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The emission spectrum of LaF, : Gd shows an anti-Stokes vibronic line coupled to the 6P7,2 --, *S 
traIISitiOn. Q 1989 Academic Press, Inc 

The optical spectra of transitions within 
the 4f” configuration of rare-earth ions are 
dominated by pure electronic (zero- 
phonon) transitions. The vibronic side lines 
are weak; their intensity amounts charac- 
teristically to 1% of that of the correspond- 
ing electronic transition (I). The tempera- 
ture dependence of the intensity of these 
vibronic transitions is well understood (see, 
e.g., (2)), and has been studied especially on 
transitions within the 3d shell with strong 
zero-phonon lines. Examples are MgO : V3+ 
(2) and Cr3+ in several hosts (for a recent 
example, see (3)). The optical transition in- 
volved is 2E + 4A2. 

Recently we have shown that X-ray exci- 
tation of Gd3+-containing compositions can 
yield very efficient Gd3+ emission (4, 5). In 
this way it is possible to study vibronic 
transitions in the Gd3+ emission spectra. 
The fact that the ground state (*S) of the 
Gd3+ ion is not split makes it easy to ob- 
serve and interpret these spectra. In view 
of our results with Stokes vibronics on the 
6P7,2 + 8S electronic transition of the Gd3+ 
ion, we tried to observe also the anti-Stokes 
emission. 

The temperature dependence of the in- 
tensity of the Stokes vibronic lines is given 
by 1 + n and that of the anti-Stokes vi- 
bronic lines by n, where n = [exp(hv/kT) - 
11-r (2). The vibrational frequency involved 
is given by v. 
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A serious problem, however, is the 6P5,2 
-+ 8S emission transition which is located at 
~600 cm-’ higher energy than the 6P7,2 + 
*S transition. This will overlap vibronics 
with frequencies equal to that energy differ- 
ence. Anti-Stokes vibronics with still 
higher frequency will not have high enough 
intensity at 300 K to allow observation: for 
v = 1000 cm-’ the intensity ratio of anti- 

Copyright 0 1989 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



LETTER TO THE EDITOR 315 

Stokes and Stokes vibronics at 300 K is less TABLE I 

than 1%. This follows from the ratio n/(1 + ANALYSIS OF THE EMISSION LINES IN THE 300- TO 

n) which will be a good approximation. 320-nm REGION OF THE EMISSION SPECTRUM OF A 

The most suitable frequency for our pur- LaF, :Gd CRYSTAL UNDER X-RAY EXCITATION AT 

pose is v = 300 cm-r. The corresponding 
3oo K (COMPARE F,G ,) 

vibronic line will be between the 6Ps,2 + 8S Position 
and 6P7,2 -+ 8S emission lines and yield 22% 
for the anti-Stokes/Stokes intensity ratio at nm cm-’ Assignment 

300 K. We found that LaF3:Gd shows a 
6P7,2 -+ 8S Gd3+ emission line with a Stokes 
side line at 320 cm-’ (Fig. 1, Table I). In- 
strumental details have been given in Ref. 
(6). The 6P5,2-6P7j2 energy difference is 605 
cm-’ (Table I). There is a weak feature at 
308.5 nm between the two electronic lines 
(Fig. 1). This is at 340 cm-’ higher energy 
than the 6P7j2 -+ 8S transition. 

There are two reasons why the 308.5nm 
feature should not be correlated to the 6P5,2 
+ 8S transition: 

(i) its intensity is too high to be a Stokes 
side line of 6Ps,z --, 8,S. The expected inten- 
sity is 1% or less of the electronic 6P5,r -+ 8S 
emission line (as for 6P7,2 --jr 8S); the ob- 
served intensity is more than 10% of the 
hP5i2 + 8S transition. 

(ii) the vibrational frequency relative to 
6p5/2 + *S is 265 cm-l which is too low a 
value in comparison with the 6P7,2 + *S side 
line. 

6P7, ps 
/ 

605 
, 

I I I 
300 310 320nm 

306.0 32.680 Vsiz + *S (electronic) 
308.5 32.415 hP,,z-+ 8S + 340 cm-’ 
311.75 32.075 6P,,z + *S (electronic) 
314.9 31.755 'PTlz+ $S - 320 cm-’ 

The intensity ratio of the anti-Stokes and 
the Stokes side lines of 6P712 + 8S is found 
to be 0.2; the value of n/(1 + n) at 300 K for 
v = 330 cm-l amounts to 0.19. This good 
agreement shows that the 308.5-nm feature 
is the anti-Stokes side line of the 6P7,2 --$ 8S 
transition on Gd3+ in LaF 

An obvious way to cheik our interpreta- 
tion is to repeat the measurements at low 
temperatures, since the anti-Stokes line 
should disappear under these conditions. 
Therefore, the X-ray excited emission 
spectrum of LaF3 : Gd was measured at 10 
K. Unfortunately, many changes take place 
in the emission spectrum upon cooling. A 
broad emission band with a maximum at 
about 280 nm occurs. It is ascribed to VK 
center emission because of its striking simi- 
larity with the ultraviolet VK emission band 
of BaF2 under high-energy excitation (7, 8) 
and of a BaFX (X = Cl, Br) (9). However, it 
makes observation of weaker features more 
difficult than at room temperature. Never- 
theless, the 6Z -+ 8S emission at 10 K be- 
comes considerably stronger at the cost of 
the 6P + 8S emission due to the lower rate 
of the nonradiative “I + hP transition. At 

FIG. 1. Emission spectrum in the 6P-+ 8S region of a 
the same time, however, the 6P512 -+ 8S 

LaF, : Gd crystal at 300 K under X-ray excitation. The 
emission together with the anti-Stokes line 

Stokes and anti-Stokes vibronic lines are indicated by disappear within the accuracy of our mea- 
us and uA, respectively. Energy differences are indi- surements. This agrees with the expecta- 
cated between arrows in cm-‘. tion, although it must be realized that any 
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Stokes lines belonging to 6Ps12 -+ 8S have 
also disappeared. 
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