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DEDICATED TO J. M. HONIG ON THE OCCASION OF HIS 6STH BIRTHDAY 

It is a pleasure to make a small contribu- 
tion to a Festschrift for Professor J. M. 
Honig. I am grateful for a substantial article 
which he wrote for one of mine’; in fact, his 
article and others in this volume were a great 
help to me in preparing a second edition of 
my book (I), Metal-Znsulator Transitions, 
which will appear in the summer of this year 
(1990). 

I take this opportunity to comment on the 
nature of the so-called “Mott transition” 
and contrast it with the “Anderson transi- 
tion.” In 1947, I published a paper (2) sug- 
gesting that, if the number of electrons per 
unit volume in a solid could be varied by 
volume change or by alloying, a discontinu- 
ous transition from nonmetallic to metallic 
behavior would occur; as applied to doped 
semiconductors it should be observed when 
for a concentration of electrons n given by 
n 1’3a n = 0.25, where aH is the Bohr radius 
for the donor. Both conclusions were cor- 
rect, but the argument used in obtaining 
them was wrong. We now use a description 
due to Brinkman and Rice (3) in which the 
transition results from the overlap of the two 

’ Transitions in selected transition metal oxides, in 
The Metallic and Non-metallic States of Matter, (P. P. 
Edwards and C. R. N. Rao, Eds.), Taylor & Francis, 
London (1985). 

Hubbard bands. Moreover, the transition in 
doped semiconductors now seems to be of 
Anderson type, resulting from disorder, that 
is from the random positions of the donors 
(see Mott (4). The Mott transition, as I see 
it, is a transition from an antiferromagnetic 
insulator to a metal, which may be antiferro- 
magnetic. It occurs, as a result of intraa- 
tomic interaction, when 

; (B, + B,) = U, 

where B, , B, are the widths of the two Hub- 
bard bands and 

U = ( e*/K r12), 

called the Hubbard U. The averaging is in- 
traatomic, or within a donor, and K a back- 
ground dielectric constant. It is thus similar 
to a normal band-crossing transition, and in 
all cases such transitions are first order. 

Professor Honig (footnote 1, p. 265) re- 
marks that Mott transitions depend only on 
electron density effects, and so that the large 
hysteresis effects observed in vanadium ox- 
ides rule out these as transitions of this kind. 
I do not entirely agree, if I define the transi- 
tion as I have here. Any first-order transi- 
tion, in which the number of free electrons 
changes from zero to a finite number, is al- 
most certain to change the volume and in 
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noncubic structures also the ratio of the lat- 
tice parameters, or even the structure. So I 
would call a Mott transition any transition 
from an antiferromagnetic insulator to a 
metal, as one essentially involving the Hub- 
bard U and of the same general type. 

Now, since this kind of transition is essen- 
tially of first order, the actual value of the 
lattice parameter at which it occurs under 
pressure cannot be observed; there is a dis- 
continuous change in volume. To observe 
the transition itself, quenched alloys must 
be used. In principle, the transition must 
occur in a solubility gap for the annealed 
alloy. I am therefore very interested in Fig. 
2 of Professor Honig’s article quoted (taken 
from Shrivashankar and Honig (5). In this 
figure the logarithm of the resistivity of 
(V, -,Ti,),O, is plotted against l/T for values 
of x between 0 and 0.05. From these curves 
it is clear that a first-order transition occurs 
from the semiconducting to the metallic 
state. 

The metallic alloys of V,03 with T&O, 
have a resistivity of about 10m4 fi cm, little 
dependent on temperature. This implies that 
each titanium atom has an apparent scatter- 
ing cross section of about seven times its 
cross-sectional area. This large value is, I 
believe, caused by the properties of the 
highly correlated gas, predicted for a metal 
near the transition by Brinkman and Rice 
(3). In this model most sites remain singly 
occupied, with the moment resonating be- 
tween its several orientations; current is 
caused by a few doubly occupied or unoccu- 
pied sites, so the resistivity for a given num- 
ber of scatterers is enhanced. 

We turn now to the Anderson transition. 
This occurs only in the presence of some 
kind of disorder; the activation energy for 
conduction goes continuously to zero as 
the transition is approached from the insu- 
lating side, and the zero temperature con- 
ductivity goes continuously to zero as it is 
approached from the metallic side. Typical 
behavior is shown by the oxide La,-,Sr- 

*V03, where with increasing x the activation 
energy for conduction decreases continu- 
ously to zero. 

The present author (6) in 1972 put forward 
the concept of a minimum metallic conduc- 
tivity (T,in = 0.03 e2/7ia, where a is the 
mean distance between electrons. This is 
now known to be false; both the scaling the- 
ory of Abrahams et al. (7) and the concept 
of quantum interference (Bergman (8)) show 
that the conductivity u should, at a low tem- 
perature, tend to zero, normally linearly 
with changing composition. The present au- 
thor (4) and Mott and Kaveh (9) have inves- 
tigated the problem of why, as in La,-,Sr- 
XVO, and in liquid systems, a minimum 
metallic conductivity is so often observed. 

Metal-insulator transitions in oxides have 
recently become very fashionable as a sub- 
ject of research, on account of the discovery 
of the high T, superconductors. The first of 
these La,+,Sr,CuO,, is, like La, -+Sr,VO, , 
an antiferromagnetic insulator when x = 0. 
Both are doped, the Sr producing holes in 
the oxygen 2p band or among the magnetic 
ionized atoms (e.g., Cu2+). Both materials, 
with increasing x, undergo a transition to 
the metallic state together with a disappear- 
ance of the magnetic order. In the case of 
the superconductor, as soon as the metallic 
state appears, so does superconductivity, 
T,, increasing with x and then decreasing. 

For the phenomenon, there are still as 
many theories as there are theorists. The 
present author believes that the carriers (ox- 
ygen 2p holes) move in an impurity band, 
forming spin polarons with the Cam 
spins, and that these combine to form pairs 
(bosons). A degenerate gas of bosons is a 
superconductor. The quasi-two-dimen- 
sional structure of these oxides facilitates 
pair formation. The model suggests that cur- 
rent above T, is carried by a nondegenerate 
gas of these bosons (spin bipolarons). 
Above T, the resistivity-temperature curve 
differs strongly from that in the vanadate; in 
the latter the resistivity hardly depends on 



METAL-INSULATOR TRANSITIONS 7 

temperature T up to 300 K while in the for- 
mer it is usually proportional to T. The au- 
thor has attempted to explain this in terms 
of the properties of spin polarons, arguing 
that the diffusion coefficient D of a spin po- 
laron depends little on temperature and the 
conductivity (T is given by Einstein’s rela- 
tion as 

(T = n e2DlkBT, 

where n is the constant number of carriers 
(see Mott (IO), Micnas et al. (II), and de 
Jongh (12)). 

I believe that the same kind of chemical 
insight that Professor Honig has contributed 
to metal-insulator transitions will be needed 
to unravel the problem of these oxide super- 
conductors. 
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