavant par Jaulmes (2) qui signalait la formation de deux variétés cristallines: Be(PO₃)₂ (I) et $Be(PO_3)_2$ (II).

Expérimentation

On mélange le carbonate de béryllium et le phosphate biammonique dans un rapport molaire $(NH_4)_2HPO_4/BeCO_3 = 10-20$. Le

mélange, placé dans un creuset de carbone vitreux, est chauffé à 473 K pendant 2 hr, puis à une température entre 573 et 623 K pendant une journée pour cristalliser Be(PO₃)₂ (I) ou à une température de 673 K pendant 3 jours pour cristalliser Be(PO₃)₂ (II). Les cristaux formés sont récupérés après dissolution du flux d'acide phosphorique dans l'eau chaude.

Le diffractogramme de poudre est relevé à l'aide d'un diffractomètre Philips Norelco travaillant à la vitesse lente (1°/8 2 θ /min) et à la longueur d'onde K_{α} -du cuivre. Les paramètres de maille sont déterminés par la technique de Weissenberg sur un monocristal puis affinés par la méthode des moindres carrés sur les $\sin^2 \theta$.

Les spectres d'absorption IR sont enregistrés à l'aide d'un spectrophotomètre Perkin-Elmer IR 783 sur des échantillons en poudre dans KBr.

Résultats et Discussion

La préparation du polyphosphate de

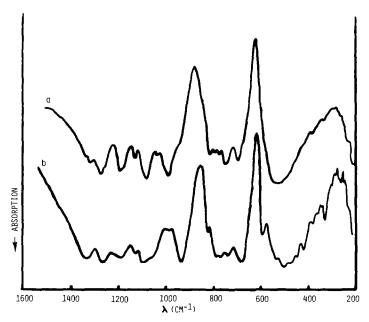


Fig. 1. Spectres d'absorption IR du polyphosphate de béryllium: (a) Be(PO₃)₂ (I); (b) Be(PO₃)₂ (II).

béryllium, Be(PO₃)₂, à partir d'un mélange d'oxyde de béryllium et d'anhydride phosphorique n'a pas permis à Jaulmes (2) d'obtenir des cristaux. Les essais de Bagieu et coll. (3), à partir de carbonate de béryllium et d'acide orthophosphorique, leur ont permis de cristalliser uniquement la variété Be(PO₃)₂ (II) sous forme de lamelles minces. La préparation que nous avons effectuée selon la réaction:

BeCO₃ +
$$2(NH_4)_2HPO_4 \rightarrow$$

Be(PO₃)₂ + $4NH_3 + CO_2 + 3H_2O$

nous a permis d'obtenir des cristaux de forme octaèdrique de la variété Be(PO₃)₂ (I) et des cristaux parallèlépipèdiques de Be(PO₃)₂ (II). Les cristaux (I) et (II) sont transparents et suffisamment gros pour permettre une étude aussi bien de structure que de propriétés physiques.

La figure 1 montre les spectres d'absorption IR des deux variétés Be(PO₃)₂ (I) et Be(PO₃)₂ (II). On y relève dans la région quasi-caractéristique: 380–800 cm⁻¹ (4) (5) des bandes d'absorption (δPOP) et (νPOP)

caractéristiques de polyphosphates. Ceci pourrait donc leur suggérer un arrangement atomique en chaîne linéaire de l'anion phosphate. Quant à la différence spectrale observée essentiellement entre 900 et 1200 cm⁻¹, elle pourrait traduire la différence structurale des 2 variétés cristallines essentiellement au niveau de la symétrie des tétraèdres PO₄ et de la façon dont ils sont empilés dans leurs structures.

TABLEAU I DÉPOUILLEMENT D'UN DIAGRAMME DE POUDRE DE Be(PO₃)₂ (I)

h k l	$d_{\mathrm{cal.}}$	$d_{\mathrm{obs.}}$	$I_{\rm obs.}$		$d_{\mathrm{cal.}}$	$d_{\mathrm{obs.}}$	I_{obs}
	(Å)	(Å)	(%)	h k l	(Å)	(Å)	(%)
015	3.834	3.834	100	0 1 15	1.389	1.389	4
116	3.093	3.094	4	266	1.346	1.342	5
226	2.389	2.384	44	1 3 14	1.338	1.339	5
415	1.975	1.971	18	073			
424	1.919	1.920	4	172	1.294	1.294	4
0 2 10	1.917	1.916	6	552			
3 2 10	1.626	1.605	-	366	1.280	1.280	5
0 3 11	1.626	1.625	3	642	1.269	1.268	7
256	1.539	1.540	17	174)			
059	1.449	1.451	4	554	1.265	1,265	4
166	1.391	1.390	4	3 5 10			

NI	Paramètres de maille						
Variétés cristallines	G.E.	a(Å)	b(Å)	c(Å)	β(°)	Z	Réf.
Be(PO ₃) ₂ I	P4/nnc	9.217(4)	9.217(4)	21.082(9)	90.00	16	а
Be(PO ₃) ₂ II	$P2_1/n$	6.959	12.853	4.839	106.79	4	(6)
Be(PO ₃), III-BT	$P2_1$	14.063	7.091	8.629	90.80	8	(7)
Be(PO ₃) ₂ III-HT	$C222_{1}$	9.968	10.080	8.692	90.00	8	(7)

TABLEAU II

PARAMÈTRES DE MAILLE DES DIFFÉRENTES VARIÉTÉS CRISTALLINES DE Be(PO₃)₂

Le tableau I donne le dépouillement d'un diagramme de poudre de Be(PO₃)₂ (I). Celui de la variété (II) a été donné par ailleurs (3).

Le tableau II regroupe les paramètres de mailles du polyphosphate de béryllium cristallisé. Une maille plus petite de Be(PO₃)₂ (I) n'est pas compatible avec les films de Weissenberg et le diagramme de poudre. A titre de comparaison nous rappelons également la maille d'une troisième variété cristalline de ce phosphate condensé, Be(PO₃)₂ (III), étudiée par Schultz (6) qui indique l'existence de cette variété en 2 formes: une forme de basse température (BT) et une autre de haute température (HT).

On connait actuellement les structures atomiques des variétés cristallines Be(PO₃)₂ (II) (7) et Be(PO₃)₂ (III-HT) (6). La structure de cette dernière forme dérive de celle d'une variété de SiO₂, la Kéalite (8). Les arrangements atomiques des va-

riétés Be(PO₃)₂ (I) et Be(PO₃)₂ (III-BT) ne sont pas encore connus. Be(PO₃)₂ (I) pourrait présenter certaines analogies structurales avec la forme cristobalite de SiO₂, sa structure est en cours d'étude.

Références

- P. PASCAL, "Traité de Chimie Minérale," pp. 7-134.
 T. IV, Masson & Cie, Paris, 1958.
- S. JAULMES, Rev. Chim. Minér. 1, 617 (1964).
- M. BACIEU-BEUCHER AND A. DURIF, Bull. Soc. Fr. Minér. Cristallogr. 93, 129 (1970).
- 4. I. A. TOKMAN AND E. V. PLETAEV, Izv. Akad. Nauk. SSSR Neorg. Mater. 12, 735 (1976).
- M. RZAIGUI AND N. KBIR ARIGUIB, Mat. Chem. Phys. 8, 365 (1983).
- E. SCHULTZ, Dissertation, University of Kiel, 1974.
- M. T. AVERBUCH-POUCHOT, A. DURIF, AND I. TORDJMAN, Acta Crystallogr. Sect. B 33, 3462 (1977).
- J. Shropshire, P. P. Keat, and P. A. Vaughan, Z. Krist. 112, 409 (1959).

a Ce travail.