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The crystal structures of the 2H- and 3R-forms of WS2 and of WSeZ have been refined from 
single-crystal data. The results are summarized and the interatomic distances are compared with those 
in related compounds. o 1987 Academic press, IIK 

Introduction 

It has been known for many years that 
tungsten disulfide, WS2 (I), and diselenide, 
WSe2 (2), have layer structures isotypic 
with hexagonal MO& (3, 4). In addition to 
the common hexagonal 2ZZ-form of WS2 a 
rhombohedral form, 3R-WSZ, has also been 
reported (5), which is isotypic with the 
rhombohedral form of MO& (6, 7). How- 
ever, apart from a rough determination of 
the atomic positions in 2H-WS2 and WSe2 
from powder X-ray diffraction data (a), no 
refinement of the structures of the tungsten 
compounds has been reported so far. We 
have undertaken such a study in connection 
with calculations of the electronic band 
structures of these compounds (9), for 
which the atomic positions had to be accur- 
ately known. 

Experimental 

Single crystals of the tungsten dichal- 
cogenides had been prepared by J. C. Wil- 

* Dedicated to Dr. H. Nowotny. 

dervanck (10) by means of chemical trans- 
port using chlorine (2H-WS& or bromine 
(3R-WI%, WSe2) as transport agent. Very 
thin plate-like crystals were investigated by 
X-ray diffraction using a Nonius CAD4 
diffractometer; monochromatized MoKa 
radiation (h = 0.71071 A) was employed. 
Unit cell parameters (Table I) were deter- 
mined by least-squares fits of the optimized 
setting angles of about 20 reflections in the 
8 ranges 20-24” (2H-WSz), 30-35” (WSe2), 
and 27-31”, respectively; the parameters 
agree with those given by previous authors 
(5, IO. 

Intensity data were collected in hemi- 
spheres up to 8 values of 50” (2H-WSz), 45” 
(3R-WS& and 35” (WSe2>, respectively. A 
modified version (12) of the CAD4 program 
was used to measure each reflection of the 
thin plate-shaped crystals in its position of 
minimal absorption; no absorption cor- 
rections were applied. The intensities of 
equivalent reflections were averaged and 
corrected for Lorentz and polarization ef- 
fects; reflections with Z < 2.5 a(Z) were 
discarded. The structure factors of the re- 
maining reflections (see Table I) were used 
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(STANDARD DEVIATIONS ARE 

GIVEN IN PARENTHESES) 

TABLE I TABLE II 

INTERATOMIC DISTANCES (A) IN WX, (X = S, Se) 

AND THEIR STANDARD DEVIATIONS 

(IN PARENTHESES) 

2H-WSz WSe2 3R-WSZ 

Space group P6Jmmc P6,immc R3m 
a (-4 3.1532(4) 3.282(l) 3.158(l) 
c (4 12.323(5) 12.96(l) 18.49(l) 
da 3.908 3.949 5.855 
v (A31 106.1 120.9 159.6 
Z 2 2 3 
Independent 245 119 205 

reflections 

Within WX, layers 

2H-WS2 WSe2 3R-WSz 

w-3x 2.405(5) 2.526(4) 2.39(l) 
w-3x 2.405(5) 2.526(4) 2.42(l) 
X-IX 3.14(2) 3.34(l) 3.13(2) 
X-6X = W-6W 3.153 3.282 3.158 

Between WX, layers 
x-3x 3.53(l) 3.67(l) 3.54(l) 

z (S, Se) 0.6225(6) 0.6211(4) ’ 
RF@') 6.4 6.9 4.5 

a z(w) = O.OOOO(5); z(S I) = 0.2497(6); z(S II) = 
0.4190(7). 

(and their standard deviations) are z(W) = 
0.0000(S); z(S I) = 0.2497(6); z(S II) = 
0.4190(7); interatomic distances are listed 
in Table II. 

in the refinements by a full-matrix least- 
squares procedure. The atomic scattering 
factors were those of the XTAL system 
(13); anomalous dispersion factors were 
taken from the “International Tables for 
X-Ray Crystallography” (14). The final val- 
ues of RF are included in Table I. 

Results and Discussion 

It was confirmed that 2H-WS2 and WSe2 
are isotypic with 2H-MO& (3, 4), with 
space group P6Jlmmc. The tungsten atoms 
lie in 2(c): 2 (l/3, 2/3, l/4), and the chal- 
cogen atoms in 4(f): + (l/3, 2/3, z; l/3, 2/3, 
l/2-2). The final values of z are included in 
Table I and interatomic distances in Table 
II. The chalcogen parameter derived by 
Kalikham (8) for WSe2 (z = 0.620 in our 
setting) agrees with our results, but his 
value for 2H-WS2 (z = 0.614) is rather far 
off the mark. This is understandable be- 
cause of the relatively small scattering fac- 
tor of sulfur relative to tungsten. 

From Table II it is seen that the trigonal 
prisms formed by the chalcogen atoms 
around a tungsten atom are fairly regular, 
the prism edges parallel to c, X-1X (X = S, 
Se), being of about the same length or 
slightly longer than the edges X-6X perpen- 
dicular to c. The same is true of MoX2 
(4, 7), 1.t. MoTe2 (15, 16), and also ZrClz 
(17); in all these phases the metal has a 
d2-configuration. In contrast, in NbS2 (18), 
NbSez (19, 20), and TaSez (21), where the 
metal has d l-configuration, the prism edges 
parallel to c are shorter than those perpen- 
dicular to c. It may be remarked that trigo- 
nal-prismatic coordination is expected to 
be stable only for metals with a do, d’, or 
nd2 (n > 3) configuration (22). In the semi- 
conducting molybdenum and tungsten di- 
chalcogenides the distances X-3X between 
the layers are considerably longer than the 
X-X distances within the layers; this differ- 
ence is smaller in the metallic niobium and 
tantalum dichalcogenides. 

Just as 3R-MO& (6), the 3R-form of WS2 
crystallizes in space group R3m with tung- 
sten and two independent sets of sulfur 
atoms all in positions 3(a): (00~; 2/3, l/3, l/3 
+ z; I/3, 213, 2/3 + z). The final parameters 
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