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Models for the chemical bonding topologies of ternary molybdenum chalcogenides (Chevrel phases) 
are derived using methods based on graph theory. The MMo$& Chevrel phases as well as their 
selenium analogs are viewed as three-dimensional lattices of edge-localized discrete Mo6 octahedra 
linked electronically through interoctahedral metal-metal interactions. This porously delocalized 
chemical bonding topology is suggested to be a feature of superconducting systems exhibiting rela- 
tively high critical temperatures and magnetic fields. Fusion of molybdenum octahedra through face- 
sharing leads successively to the MO&~ naphthalene analog and the MO& anthracene analog, with 
increasing fusion leading to increasing delocalization of the chemical bonding topology within individ- 
ual molybdenum cluster units. The infinite limit of such fusion of molybdenum octahedra corresponds 
to the infinite chain pseudo-one-dimensional metals [MzMosX& (M = monovalent metal; X = S, Se, 
Te) which are formulated with globally delocalized octahedral cavities. Thus the progression from 
discrete Moe octahedra in the MMo& Chevrel phases to the infinite chains of face-fused octahedra in 
[&MO&& leads to a progression from an edge-localized to a globally delocalized chemical bonding 
tOpOlOgy. Q 1987 Academic Press, Inc 

1. Introduction 

Several years ago we developed a 
method based on graph theory (I) for the 
study of the bonding topology in polyhedral 
boranes, carboranes, and metal clusters (2, 
3). Subsequent work has shown this 
method to be very effective in relating elec- 
tron count to cluster shape for diverse 
metal clusters using a minimum of compu- 
tation. Metal clusters treated effectively by 
this method include post-transition metal 
clusters (4), osmium carbonyl clusters (5), 
gold clusters (6, 7), platinum carbonyl clus- 
ters (6, S), rhodium carbonyl clusters hav- 
ing fused polyhedra (9, IO), and octahedral 
early transition metal halide clusters (3, 
II). A recent paper (II) shows how this 
graph theory derived method can be ex- 

tended to infinite one-dimensional chains 
and infinite two-dimensional sheets of fused 
metal octahedra, thereby suggesting the ap- 
plication of this method for the study of 
solid state materials exhibiting interesting 
electronic properties, particularly solids 
containing discrete metal cluster structural 
units. 

This paper describes the first application 
of our graph theory-derived method to the 
study of superconducting materials. In this 
connection Vandenberg and Matthias (12) 
have shown that most high-temperature su- 
perconductors contain discrete metal clus- 
ters in their crystal lattices, thereby sug- 
gesting the relevance of this approach. 

The particular superconductors treated 
in this paper are the ternary molybdenum 
chalcogenides , commonly known as 
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Chevrel phases (13, 24). These phases were 
the first superconducting ternary systems 
found to have relatively high critical tem- 
peratures (15), reaching 15 K for PbMo,&. 
In addition the upper critical field of PbMo6 
% (f&2 = 60 T) is the highest value ob- 
served for any class of superconductors 
(26, 27). From the structural point of view 
the Chevrel phases are constructed from 
Mo6 octahedra, which, depending upon the 
system, can be discrete (i.e., joined only at 
vertices) and/or fused together (24). The 
discrete Moe octahedra in Chevrel phases 
may be considered to have a bonding topol- 
ogy analogous to that in the halides LhMo6 
Xi’ (L = 2-electron donor ligand) which 
have been treated extensively by both 
graph theory-derived (3, 11) and other (18- 
22) methods. Fusion of molybdenum octa- 
hedra in the Chevrel phases involves shar- 
ing of opposite triangular faces, similar to 
some rhodium carbonyl anions (IO) but dif- 
ferent from the sharing of opposite edges 
found in the infinite chain lanthanide halide 
clusters such as Gd2ClJ (II, 22). 

Several theoretical treatments of the 
Chevrel phases have already been re- 
ported, including the tight binding calcula- 
tions of Mattheiss and Fong (23), localized 
orbital calculations of Bullett (24), molecu- 
lar orbital and band structure calculations 
by Burdett and Lin (25), bond order calcu- 
lations for the metal-metal bonds by Cor- 
bett (26), extended Huckel combined mo- 
lecular orbital and crystal orbital analyses 
by Hughbanks and Hoffmann (27), and sev- 
eral energy-band studies using muffin-tin 
orbitals (28,29). Strengths of the graph the- 
ory-derived method used in this paper in- 
clude the following: 

(1) The ability to deduce important infor- 
mation about the electron counts and 
shapes of diverse metal clusters using a 
minimum of computation. 

(2) The ability to deduce information con- 
cerning the distribution of total cluster elec- 

tron counts between skeletal bonding 
within the cluster polyhedron and bonding 
to external ligands. 

(3) The ability to distinguish between lo- 
calized and delocalized bonding in cluster 
polyhedra. 

The latter two points are potentially impor- 
tant for understanding the electronic prop- 
erties , including their superconducting 
properties, of materials built from metal 
cluster units. 

2. Background 

The topology of chemical bonding can be 
represented by a graph in which the verti- 
ces correspond to atoms or orbitals partici- 
pating in the bonding and the edges corre- 
spond to bonding relationships. The 
adjacency matrix A of a graph, such as a 
graph representing chemical bonding, can 
be defined as follows: 

I 

Oifi=j 

1 if i and j are connected by 
A, = an edge (1) 

0 if i and j are not connected 
by an edge 

The eigenvalues of the adjacency matrix 
are obtained from the following determi- 
nantal equation: 

\A - x1\ = 0, (2) 

in which I is the unit matrix (Iij = 1 and Zij = 
0 for i # j). 

The eigenvalues of the adjacency matrix 
of the graph representing the relevant 
chemical bonding correspond to the energy 
levels of topological molecular orbitals. 
This approach is related to Htickel theory 
(30-33) which uses the secular equation 

IH - ES/ = 0 (3) 

in which the energy matrix H and overlap 
matrix S can be resolved into the unit ma- 
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trix I and the adjacency matrix 
lows: 

H = a1 + PA 

S = I + SA. 

R. B. KING 

A as fol- 

W 

Mb) 

The Htickel energy levels of the system are 
related to the eigenvalues x of the adja- 
cency matrix A (Eq. (2)) as follows: 

Thus a positive eigenvalue x of A corre- 
sponds to a bonding orbital and a negative 
eigenvalue x corresponds to an antibonding 
orbital in the corresponding chemical sys- 
tem. In this simple way graph theory can be 
used to determine the number of bonding 
and antibonding orbitals for a bonding to- 
pology represented by a given adjacency 
matrix A. Such information, although very 
limited compared with information obtain- 
able at least in principle by more sophisti- 
cated methods which are much more com- 
plicated computationally, is sufficient to 
determine favored electron counts for dif- 
ferent molecular shapes which are of con- 
siderable importance in metal cluster chem- 
istry. 

The two extreme types of chemical bond- 
ing topology in polyhedral metal clusters 
may be called edge localized and globally 
delocalized (2, 3). An edge-localized poly- 
hedron has two-electron two-center bonds 
along each edge of the polyhedron. A glob- 
ally delocalized polyhedron has a multi- 
center core bond in the center of the poly- 
hedron and may be regarded as a three-di- 
mensional “aromatic” system (34). A com- 
plicated metal cluster system consisting of 
fused and/or capped polyhedra can have 
globally delocalized bonding in some poly- 
hedral regions and edge-localized bonding 
in other polyhedral regions. 

One of the major achievements of the 
graph theory-derived approach to the 
chemical bonding topology in globally delo- 

calized systems is the demonstration of the 
close analogy between the bonding in two- 
dimensional planar polygonal aromatic 
systems such as benzene and that in three- 
dimensional deltahedral boranes and car- 
boranes (2), where a deltahedron is a poly- 
hedron in which all faces are triangles. The 
latter three-dimensional structures are 
topologically equivalent to metal cluster 
structures through ideas first presented by 
Wade in 1971 (35) and subsequently devel- 
oped extensively by Hoffmann as isolobal- 
ity (36). 

Consider a globally delocalized polygo- 
nal or deltahedral system having 12 vertices. 
The skeletal bonding topology of such a 
system involves three valence orbitals from 
each vertex atom which are known (2) as 
internal orbitals. The set of three internal 
orbitals on each vertex atom is divided into 
two twin or tangential internal orbitals and 
one unique or radial internal orbital. 
Pair-wise overlap between the 2n twin inter- 
nal orbitals is responsible for the formation 
of the polygonal or deltahedral framework 
and leads to the splitting of the 2n orbitals 
into n bonding and IZ antibonding orbitals, 
thereby providing surface bonding in the 
case of globally delocalized deltahedra. 
This bonding is supplemented by additional 
bonding and antibonding orbitals formed by 
global mutual overlap of the n unique inter- 
nal orbitals. This overlap can be repre- 
sented by a graph G in which the vertices 
correspond to the vertex atoms or, equiva- 
lently, their unique internal orbitals and the 
edges represent pairs of overlapping unique 
internal orbitals. The relative energies of 
the additional molecular orbitals arising 
from such overlap of the unique internal or- 
bitals are determined from the eigenvalues 
x of the adjacency matrix A of the graph G 
(see Eqs. (2) and (5) above). In the case of 
benzene the graph G is the Cs graph (hexa- 
gon) which has three positive and three 
negative eigenvalues corresponding to the 
three m bonding and three 7r* antibonding 
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orbitals, respectively. In the case of a glob- 
ally delocalized deltahedron having n verti- 
ces such as found in deltahedral boranes B, 
Hs- and carboranes CzB,-*H, (6 5 n % 12) 
as well as some octahedral metal clusters (n 
= 6), the graph G is the complete graph K,, 
in which each of the vertices has an edge 
going to every other vertex for a total of n(n 
- I)/2 edges. This corresponds to an n-cen- 
ter bond at the center (core) of the deltahe- 
dron formed by overlap of each unique in- 
ternal orbital with every other unique 
internal orbital. The complete graph K,, has 
one positive eigenvalue and n - 1 negative 
eigenvalues regardless of the value of n, in- 
dicating that the n-center core bond in a 
globally delocalized deltahedral cluster 
leads to only one new bonding molecular 
orbital. Thus the overlap of the unique in- 
ternal orbitals in both the two-dimensional 
polygonal and the three-dimensional 
deltahedral globally delocalized systems 
leads to an odd number of additional bond- 
ing molecular orbitals corresponding to 4k 
+ 2 n-electrons for the polygonal systems. 
The core bonding of the globally delocal- 
ized deltahedral systems also follows the 
4k + 2 electron rule with k = 0. Further- 
more, the sum of the n bonding orbitals 
arising from the surface bonding of the twin 
internal orbitals and the single bonding or- 
bital arising from the n-center core bonding 
of the unique internal orbitals gives a total 
of n + 1 bonding orbitals for globally delo- 
calized deltahedra having n vertices. Filling 
these n + 1 bonding orbitals with electron 
pairs in the usual way gives a total of 2n + 2 
skeletal bonding electrons in accord with 
the observed number in stable globally de- 
localized deltahedral boranes, carboranes, 
and metal clusters. Further details of this 
bonding model are presented elsewhere (2, 
3). In addition, recent work (37) indicates 
that for globally delocalized octahedral bo- 
ranes this simple graph theory-derived 
model gives results consistent with simple 
extended Htickel calculations. 

The relationship between the number of 
edges meeting at a vertex (the vertex de- 
gree) and the number of internal orbitals 
used by the atom at the vertex in question 
determines whether or not the bonding in 
the polyhedral cluster is edge localized or 
globally delocalized (3). Thus edge-local- 
ized bonding requires that all vertex de- 
grees match the number of internal orbitals 
used by the corresponding vertex atoms. 
Conversely, delocalization occurs when 
there is a mismatch between the vertex de- 
grees of the polyhedron and the numbers of 
internal orbitals provided by the corre- 
sponding vertex atoms. Since the above 
model for globally delocalized cluster bond- 
ing requires three internal orbitals from 
each vertex, the smallest globally delocal- 
ized polyhedron is the regular octahedron, 
which is the smallest polyhedron having no 
vertices of degree 3. Metal octahedra, 
whether globally delocalized using three in- 
ternal orbitals from each vertex atom or 
edge localized using four internal orbitals 
from each vertex atom, are frequently en- 
countered building blocks for metal clus- 
ters, including the Chevrel phases dis- 
cussed in this paper. Relationships between 
edge-localized and globally delocalized 
metal octahedra as well as face-localized 
metal octahedra involving an intermediate 
degree of delocalization have been dis- 
cussed for early transition metal halides 
(II) and will be reviewed in the next section 
in preparation for the discussion of the 
chemical bonding topology of Chevrel 
phases. 

The extended Htickel treatment of 
Hughbanks and Hoffmann (27) considers 
the closed-shell electronic configurations of 
the metal cluster building blocks of the 
Chevrel phase structures. The treatment of 
this paper likewise starts from these closed- 
shell electronic configurations and develops 
a model for their chemical bonding topolo- 
gies. The actual Chevrel phases have effec- 
tive electron counts per cluster unit one to 
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two electrons less than the closed-shell 
electronic configurations of the individual 
cluster units, thereby providing the par- 
tially filled energy bands required for their 
conducting properties. In addition, inter- 
cluster metal-metal interactions in the 
Chevrel phases provide electronic bridges 
between the individual discrete metal clus- 
ter units which also are essential for the 
conducting properties. 

3. Discrete Octahedra 

The octahedral metal cluster building 
blocks for the Chevrel phases are closely 
related to certain early transition metal 
halides built from discrete octahedral metal 
clusters which have been discussed in re- 
cent papers (II, 22). The two complemen- 
tary types (II, 21) of such clusters are the 
face-bridged, edge-localized MO&&~+ and 
the edge-bridged, face-localized Nb,+XizL$‘; 
the discrete octahedral molybdenum clus- 
ters of the Chevrel phases are analogous to 
the former and also have electronic configu- 
rations consistent with an edge-localized 
bonding topology. 

The prototypical examples of edge-local- 
ized octahedral metal cluster halides are the 
molybdenum(I1) halide derivatives gener- 
ally represented as MO&&+, including 
“molybdenum dichloride,” Mo6( /+~-Cl)&lz 
C14,2 (38). The structures of these com- 
pounds consist of Moe octahedra, a face- 
bridging (Pi) halogen atom in each of the 
eight faces of the Mo6 octahedra, and one 
bond from each molybdenum vertex to an 
external ligand (L), which may be a halogen 
atom bridging to another Moe octahedron. 
The eight halogen atoms capping the faces 
of a given Moe octahedron thus form a cube 
surrounding the Mob octahedron (Fig. 1). 
Each neutral halogen vertex functions as a 
donor of five skeletal electrons, leaving an 
electron pair to function as a ligand to a 
molybdenum atom in an adjacent octahe- 
dron. The vertex molybdenum atoms are 

I/ A I /\ -- 
$7. 

+ ‘1 3- --- 
t 

l MO 0 xors 

FIG. 1. The Mo6 octahedron within a halogen or 
chalcogen cube as a building block for the octahedral 
molybdenum clusters discussed in this paper. Arrows 
indicate sites of coordination with external ligands, 
halogens, or chalcogens from adjacent metal cluster 
units. 

nine-coordinate using a four-capped square 
antiprism coordination polyhedron (II) 
with the external ligand in the axial posi- 
tion, four bonds to face-bridging halogen at- 
oms in the four medial positions, and the 
four internal orbitals in the basal positions 
forming the two-center bonds with the adja- 
cent molybdenum atoms in the Moe octahe- 
dron. An LMo vertex using four internal 
orbitals and thus five external orbitals is a 
(5)(2) - 6 - 2 = 2 electron acceptor (or -2 
electron donor) after allowing 6 electrons 
from the neutral molybdenum atom and 2 
electrons from the neutral external ligand 
L. This leads to the following electron- 
counting scheme (3, II): 

6 LMo vertices (6)(-2) = -12 electrons 
8 ps-X bridges (8)(5) = 40 electrons 

+4 charge -4 electrons 
Total skeletal electrons 24 electrons 

These 24 skeletal electrons are exactly the 
number required for an edge-localized octa- 
hedron having two-center bonds along each 
of its 12 edges. 

Now consider the Chevrel phases of the 
general formulas M,,Mo&& and M,Mo&Ses 
(M = Ba, Sn, Pb, Ag, lanthanides, Fe, Co, 
Ni, etc.). The basic building blocks of their 
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structures are MobSa (or Mosses) units con- 
taining a bonded MOM octahedron (MO-MO 
distances in the range 2.67 to 2.78 A) with a 
sulfur atom capping each face, leading to an 
Mo6 octahedron within an Ss cube as de- 
picted in Fig. 1. Each (neutral) sulfur atom 
of the Ss cube functions as a donor of four 
skeletal electrons to the Mo6 octahedron 
within that Ss cube, leaving an electron pair 
to function as a ligand to a molybdenum 
atom in an adjacent Moe octahedron. Maxi- 
mizing this sulfur electron pair donation to 
the appropriate molybdenum atom in the 
adjacent Mo6 octahedron results in a tilting 
of the Mo6 octahedron by about 25” within 
the cubic array of the other metal atoms M. 
These other metal atoms M furnish elec- 
trons to the MO& units allowing them to 
approach but not attain the MO&+$- closed- 
shell electronic configuration. This corre- 
sponds to a partially filled conduction band. 
Electronic bridges between individual Moe 
octahedra are provided by interoctahedral 
metal-metal interactions (nearest interoc- 
tahedral MO-MO distances in the range 3.08 
to 3.49 A for MO&& and MoeSee derivatives 
(13)). 

The MO& closed-shell electronic con- 
figuration for the fundamental Chevrel 
phase building block is isoelectronic with 
that of the MO&&+ halides discussed 
above, remembering that each molybde- 
num vertex receives an electron pair from a 
sulfur atom of an adjacent MO& unit and 
thus may be treated as an LMo vertex. This 
leads to the following electron counting 
scheme for the closed-shell MO&- unit: 

6 LMo vertices (6)(-2) = -12 electrons 
8 pJ-S bridges (8)(4) = 32 electrons 

-4 charge 4 electrons 
Total skeletal electrons 24 electrons 

These 24 skeletal electrons are again the 
exact number required for an edge-local- 
ized octahedron having two-center bonds 
along each of the 12 edges. 

4. Fusion of Octahedra 

The Chevrel phases include not only spe- 
cies constructed from discrete MO&$ (or 
Mo$es) octahedra but also species con- 
structed from MO&$,, MO&~, and (MOM 
S& units formed by the fusion of octahedra 
by sharing triangular faces. This fusion pro- 
cess may be regarded as analogous to the 
formation of polycyclic aromatic hydrocar- 
bons from the fusion of hexagons by shar- 
ing edges. This suggests the classification of 
fused molybdenum octahedra by the trivial 
name of the polycyclic benzenoid hydro- 
carbon having an analogous configuration 
of its planar hexagon building blocks as de- 
picted in Fig. 2. A similar scheme has re- 
cently been suggested for the treatment of 
rhodium carbonyl clusters having related 
structures based on face-fused octahedra 
WV. 

The molybdenum atoms in the fused oc- 
tahedra of Fig. 2 are of two types, inner and 
outer. Outer molybdenum atoms are similar 
to those in the discrete octahedral MO&& 

Benzene NapMhalene Anthracene Palyacene 

CsHs GoHe Cl4hO 

\ 1 / / \ 
c3 / I ’ 

L 
4- 

Mo6S6 Mo9Sll 
4- 6- 

%S14 

2: m 
(MO,S6 jrn 

(C4H2)m 
‘co 

FIG. 2. Analogy between the fusion of molybdenum 
octahedra in ternary molybdenum sulfide structures 
and the fusion of benzene rings in planar polycyclic 
aromatic hydrocarbons. Uncircled vertices are outer 
molybdenum atoms and circled vertices are inner mo- 
lybdenum atoms. Arrows indicate sites of coordina- 
tion with sulfur atoms of adjacent metal cluster units. 
Sulfur atoms are omitted for clarity. Similar structural 
units are present in analogous molybdenum selenides 
and tellurides. 
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building blocks discussed above. They thus 
use four internal orbitals and receive an 
electron pair from a sulfur atom of an adja- 
cent metal cluster unit (indicated by arrows 
in Fig. 2). The inner molybdenum atoms 
(circled in Fig. 2) use six internal orbitals 
and do not receive an electron pair from a 
sulfur atom of an adjacent metal cluster. 
They are therefore zero electron donors 
((3)(2) - 6 - 0). Edges connecting pairs of 
inner molybdenum atoms are bridged by 
sulfur atoms but these sulfur atoms also 
bond to one molybdenum atom in each ad- 
jacent Mo3 triangle (above and below in 
Fig. 2) so that they function as pseudo-5 
coordinate ~4 sulfur atoms and donors of 
four skeletal electrons to their own cluster 
units. Thus all sulfur atoms in the species 
depicted in Fig. 2 function as four-electron 
donors when considered as neutral ligands 
to a single aggregation of face-fused Moe 
octahedra. The electron and orbital count- 
ing of these systems can then proceed as 
follows considering only orbitals involved 
in the metal-metal bonding: 

1. Naphthalene Analog, MO& 

Source of skeletal orbitals and electrons: 

6 outer LMo vertices 24 orbitals - 12 electrons 
3 inner MO vertices 18 orbitals 0 electrons 
11 S atoms 44 electrons 
-4 charge 4 electrons 

Totals available for 
skeletal bonding 42 orbitals 36 electrons 

Use of skeletal orbitals and electrons for 
metal-metal bonding of various types: 

6 edge bonds on outer tri- 
angles 12 orbitals 12 electrons 

6 face bonds connecting 
inner and outer trian- 
gles 18 orbitals 12 electrons 

6 edge bonds connecting 
inner and outer trian- 
gles 12 orbitais 12 electrons 

Totals used in skeletal 
bonding 42 orbitals 36 electrons 

Note that the bonding topology of MO&$; 

contains three three-center MO-MO-MO 
face bonds in each of the two octahedra 
between an outer and inner Mo3 triangle 
similar to the three-center Nb-Nb-Nb face 
bonds in the Nb&&+ mentioned above 
and discussed in more detail elsewhere (11, 
21). 

2. Anthracene Analog, MO&~ 

Source of skeletal orbitals and electrons: 

6 outer LMo vertices 24 orbitals - 12 electrons 
6 inner MO vertices 36 orbitals 0 electrons 
14 S atoms 56 electrons 
-6 charge 6 electrons 

Totals available for 
skeletal bonding 60 orbitals 50 electrons 

Use of skeletal orbitals and electrons for 
metal-metal bonding of various types: 

Globally delocalized Mo6 octahedron 
Surface bonding 12 orbitals 12 electrons 
Core bonding 6 orbitals 2 electrons 

Outer MO) triangles 
6 edge bonds 12 orbitals 12 electrons 

Octahedra formed by an outer and an inner MO, tri- 
mi+e 
6 face bonds 18 orbitals 12 electrons 
6 edge bonds 12 orbitals 12 electrons 

Totals used in skeletal 
bonding 60 orbitals 50 electrons 

This bonding model suggests that of the 
three octahedral cavities in the MO&~ 
structure, the octahedral cavity formed by 
the two inner MO, triangles has globally de- 
localized bonding whereas the two equiva- 
lent octahedral cavities formed by one 
outer and one inner Mo3 triangle have the 
same combination of two-center (edge) and 
three-center (face) bonds as the two (equiv- 
alent) octahedral cavities in the MO&; 
cluster discussed above. 

Continuation of this principle of face- 
fused octahedra predicts the existence of a 
homologous series with the general formula 
Mo3+&&, in which the difference be- 
tween the numbers of atomic orbitals and 
electrons available for skeletal bonding fol- 
lows a 4(n - 1) + 2 rule, where n is the 
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number of octahedral cavities. The known 
face-fused octahedral molybdenum chalco- 
genide clusters depicted in Fig. 2 consist of 
linearly fused metal octahedra analogous to 
the series benzene, naphthalene, anthra- 
cene, naphthacene, etc. Angularly fused 
metal octahedra analogous to phenanthrene 
are possible in principle but so far have not 
been observed. 

The limit of the face-sharing fusion of 
molybdenum octahedra is the linear poly- 
scene analogs (MO&& (Fig. 2) known 
in a number of derivatives [MzMo&L (M 
= K, Rb, Cs) as well as the selenium ana- 
logs [M2M06Se& (M = Na, K, Rb, Cs, Tl, 
Ag) and the tellurium analog [M2M06Te& 
(A4 = Rb, Cs, In, Tl) (39, 40). The struc- 
tures of these systems consist of infinite 
chains of face-fused octahedra. All molyb- 
denum atoms are inner molybdenum atoms 
and none of the chalcogens bridge to other 
chains so that there are no close contacts 
between the different chains. In accord 
with this structure these systems function 
as pseudo-one-dimensional metals with 
strongly anisotropic conductivities several 
hundred times larger parallel to the chains 
of octahedra relative to the perpendicular 
directions (39, 42). The Mo,&$ octahedra 
serving as building blocks for these [&Moe 
S& derivatives and their selenium and tel- 
lurium analogs have 13 skeletal electrons, 
i.e., none from the (inner) molybdenum 
vertices, 12 (= (3)(4)) from the three sulfur 
atoms, and 1 from the - 1 charge. These 13 
skeletal electrons per MO&!& are one less 
than the 14 skeletal electrons required for 
the octahedral cavity to be globally delocal- 
ized (2~ + 2 = 14 for u = 6). These holes in 
the closed-shell electronic configurations 
for globally delocalized [MO&], provide a 
mechanism for electronic conduction along 
the chains of face-fused octahedra. Peierls 
distortions (42, 43) leading to alternately 
long and short spaces between the Mo3X3 
(X = S, Se, Te) units in the chains of fused 
octahedra appear to be relatively unfavor- 

able for these systems but have been sug- 
gested (40, 44) to account for the broad 
metal-semiconductor transitions in the ter- 
nary molybdenum tellurides [M2M06Te& 
(M = Rb, Cs). 

5. Conclusion 

The chemical bonding topology of the 
Chevrel phases MMo&$ consisting of edge- 
localized discrete Moe octahedra linked 
through sulfur atoms as well as interoctahe- 
dral metal-metal interactions leads natu- 
rally to the concept of porous delocaliza- 
tion. Thus the bonding in a polyhedron with 
edge-localized bonding is porous in con- 
trast to the dense bonding in a polyhedron 
with globally delocalized bonding. In other 
words porous chemical bonding involves 
only the l-skeleton (45) of the polyhedron 
in contrast to dense chemical bonding 
which involves the whole volume of the 
polyhedron. An interesting refinement of 
the ideas of Vandenberg and Matthias (12) 
arising from this analysis of the chemical 
bonding topology of the Chevrel phases as 
well as that of the ternary rhodium borides 
in the subsequent paper is the conjecture 
that a porously delocalized three-dimen- 
sional network consisting of electronically 
linked polyhedral metal clusters having 
edge-localized chemical bonding leads to 
superconducting systems having relatively 
high critical fields and temperatures. Thus 
the porosity of the chemical bonding in 
these systems makes their superconductiv- 
ity less susceptible to magnetic fields and 
temperature than that of densely delocal- 
ized systems such as pure metals. This 
idea appears to be related to the suggestion 
(46) that the high critical field of the 
Chevrel phases is due to a certain localiza- 
tion of the conduction-electron wavefunc- 
tion of the Mo6 clusters, leading to an ex- 
tremely short mean free path and/or a low 
Fermi velocity corresponding to a small 
BCS coherence length. 
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The other interesting conclusion from 
this paper is that fusion of octahedra by 
face-sharing increases the delocalization of 
their chemical bonding topology. Thus the 
discrete Mo6 octahedra in the A4M06S8 
Chevrel phases exhibit edge-localized 
bonding whereas the Mos/z octahedral units 
in the [A&MO&& infinite chains of face- 
sharing octahedra exhibit globally delocal- 
ized bonding. 
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