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It is found that the addition of more than a certain amount of mixed valent ions would be necessary 
to render mixed conducting characteristics to P-alumina-type compounds. Based on the assumption 
that the electronic conduction is due to the hopping of small polarons to the nearest neighboring ions 
on the octahedral sites in the spine1 block of p-alumina similar to that in magnetite, the pair approxima- 
tion of the cluster variation method indicates that the threshold composition of such a mixed valent 
additive must exceed at least 0.24 of the number of octahedral ions. A new method of calculating the 
percolation limit is shown. 0 IWO Academic press, hc 

1. Introduction 

p-alumina is known to have an unusually 
high ionic conductivity due to its peculiar 
structure. On the other hand, its electronic 
conductivity is known to be very small. Be- 
cause of these properties, P-alumina-type 
compounds have been considered to be 
good candidates for solid electrolytes for 
various applications. However, if the elec- 
tronic conductivity can be enhanced appre- 
ciably, these materials can be used as good 
electrode materials, especially when @lu- 
mina is used as a solid electrolyte due to 
the compatibility. Hence, the possibility of 
doping p-alumina with different metal ions 
which may lead to electronic conductivity 
has been examined. 

’ Permanent address: Department of Materials Sci- 
ence and Engineering, University of California-Los 
Angeles, Los Angeles, CA 90024. 

It has been customarily considered that an 
addition of mixed valent ions to p-alumina 
would enhance the electronic conductivity 
due to the release of electrons, thus leading 
to mixed conductivity. Rather extensive tri- 
als have been made in this direction, but 
none has been too successful. Examinations 
of the mechanism of electronic conduction 
in @-alumina-type compounds, however, 
have led to a conclusion that the addition of 
mixed valent ions beyond a certain amount 
(percolation threshold) may be necessary. 

The purpose of this note is to examine 
briefly the required conditions for such addi- 
tion of mixed valent ions to enhance elec- 
tronic conductivity. We will also give a new 
type of calculation by means of the pair ap- 
proximation of the cluster variation method 
(CVM; I) which can predict the percolation 
limit for the electronic conduction in a sys- 
tem that is characteristic to p-alumina-type 
structure. 
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2. Electronic Conductivity in P-Alumina 

It is generally believed that an addition of 
a small amount of mixed valent ions to p- 
alumina-type compounds would be enough 
to create electronic conduction in these com- 
pounds as this would release electrons to the 
system. However, past efforts of this kind 
failed to show any appreciable electronic 
conductivity in p-alumina. For example, 
Galli et al. (2) reported the electronic trans- 
port number to be essentially zero for un- 
doped, 0.5 wt% MgO-doped, 3.8 wt% Fe,O,- 
doped, and 3.57 wt% Co0 plus 1.28 wt% 
TiO,-doped /3-aluminas. More recently, 
Kennedy et al. (3-8) and Vest et al. (9-12) 
doped a rather large amount of Fe ions to re- 
place Al ions to achieve this goal, but could 
not enhance the electronic conductivity ap- 
preciably. These results indicate that the 
problem requires further attention. 

The structure of p-alumina has been in- 
vestigated in detail (22, 13). However, for 
the present purpose, it is easier to view the 
structure as a modulated structure of spinal 
by loose conduction layers at every fifth 
close-packed oxygen layer in the direction 
perpendicular to them (the c-direction) (14, 
15). In other words, between the two con- 
duction layers, the structure is identical to 
that of spine1 except for the arrangements 
of metallic ions immediately neighboring the 
conduction layer. 

A well-known electronic conductor with 
the spine1 structure is magnetite, Fe,O,. 
Megnetite has the inverse spine1 structure, 
in which the tetrahedral sites are occupied 
by trivalent Fe3+ ions while the octahedral 
sites are occupied by Fe’+ and Fe3+ ions 
randomly. The hopping of electrons be- 
tween Fe2+ and Fe3+ ions (or more precisely 
in the form of small polarons) among the 
nearest neighboring octahedral sites is con- 
sidered to be the origin of the electronic 
conduction (16, 17). If this is the case for p- 
alumina, then mixed valent ions of the same 
type should exist on the octahedral sites in 

different valences and the amount of these 
mixed valent ions should be enough to form 
a percolation path for electrons (polarons). 

Unlike the spine1 MgAl,O,, in the spine1 
block of p-alumina trivalent Al ion occupies 
both the tetrahedral and the octahedral 
sites, although the tetrahedral sites prefer- 
entially accept divalent spinel-forming ions 
such as Mg2 + , Zn2 + , or transition metal ions 
such as Ni2+ and Co 2+. Hence, the spine1 
block in p-alumina is not neutral but has 
excess charge in the idealized Beev- 
ers-Ross structure (14). In other words, the 
valence state of metallic ions in the spine1 
block of p-alumina should, on the average, 
be trivalent. Therefore, unless the charge 
compensation condition changes, Fe ions 
which can take both divalent and trivalent 
state would be in the trivalent state, even if 
they go into the octahedral sites, and, hence, 
would not be effective enough to create ap- 
preciable electronic conductivity. Results of 
Kennedy et al. (3-8) and Vest et al. (9-11) 
seem to be consistent with this statement. 

A different possibility exists in the case 
of the addition of Ti ions which prefers the 
octahedral sites, in the spine1 structure. Ti 
ions can take Ti2+, Ti3+, and Ti4+ states 
depending on the condition, but if doped 
alone, Ti might go in the trivalent state re- 
placing A13+ in octahedral sites for the rea- 
sons mentioned above. However, divalent 
ions such as Ni2+ and Co2+ enter preferen- 
tially into the tetrahedral sites which has 
been proved by optical absorption spectrum 
(28) and X-ray structural analysis (19). 
Therefore, if Ti ions are doped along with 
Ni2+ ions Ni2+ ions occupying the tetrahe- 
dral sites might force the Ti ions on the octa- 
hedral sites to exist as Ti3+ and Ti4+. If this 
is the case, enough amount of mixed valent 
ions on the octahedral sites such as Ti would 
create the electronic conduction. 

It is interesting to know, at least approxi- 
mately, the amount of mixed valent ions to 
be added to the octahedral sites of /&rlumina 
to create the electronic conductivity. In or- 



ELECTRONIC CONDUCTION IN P-ALUMINA-TYPE COMPOUNDS 241 

-o _ -o First metal layer 
- Second metal layer 

-‘--“‘Third metal layer 

FIG. 1. Projection of the network of the octahedral 
sites in the spine1 block of the P-alumina-type structure 
along the c-axis. 0 and 0, KagomC lattice; 0, triangu- 
lar lattice. 

der to know this, it is necessary to know 
the structure of the conduction path or the 
distribution of connected octahedral sites in 
/?-alumina. As explained earlier, p-aluminais 
a modulated structure of spine1 at every fifth 
close-packed layer of oxygen in the c-direc- 
tion by a loose conduction layer across which 
the octahedral sites are separated. In other 
words, the conduction path of p-alumina is a 
two-dimensional network. If we plot the net- 
work of such octahedral sites, these form 
three layers of two-dimensional network as 
shown in Fig. 1. The upper and the lower lay- 
ers are the two-dimensional KagomC lat- 
tices, (20), which are connected by a triangu- 
lar lattice in the middle. Other metallic sites 
exist above and below the two Kagome lay- 
ers, but can be neglected as they do not con- 
tribute to the percolation. In the triangular 
lattice in the middle layer alone, because the 
distance between sites of the triangular lat- 
tice is larger than the nearest neighboring 
sites, no percolation path exists in this plane. 
In this respect, the percolation limit in such a 
percolation path in p-alumina should be prac- 
tically determined by that of the two dimen- 
sional KagomC lattice, but modified some- 
what by the existence of the middle layer. 

The determination of the percolation limit 

was treated earlier by the cluster variation 
method as the lowest concentration limit of 
magnetic atoms for the appearance of the 
spontaneous magnetization in magnetically 
dilute systems (21). The problem was also 
treated as a dynamical bond percolation 
problem such as the tracer diffusion in bi- 
nary mixture lattice gas by means of the path 
probability method (PPM) of irreversible 
statistical mechanics (22). Both the methods 
give identical values for the percolation limit 
(22). For a regular lattice, the pair approxi- 
mation of the CVM gives the value for the 
percolation limit pc to be equal to l/(20 - l), 
where 20~ is the coordination number of 
the lattice. In the case of the two-dimen- 
sional KagomC lattice, 2w = 4 and, hence, 
pc is equal to 1/3.If the triangle approxima- 
tion of the CVM is used, pc is found to be l/ 
2. A higher degree of approximation gives a 
higher value of pc and it is expected that the 
exact value would not be smaller than l/2. 

The existence of the middle triangular 
layer would modify the value of the percola- 
tion limit. Because each triangular lattice 
site has three nearest neighboring sites on 
both the upper and the lower Kagome lat- 
tices (Fig. I), the coordination number is 
six. Therefore, the percolation limit is not 
readily given by the formula 1/(2w - 1). As 
it is of interest to know the effect of the 
middle layer on the percolation limit, a new 
type of calculation by means of the CVM 
was carried out and the treatment is given in 
detail in Appendix. The pair approximation 
gives the value of 0.24 instead of l/3, indi- 
cating the effect of the middle layer is con- 
siderable. The calculation in terms of the 
triangular approximation is now in progress. 
The value of the percolation limit in triangle 
approximation or of the higher approxima- 
tion is expected to be substantially higher 
than the value of 0.24. 

3. Conclusions 

Factors which would make p-alumina- 
type compounds mixed conducting are ex- 
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amined. It would most probably require the 
addition of mixed valent ions with valences 
3 + and 4+ such as Ti on the octahedral 
sites. Codoping of divalent ions such as Co 
and Ni which would occupy the tetrahedral 
sites and which would allow ions on the 
octahedral sites to take valences higher than 
three is most probably required. The 
amount of such mixed valent ions which 
occupy the octahdral sites should be 24% or 
more if it is at all possible. Factors pointed 
out above constitute the difficulty of produc- 
ing mixed conducting P-alumina-type com- 
pounds. 

Since the conduction path of p-alumina is 
composed of two layers of two-dimensional 
KagomC lattices and a two-dimensional tri- 
angular lattice in the middle, a new type of 
calculation of the percolation limit pc, in the 
form of phase transition for the percolation, 
(29, by means of the pair approximation of 
the CVM is presented in the Appendix. In 
the pair approximation, the existence of the 
middle layer is found to lower the percola- 
tion limit of the Kagome lattice, from l/3 to 
0.24. Such a large effect is somewhat sur- 
prising, and the calculation by a higher de- 
gree of approximation is being made to ex- 
amine the effect. 

Appendix 

Theory of Percolation Limit 

AI. Introduction 

This appendix presents details of how the 
percolation is calculated for two lattice 
structures. The first is the two-dimensional 
KagomC lattice and the second consists of 
two parallel KagomC planes connected by a 
middle layer of the triangular lattice shown 
in Fig. 1. The middle layer is drawn with 
black dots and the upper and lower Kagome 
lattices with open circles. 

The calculation uses the pair approxi- 
mation of the cluster variation method 
(CVM; 1). We use the basic principle of the 

percolation treatment proposed before (23), 
and it is summarized in Section A2. After 
the brief discussion of the Kagome lattice in 
Section A3, we present the three-layer case 
in detail in Section A4. 

A2. Percolation Treated as a 
Phase Transition 

In a system of N lattice points, we distrib- 
ute pN particles, leaving (1 - P)N points 
vacant. When two particles are on nearest- 
neighboring lattice points, we define that 
they are connected and are in a connected 
cluster. In the equilibrium state, when p is 
small, all connected clusters are of finite 
sizes. When p exceeds a critical value pc, 
there can be an infinitely extended cluster 
and we call the state percolating. This model 
is called the “site” percolation problem, in 
contrast to the “bond” problem in which 
open and blocked nearest-neighbor bonds 
are distributed over the lattice (24). 

We assign a sign, + or - , to each parti- 
cle, with the condition that all particles in a 
connected cluster have the same size. Then 
a particle pair has a form ( + + ) or ( - - ), 
but not (+ -). If the sign of a cluster is 
assigned randomly, then, 

(i) in the nonpercolating state, each + 
cluster of a certain size can have a matching 
cluster, in a system of infinitely large N and 

(ii) in the percolating state, we can prove 
(23) that there can be only one infinitely 
extended cluster, which takes either a + or 
- . Since there is no matching cluster to an 
infinitely extended cluster, the total number 
of + particles and that of - particles be- 
come unequal. This is equivalent to the mag- 
netized state in the Ising model ferromag- 
netism. 
Based on the properties (i) and (ii), we can 
formulate the percolation properties in anal- 
ogy with the second-order phase transition 
in the Ising model ferromagnetism. The non- 
percolating state corresponds to the disor- 
dered paramagnetic state, while the state of 
the critical density pc corresponds to the 
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density at which the long range order van- 
ishes or to the ferromagnetic Curie point 
(23). 

We can take into account the case in 
which particles are interacting, as was done 
in Ref. (23) but, in the present work, we 
assume no such interactions among par- 
ticles. 

A3. Kagome’ Lattice Percolation 

We treat the Kagome lattice percolation 
using the pair approximation of the CVM. 

A lattice point is either empty or occupied 
by a + or a - particle. The probabilities of 
the three are written as xi with i = 0, 1, or 
2, respectively. The configuration of a pair 
of nearest neighbor points is one of (i, I] 
with the condition that (1, 2) and (2, 1) are 
excluded. The probability of (i, j) is written 
as yij. 

If the number of triangles in the Kagome 
lattice is written as 2M, then the number 
of lattice points is 3M and the number of 
nearest-neighbor pairs is 6M. The coordina- 
tion number is 20 = 4. The entropy expres- 
sion is written in the pair approximation of 
the CVM as 

s 

- 2c*&$ + 1 9 (1) 
i, i 1 

where xFj indicates the sum over i and j 
except (1, 2) and (2, l), and L(x) is defined 
as 

L(x) =xlnx - x. 69 

When the particles are not interacting, the 
particle distribution is homogeneous with 
the probability p at every point. The parti- 
cle-particle pair probability is p*. 

In the percolating state in which the densi- 
ties of + and - particles are different, x1 
and x2 are different. We introduce the long- 
range order variable 5, as 

25, =x, - x2. (34 

Similarly for a particle pair we define 

262 = Yll - Y22- (3b) 

Using these long-range orders, the x and y 
variables are written as 

Xi = up - (-1)‘41 

yii = ip2 - (-l)i[2 (i = 1 or2) (4) 

Yoi = id1 - PI - (- r)i(SI - 52). 

The pc point can be determined by the 
vanishing of the Hessian determinant. The 
latter is obtained by the second derivatives 
of the entropy with respect to the two long- 
range variables, 5, and t2. Algebraic trans- 
formations lead to 

PC = f, (W 

which is the w = 2 case of the general ex- 
pression of the pair approximation (21, 23): 

A4. Percolation in the 
Three-Layer Structure 

The three layer structure is illustrated in 
Fig. 1. The middle layer points, marked 
black, connect triangles in the two Kagome 
layers. 

As the occupation variables we use xi’s 
and yij’s, for the two Kagome planes as de- 
fined in Section A3. The occupation vari- 
ables for the middle layer are written as q. 
The definition of i = 0, 1, and 2 is the same 
as i for xi’s in Section A3. For the bond 
connecting a Kagomt layer point and the 
middle layer point, we write the occupation 
probability as zti, where the first subscript is 
for the Kagome layer and the second one is 
for the middle layer point. As was done in 
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Section A3, (i, j) = (1, 2) and (2, 1) are point as M. This M has the same meaning 
excluded. as M in Section A2. The total number of 

Corresponding to Eqs. (3a) and (3b), we points on the two Kagome layers is 6M and 
introduce two more long-range order vari- the total number of nearest-neighbor pairs 
ables 5, and & by in the two Kagome layers is 12M. The num- 

ber of pairs connecting the two Kagome 
2& = v, - v2, layer points and the middle layer points is 

2554 = 211 - 222. (6) 6M* 
Making use of these numbers, the entropy 

The relations in Eq. (4) hold unchanged expression of the pair approximation can be 
for xi’s and yij’s for the Kagome planes. The written using, for example, Barker’s proce- 
vi and zij variables are written as linear com- dure (24) as 
binations of LJ~, &, and t4 as 

I- 2 2 

vi = ;ap - (-l)‘& 

1 zii=,op2-(-l)& i= lor2 
- 12~*L(uij) -6cL(z,) + 11 

i, j i, .i 

L 

Z,i = kap(l - /I) - (- 

(7) In order to understand the relation between 

>‘(51 - 44) this entropy and S,, in (1) for the Kagome 
lattice case, we may rewrite Eq. (8) as 

In writing these variables we have intro- 
duced a parameter LY to indicate the ratio of + 5 C L(Vi) - 6 2 L(Zo) + 5 3 (9) 
particles allowed to come on a middle layer i i. j I 

point and those on the Kagome layer point. in which the first term is for the two Kagome 
When (Y = 0, no particles are allowed to layers as defined in Eq. (1) and the last 
come to the middle layer point, while (Y = kM [ ] terms are the additional contribution 
1 corresponds to the case where the occupa- due to the 6M bonds connecting the two 
tion probability is the same on every point Kagome layers to the middle layer. 
in the system. The Hessian determinant to determine pc 

We write the number of the middle layer is written as 

4 4 1 4 1 --_-- - - 
Xl YOl ZIO YOI 0 ZOl 
4 4 2 - ---- 

YOl YOl Yll 0 0 

5 1 1 --- - 
0 0 674 ZOl ZOI 

1 1 1 1 1 - - -----_ 
ZlO 0 ZOI 201 210 Zll 

= 0, (10) 
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FIG. 2. Dependence of the percolation threshold pc 
on ct. 

where the elements are written at the non- 
percolating state. In evaluating this determi- 
nant for pC, we use the expressions in Eqs. 
(4) and (7) keeping & = 0 (i = 1,2,3, and 4). 
After an extensive algebraic transformation 
we can reduce Eq. (10) to an amazingly sim- 
ple equation: 

1 - 3p, - 20ap; = 0. (11) 

(I) We can first check that when cy = 0, 
namely when the middle layer is insulating, 
the pc value reduces to the Kagome layer 
value l/3 of Eq. (5). 

(II) When the middle layer points behave 
in the same way as the Kagome lattice point, 
(Y = 1, Eq. (11) gives the value 

p,(a = 1) = 0.24055. (12) 

(III) The behavior of pc as a! changes from 
0 to 1 can be obtained by solving Eq. (11) as 
shown in Fig. 2. 

(IV) The change of pc from l/3 for the 
Kagome lattice ((I! = 0) to 0.24 for the three- 
layer structure ((I! = 1) is rather large. We 
want to understand why and in general how 
the middle layer points contribute to the for- 
mation of an extended cluster structure. For 
this purpose, we calculate the ratios of the 

. . . 
IO I 0’ I I I I I I I I I 

0 0 0.2 0.2 0.4 0.4 06 06 0.8 0.8 1.0 1.0 
a a 

FIG. 3. Dependence of the ratios of the long range FIG. 3. Dependence of the ratios of the long range 
order variables, &/(oL&), .$/((Y&), and 5;/& given in Eq. order variables, &/(oL&), .$/((Y&), and 5;/& given in Eq. 
(13), on LY. (13), on LY. 

long-range order variables, &I,$,, &,I&, and 
&/[,, at pc. These ratios are solved from 
the three equations containing the Hessian 
coefficients: 

1 63 --- 

201 51 

At pc, the ratios are solved as 

h- 24~2 -- 
6 1fP 

54 = 2p(l + 5p) 
42 

s,- 2P -- 
51 1 +p’ 

(13) 

(144 

(14c) 

The values of these ratios at (Y = 0 are 2, 
16/9, and l/2, respectively. Figure 3 shows 
how these values vary with cr. 
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We can interpret &/(a[,) and &/(a&) as 
the measures of how strongly a middle layer 
point contributes to the percolation in com- 
parison to a KagomC layer point. The results 
that the values of these quantities are close 
to 2 near (Y = 0 mean that the middle layer 
points contribute to percolation twice as 
strongly as KagomC lattice points. This is 
the reason why the pC decreases rather 
steeply at Q! = 0 as (Y increases (dp,ldcr = 
0.247), and also why pC decreases 28% as the 
middle layer participates in the percolation. 
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