Spectroscopic Properties and Luminescence Concentration Quenching of the Pr^{3+} Ion in $La_{1-x}Pr_xOCI$

Z. G. MAZURAK,* J. P. M. VAN VLIET, AND G. BLASSE

Physics Laboratory, University of Utrecht, P.O. Box 80.000, 3508 TA Utrecht, The Netherlands

Received July 3, 1986; in revised form September 9, 1986

Luminescence spectra of $La_{1-x}Pr_xOCl$ (0.01 $\leq x \leq$ 0.3) were recorded at liquid helium and room temperature. From these spectra, the energy level diagram of Pr^{3+} in LaOCl was deduced. The decay times of the Pr^{3+} emission in $La_{1-x}Pr_xOCl$ were measured using a high-resolution dye laser system. The linear concentration quenching and exponential decay times are explained assuming cross relaxation and energy transfer between the Pr^{3+} ions. © 1987 Academic Press, Inc.

I. Introduction

Recently the luminescence of the concentrated rare-earth system EuOCl (1) and TbOCl (2) was reported. In these systems there is luminescence concentration quenching due to energy migration over the rare-earth ions to quenching centers. In this paper we report on our investigations of the luminescence of Pr³⁺ in La_{1-r}Pr_rOCl (0.01 $\leq x \leq 0.3$) in order to elucidate the concentration quenching mechanism in this system. In addition to the possibility of energy migration to quenchers, there is in the case of Pr³⁺ the possibility of quenching by cross relaxation. The luminescence properties of Pr³⁺ ions in several host lattices were described in Refs. (3-8). Concentration quenching in $La_{1-x}Pr_xP_5O_{14}$ (9, 10) and LaF₃: Pr³⁺ (11-13) were studied extensively during recent years. Quenching of the ${}^{3}P_{0}$ emission of the Pr³⁺ ion can be due

to three different processes:

- (i) Decay to the ${}^{1}D_{2}$ level due to multiphonon emission, as observed for $PrP_{5}O_{14}$ (7). This process is independent of the Pr^{3+} concentration.
- (ii) Cross relaxation between pairs of Pr^{3+} ions as proposed for $La_{1-r}Pr_rF_3$ (13).
- (iii) Energy migration to a quencher (which might be a cross-relaxing Pr^{3+} pair) as proposed for $La_{1-x}Pr_xF_3$ by Hegarty *et al.* (14).

In this paper we report on a spectroscopical investigation of $\text{La}_{1-x}\text{Pr}_x\text{OCl}$. This system was chosen because the frequency of the lattice vibrations is so low that ${}^3P_0 \rightarrow {}^1D_2$ multiphonon emission may be expected to have a negligible rate. The examples of EuOCl and TbOCl have shown that the interaction between the rare-earth ions is relatively strong in this structure.

The crystal structures of LaOCl and PrOCl are isomorphous with that of PbFCl (15) and consist of alternating $[LaO]_2^{2+}$ and Cl_2^{2-} layers perpendicular to the c-axis.

^{*} On leave from the Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 937, 50-950 Wroclaw, Poland.

There is only one crystallographic site for the La³⁺ and Pr³⁺ ions. The rare-earth site symmetry is C_{4v} . The nearest-neighbor distance between Pr³⁺ ions in the layer is ≈ 4.1 Å, and between Pr³⁺ ions in two different layers ≈ 5.3 Å. From the data to be presented it can be deduced that cross-relaxation as well as excitation energy migration to quenching centers occurs in La_{1-x}Pr_xOCl down to low temperatures.

2. Experimental

Seven powder samples of LaOCl doped with Pr³⁺ in nominal molar concentrations of 1, 2, 3, 6, 10, 20, and 30% were obtained by dissolving the rare-earth oxides (Highways International, 99.999%) in HCl (Baker), evaporating to dryness, and firing in air at 700°C for 5 hr. The resulting products had a pale-green color. The samples were checked by X-ray powder diffraction. According to diffuse reflectance spectroscopy the samples did not contain Pr⁴⁺.

A number of general luminescence measurements were performed using a Perkin-Elmer spectrofluorometer MPF-44B. A nitrogen (Molectron UV 14)-pumped dye laser (Molectron DL-200) was used to excite the ${}^{3}P_{0}$ level in each sample while im-

mersed in liquid helium. The laser generated a pulse with a peak power of 30 kW/cm² and a width of 10 nsec. The temperature of the samples could be regulated between 4.2 K and room temperature using a temperature controller (Thor Cryogenics Model 3020 II). For all experiments the laser was adjusted to the ${}^{3}H_{4}(1) \rightarrow {}^{3}P_{0}$ absorption line (493.6 nm).

The population of the 3P_0 level after pulse excitation was measured by monitoring the ${}^3P_0 \rightarrow {}^3H_6(1)$ transition at 15,627 cm⁻¹ with a Spex 1704 X high-resolution monochromator. The output from the RCA-C31034A photomultiplier was digitized by a Tektronix 7912 D digital oscilloscope. The resulting decay was plotted on a printer and the digitized data were analyzed with a BBC microcomputer system.

3. Results

a. Spectroscopic Properties of Pr^{3+} in $La_{1-x}Pr_xOCl$

The LHeT emission spectrum of 10 mole% Pr^{3+} in LaOCl, excited at 493.6 mm, is shown in Fig. 1 as a representative example. The spectrum shown consists of several narrow peaks attributed to the ${}^{3}P_{0} \rightarrow$

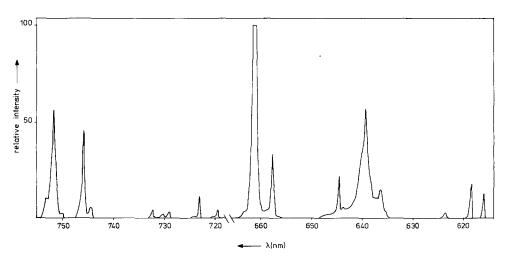


FIG. 1. The emission spectrum of the Pr³⁺ luminescence of La_{0.9}Pr_{0.1}OCl at LHeT ($\lambda_{exc} = 493.6$ nm).

 ${}^{3}F_{2,3,4}$, ${}^{3}H_{6}$ and to the ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ transitions. The intensity of the ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$ emission is relatively weak compared to the ${}^{3}P_{0} \rightarrow$ ${}^{3}F_{2,3,4}$ luminescence intensity. The luminescence of the Pr^{3+} ion in the system $La_{1-x}Pr_x$ OCl is observed up to $x \approx 0.3$. For x > 0.3this luminescence is quenched (see also Fig. 2). The number of emission lines observed for the separate transitions is equal to or less than the number of lines expected for the Stark splitting in a single site with symmetry C_{4v} . The derived energy level diagram for La_{1-x}Pr_xOCl at LHeT is given in Fig. 3. It is constructed using the emission lines listed in Table I. Note that for concentrations of $Pr^{3+} x > 0.1$, there is a complete absence of emission originating from the ${}^{1}D_{2}$ level. Although the energy level scheme is not complete, it can be deduced that the energy mismatch for the cross-relaxation process ${}^{3}P_{0} + {}^{3}H_{4} \rightarrow {}^{1}D_{2} + {}^{3}H_{6}$ is about 500 cm⁻¹. The data do not allow a determination of the energy mismatch for the crossrelaxation process which quenches the ${}^{1}D_{2}$ emission. The general observation is that the latter mismatch is much smaller than

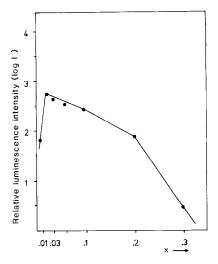


FIG. 2. Concentration dependence of the relative emission intensity of the luminescence from the ${}^{3}P_{0}$ level at room temperature in La_{1-x}Pr_xOCl for $0.01 \le x \le 0.30$.

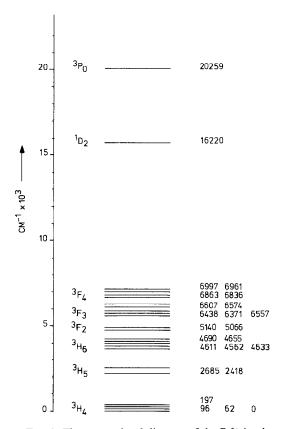


Fig. 3. The energy level diagram of the Pr³⁺ ion in LaOCl as deduced from the emission spectra.

the former (16). For Pr^{3+} in the LaF_3 the former amounts to 190 cm⁻¹ (14).

From the diffuse reflectance spectra it becomes clear that in the LaOCI lattice the transition $4f^2 \rightarrow 4f5d$ of the Pr³⁺ ion lies at an energy of approximately 40,000 cm⁻¹. For Tb³⁺ and Ce³⁺ in LaOCl the energy of this $4f \rightarrow 5d$ transition is 44,000 cm⁻¹ (17) and 33,000 cm⁻¹ (18), respectively. Hoefdraad and Blasse (19) have established that in CaZO₃: Pr³⁺ the position of the $4f \rightarrow 5d$ band is at 41,000 cm⁻¹, and that this energy level feeds only the ${}^{3}P_{2,1,0}$ levels. Thus only ${}^{3}P_{0}$ emission is observed CaZO₃: Pr³⁺ upon UV excitation. This is also the case in LaOCl: Pr3+. A relaxation process ${}^{3}P_{0} \rightarrow {}^{1}D_{2}$ via the 4f5d configuration seems rather improbable.

TABLE I
Position and Relative Intensity of the Emission Lines of Pr^{3+} in $La_{1-z}Pr_zOCl$

Transition	λ (nm)	σ (cm ⁻¹)	Relative intensities					
			x = 0.01	x = 0.02	x = 0.03	x = 0.10	x = 0.20	x = 0.30
$^3P_0 \rightarrow {}^3H_5$	560.5	17 841	13	16		7		_
	569.0	17 574	31	18	-	14	_	_
$^{1}D_{2} \rightarrow {}^{3}H_{4}$	616.5	16 220	_	_	95	31	_	_
	618.9	16 158			140	42	_	
	620.2	16 124			29	8	_	_
	624.1	16 023	25	_	58	14	_	_
$^3P_0 \rightarrow ^3H_6$	637.0	15 698	34	98	80	36	2	0.5
	639.0	15 649	300	480	350	146	10	2
	639.9	15 627	150	245	170	72	5	1
	640.8	15 605	70	120	55	30	2	
	642.3	15 569	15	20	10	6	0.5	_
$^3P_0 \rightarrow ^3F_2$	658.2	15 193	170	650	500	80	20	1
	661.4	15 119	1000	4000	3300	560	150	14
$^{3}P_{0} \rightarrow ^{3}F_{3}$	720.0	13 888	20	95	89	11	_	_
	723.5	13 821	70	250	200	28	-	
	729.8	13 702	_	400		70	11	_
	730.7	13 685	_		_	50	_	_
	732.5	13 652		_	_	34		
$^{3}P_{0} \rightarrow ^{3}F_{4}$	745.0	13 423	25	100	80	14	3	_
	746.5	13 396	238	660	530	118	30	1
	752.0	13 298	431	1150	920	150	35	3
	754.0	13 262	25	56	44	11	2	_

b. The Luminescence Decay Measurements

At LHeT the measured luminescence decay time of the 3P_0 emission in La_{0.99}Pr_{0.01} OCl is 6.9 μ sec. The decay curve is exponential. In view of the small amount of 1D_2 emission for this concentration, the decay is assumed to correspond in good approximation to a radiative decay. This shows the inefficiency of ${}^3P_0 \rightarrow {}^1D_2$ multiphonon emission. For Pr³⁺ in LaF₃ the radiative decay time is 51 μ sec (14). The shorter time in our case is easily related to the lower position of the 5d level in oxides and chlorides relative to fluorides, but the site symmetry may also have some influence.

For higher Pr³⁺ concentrations the decay

time decreases to 0.72 μ sec for La_{0.7}Pr_{0.3} OCl. From the above data we conclude that concentration quenching of the 3P_0 emission occurs in this system. This quenching does not result in a build-up of the 1D_2 emission. Figure 4 summarizes the concentration dependence (x) of the quenching rate $q(x) = \tau^{-1} - \tau_0^1$ in La_{1-x}Pr_xOCl at LHeT and RT. Here τ presents the exponential decay time and τ_0 the radiative decay time, i.e., the value observed for La_{0.99}Pr_{0.01}OCl.

4. Discussion

The luminescence of the Pr³⁺ ion in LaOCl shows a pronounced concentration quenching above 2% Pr³⁺. Here we wish to

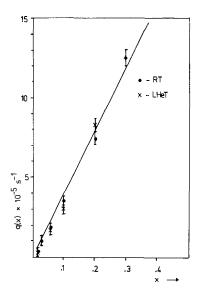


Fig. 4. The quenching rate $q(x) = \tau^{-1} - \tau_0^{-1}$ as a function of the concentration x in La_{1-x}Pr_xOCl.

consider the question of whether this quenching is due to cross-relaxation between pairs of Pr³⁺ ions or to energy migration among Pr³⁺ ions to quenching centers.

The concentration dependence of the measured ${}^{3}P_{0}$ decay rate $\tau^{-1}(x)$ originates from a concentration-dependent quenching rate q(x) as expressed

$$1/\tau(x) = 1/\tau_0 + q(x). \tag{1}$$

The intrinsic decay rate may primarily be due to a multiphonon relaxation process $({}^{3}P_{0} \rightarrow {}^{1}D_{2}, \Delta E \sim 4000 \text{ cm}^{-1})$. It is well known that the multiphonon relaxation (W_{MPR}) rates in 4f-4f transitions of all rare-earth ions in one host obey the exponential energy-gap law,

$$W_{\text{MPR}} = \beta \exp[-\alpha \Delta E], \qquad (2)$$

where α and β are constants for a given host lattice and ΔE gives the energy gap. The equation was modified by Van Dijk and Schuurmans (20) as follows:

$$W_{\rm MPR} = \beta_{e1} \exp[-(\Delta E - 2h\omega_{\rm max})\alpha],$$
 (3) which is now valid for all host lattices. We have $\alpha \simeq 5 \times 10^{-3}$ cm and $\beta_{e1} \simeq 5.10^7$ sec⁻¹.

The maximum energy of phonons in the case of LaOCl is 600 cm^{-1} , as derived by us from infrared spectra. In this way Eq. (3) yields $W_{\text{MPR}} \sim 40 \text{ sec}^{-1}$. Although this value gives only an order of magnitude of the process, it shows clearly that multiphonon emission for the ${}^{3}P_{0}$ level can be neglected in our case, as was expected.

Let us now return to Eq. (1). We note that the quenching rate q(x) in the system $\text{La}_{1-x}\text{Pr}_x\text{OCl}$ depends linearly on x (see Fig. 4) and is not strongly dependent on temperature. All decay curves were linear within experimental accuracy.

If quenching occurred mainly by cross-relaxation, we would expect nonlinear decay curves as described by Inokuti and Hirayama (21). These have been observed for LaF₃: Pr³⁺ at low temperatures (14). The present results seem to exclude such an interpretation. Also, such a process seems to have a low probability at low temperatures in view of the energy mismatch. Since a phonon has to be absorbed, the rate expression carries a term $\exp(-\Delta/kT)$ if the mismatch Δ (\approx 500 cm⁻¹) is large compared to kT. Also this temperature dependence was not observed.

An interesting way to explain the occurrence of exponential decay and a linear quenching rate has been proposed by Broer et al. (22, 23). They showed that the decay of the donor for small trapping rates (weak quenching) and in the absence of donordonor transfer can be given by $N_D(t) = N_D(0)\exp(-t/\tau_0) \cdot f(t)$, where N_D is the number of \Pr^{3+} ions in the 3P_0 level and

$$f(t) \approx \exp(-tx \sum_{1} X_{01}). \tag{4}$$

Here X_{01} is the quenching rate between a donor at site 0 and an acceptor at site 1. This results in an exponential decay rate τ^{-1} given by

$$\tau^{-1} = \tau_0^{-1} + x \sum_{1} X_{01}. \tag{5}$$

This equation shows a linear dependence on the concentration x. Equation (4) was derived for the condition $\tau_0 \lesssim X_{01}^{-1}$. Since the quenching (i.e., cross-relaxation) rate is low (see above), this condition might well be fulfilled. Interestingly enough, Eq. (4) also describes the high-temperature decay when rapid donor-donor transfer occurs (22).

This model explains our experimental observations rather well (Fig. 4). From the slope of the linear curve of q(x) vs x, we derive for $\Sigma_1 X_{01}$ a value of about 4 × 10⁶ sec-1. This is of the same order of magnitude as τ_0^{-1} (1.5 × 10⁵ sec⁻¹), but larger, which shows that effectively we are just outside the region for which Eqs. (4) and (5) are valid. Probably our measurements are not accurate enough to make a deviation from these equations visible in the experimental results. From the fact that the crossrelaxation, invoked to explain the quenching in the system La_{1-x}Pr_xOCl, does not result in a corresponding amount of ${}^{1}D_{2}$ emission, we conclude that the ${}^{1}D_{2}$ emission is more rapidly quenched than the ${}^{3}P_{0}$ emission. This has also been observed for the system $La_{1-x}Pr_xP_5O_{14}$ (16) and may be related to the smaller energy mismatch for cross-relaxation in the case of the ${}^{1}D_{2}$ quenching.

The rapid increase of the donor-donor transfer rate, inherent to the model used, can easily be understood from existing theories on phonon-assisted energy transfer (24). We note that the situation in the present system is very similar to that in the system La_{1-x}Nd_xP₅O₁₄ (22). Also, there the cross-relaxation rate is low and temperature independent, due to a large energy mismatch (1000 cm⁻¹).

There are two other possibilities to explain the linear quenching, viz., donor-donor transfer not important at LHeT and RT and rapid donor-donor transfer at LHeT and RT. Both are considered to be unlikely (25): the former because the donor-donor

transfer rate is expected to increase rapidly with increasing temperature, the latter because the donor-donor transfer rate is expected to be slow at LHeT.

Unfortunately the weakness of the luminescence involved and the restrictions of the instrumentation used prevent a more detailed analysis of the present data. The results suggest, however, that in $\text{La}_{1-x}\text{Pr}_x$ OCI energy migration occurs as a temperature-dependent process next to a slow, temperature-independent trapping process. We plan to investigate these phenomena further when a better instrument has become available.

Acknowledgments

The authors are indebted to Mr. G. J. Jongerden who made the detection apparatus available to us for some time. The investigations were supported by the Netherlands Foundation for Chemical Research (SON), with financial aid from the Netherlands Organisation for Advancement of Pure Research (ZWO).

References

- P. A. M. Berdowski, J. Van Herk, and G. Blasse, J. Lumin. 34, 9 (1985).
- P. A. M. Berdowski, J. Van Herk, and G. Blasse, *Phys. Status Solidi B* 125, 387 (1984).
- M. MALINOWSKI, R. WOLSKI, AND W. WOLINSKI, J. Lumin. 35, 1 (1986).
- Z. G. MAZURAK, E. LUKOWIAK, B. JEZOWSKA-TRZEBIATOWSKA, D. SCHULTZE, AND CH. WALI-GORA, J. Phys. Chem. Solids 45, 487 (1984).
- J. CHRYSOCHOOS, P. W. M. JACOBS, AND M. J. STILLMAN, J. Lumin. 28, 177 (1983).
- 6. M. SZYMANSKI, J. Lumin. 28, 87 (1983).
- H. DORNAUF AND J. HEBER, J. Lumin. 20, 271 (1979).
- A. Lempicki and B. C. McCollum. J. Lumin. 20, 291 (1979).
- 9. M. SZYMANSKI, J. Lumin. 29, 433 (1984).
- 10. M. SZYMANSKI, J. Lumin. 29, 467 (1984).
- J. HEGARTY, D. L. HUBER, AND W. M. YEN, Phys. Rev. B 23, 6271 (1981).
- G. P. Morgan, D. L. Huber and W. M. Yen, J. Phys. 46, C7-25 (1985).
- J. C. VIAL AND R. BUISSON, J. Phys. Lett. 43, L745 (1982).
- 14. J. HEGARTY, D. L. HUBER, AND W. M. YEN, Phys. Rev. B 25, 5638 (1982).

- R. W. G. WYCKOFF, "Crystal Structures," Vol. 1, Wiley, New York (1963).
- H. DORNAUF AND J. HEBER, J. Lumin. 22, 1 (1980).
- G. BLASSE AND A. BRIL, Philips Res. Rep. 22, 481 (1967).
- G. Blasse and A. Bril, J. Chem. Phys. 47, 5139 (1967).
- H. E. HOEFDRAAD AND G. BLASSE, *Phys. Status Solidi A* 29, K95 (1975).
- J. M. F. Van Dijk and M. F. H. Schuurmans, J. Chem. Phys. 78, 5317 (1983).

- M. INOKUTI AND F. HIRAYAMA, J. Chem. Phys. 43, 1978 (1965).
- M. M. Broer, D. L. Huber, W. M. Yen, and K. Zwicker, *Phys. Rev. Lett.* 49, 395 (1982).
- M. M. Broer, D. L. Huber, W. M. Yen, and K. Zwicker, *Phys. Rev. B* 29, 2382 (1984).
- 24. D. L. Huber, in "Laser Spectroscopy of Solids" (W. M. Yen and P. M. Selzer, Eds.), Topics in Applied Physics, Vol. 49, p. 83, Springer Verlag, Berlin (1981).
- 25. T. HOLSTEIN, S. K. LYO, AND R. ORBACH, Chap. 2 in (24).