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The Landau theory of symmetry and phase transitions is applied to the CsCl-type structure to determine 
the symmetry-allowed second-order phase transitions at the i = 0 and i = (a* + 6*)/2 special points. 
Two distortions of CsCl-type that have been found experimentally, to the rhombohedral LiPb structure 
and to the orthorhombic AuCd-type structure, were found to meet the conditions of the theory. The 
AuCd-type was found to allow a further continuous distortion to the monoclinic NiTi structure that 
plays an important role in the shape memory of this material. 0 1990 Academic PWS, 1~. 

Introduction 

A common feature of binary compounds 
of transition metals with high essential sym- 
metries is the occurrence of symmetry 
breaking transitions with decreasing tem- 
perature. Numerous examples of this phe- 
nomenon have been reported for the NiAs- 
type structure (Z-3), for the NaCl-type 
structure (4-7) and for the CsCl-type struc- 
ture (7-11). In many of these cases the dis- 
tortion corresponds to a single irreducible 
representation of the space group of the 
high-symmetry structure (12,13). The inter- 
est in phase transitions of this general type 
has been greatly stimulated in recent years 
by the availability of a variety of techniques 
for band theoretical calculation of the ener- 
getic consequences of band splitting that re- 
sults from the breaking of symmetry (14, 
15). 
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Although the symmetry aspects of phase 
transitions in CsCl-type solids were investi- 
gated in some of the papers cited above, a 

complete treatment of the symmetry-break- 
ing transitions possible for this structure 
type is not currently available. There are 
two known structures, LiPb and AuCd, 
which arise from apparently second-order 
phase transitions from the CsCl-type for 
which a symmetry analysis has not been 
reported. The purpose of this paper is to 
present a complete Landau theory analysis 
of the symmetry aspects of the phase transi- 
tions from CsCl-type to AuCd-type and to 
LiPb. 

Application of Landau Theory 

1. The LiPb Structure 

The transition from CsCl-type to the 
rhombohedral LiPb structure was reported 
(26) to occur continuously. If the transition 
is second-order, as the observations sug- 
gest, then it must, by the Landau theory, 
correspond to a single irreducible represen- 
tation. Because no superstructure fesults 
from the distortion the appropriate k point 
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for the transition is & = 0. At ?z = 0 the small existence of a third-order invariant as dis- 
representations are isomorphous with the cussed above (T,,) . The T,,-related irreduc- 
irreducible representations of the point ible representation meets the fourth crite- 
group Oh. The one-dimensional irreducible rion of Landau theory, namely the 
representations all lead to cubic symmet- antisymmetric square representation is or- 
ries, and the two-dimensional irreducible thogonal to the vector representation. 
representations lead to tetragonal or ortho- 
rhombic symmetries. The two three-dimen- 2. The Distortion to A&d-Type 
sional irreducible representations which are 
symmetric with respect to inversion (T,, and The transition from CsCl-type to AuCd- 

TZg) yield third-order invariant combina- type (Pmma symmetry, a z c = ~acubic, b 

tions of basis functions, i.e., third-order 
=:a cubic) has been observed in AuCd, AuTi, 

terms in the Landau expansion for G, and PdTi, and PtTi and apparently occurs as a 

thus cannot be active in a second-order tran- second-order phase transition in these cases 

sition. The remaining irreducible represen- (17). The appropriate special po$t in this 

tations are those related to T,, and T2,,. case is the M point (k = (i;* + b*)/2), and 

The functions 4, = sin 27rx, +Q = sin 27ry, there are three wave vectors in the star. 

r& = sin 27r.7, transform as the Tzu related The small representations at this 1 point are 

irreducible representations. No third-order isomorphous with the point group D,. The 

invariant combinations of these functions one-dimensional representations lead to 

can be constructed, and the general fourth- space group symmetries in the D4h crystal 

order invariant is class, and thus these representations cannot 
be involved in the transition to AuCd-type. 
There are 2 two-dimensional irreducible 
representations of D4h, and corresponding 

where X is arbitrary. It follows that AG for sets of basis functions in Pm3m are given by 
the transition is, to fourth order, of the form C#Q~ = sin TX cos rry 

AG = 4’ + ri” + G 2 Y?$ 1 q4, 42u = sin my cos TX 
i#j 

which yields the thermodynamically stable 
for the E, case, and by 

solution when minimized subject to the re- cf~,~ = Cplu sin 2rz(cos 2rx - cos 27ry) 
straint xyf = 1. Two possible symmetries (cos 2?Ty - cos 2?Tz)(cos 27rz - cos 27rx) 
result, one has the symmetry of 4, (or $2 or 
&), namely Pkrzm with a = c = acubic, and 

& = (bzu sin 29rz(cos 2mx - cos 2ny) 

the other has the symmetry of 4, + $2 + 
(cos 27ry - cos 27rz)(cos 2TZ - cos 2%x) 

&, namely R3m with a = acubic and cy G 90”. for the E, case. For both E, and E, cases 
The latter is consistent with the reported there are not third-order invariants and the 
lattice fof: LiPb (I6), but not with the sug- minimization of G yields stable solutions for 
gested R3m symmetry. The T,, case does the particle density function, p = p” + #J,? 
not lead to an allowed distortion because and p = p” + (4, + 42)7)/fi, where +i and 
the space group that corresponds to the 4, 42 are particle density functions with the 
+ 4~~ + $Q solution, R32, would fix the posi- appropriate symmetry. Examination of the 
tions of the atoms at O,O,O and l/2,1/2,1/2, functions yields the space group symmetries 
i.e., at the positions consistent with the R3m CmmU (U s b E 2Ucubicr c s acubic) and Pmna 
symmetry, which cannot result from a sec- (b = 
ond-order chase transition because of the 

acubic, bs C s fiacubic) for Eg, and 
L Cmmm (U z b z 2Ucubic, c = acubic) and 
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Pmma (a z c s Vhcubic and b E acubic) for 
E,,. The symmetry and cell of the 4, + & 
solution in the E, case are those appropriate 
to the AuCd-type distortion of CsCl-type. 
A check of the fourth condition, as above, 
showed that this transition obeys this con- 
dition. 

3. Distortion to P2,lm in AuCd-Type, the 
NiTi Structure 

The structure of NiTi has been reported 
to have P2J/m space group symmetry with 
a = 2.885 A, b = 4.622 A, c = 4.120 A, and 
p = 96.8“ (18). This structure sugge_sts a 
distortion from the AuCd-type at the k = 0 
point. The corresponding small representa- 
tions are isomorphous with the 8 one-dimen- 
sional representations of the D,, point 
group, and each of these (except the totally 
symmetric) corresponds to halving the num- 
ber of symmetry elements of Pmma and thus 
to an allowed second-order transition (19). 
Thus, three monoclinic distortions could re- 
sult, P2,lm with the orthorhombic a axis 
becoming the unique axis, P2lm with the 
orthorhombic b axis becoming the unique 
axis, and P2,/c with the orthorhombic c axis 
becoming the unique axis. The P2,lm alter- 
native is consistent with the structure re- 
ported for NiTi. 

Conclusions 

The structures LiPb and AuCd-type are 
consistent with second-order formation 
from CsCl-type according to Landau’s the- 
ory of symmetry and phase transitions (19). 

The NiTi structure is consistent with sec- 
ond-order formation from the AuCd-type. 
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