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Repulsive energies resulting from overlap of W6’- W6’, W6+-02- , and 02--02- pairs were calculated 
within the framework of the free ion mode1 constructed by Wedepohl. Polarizabilities of ions in the 
monoclinic structure of WO, were obtained following the theoretical treatments of Parker. Using these 
values, the lattice energy (cohesive energy) of the monoclinic structure of W09, consisting of the long 
range coulombic interaction energy, the repulsive energy, van der Waals interaction energy, and the 
zero point energy, was evaluated to be -235.53 eV per WOJ formula unit and compared with the 
experimental value determined by the Born-Haber cycle analysis, -(239.23 - 243.44) eV per WOX 
formula unit, with a discrepancy of 3%. In comparison with other oxides, van der Waals interactions 
are found to contribute remarkably to the lattice energy in WOj. The lattice energy in the a-phase at 
low temperatures was also calculated, using the same parameters employed in the calculation of the 
lattice energy in the monoclinic structure. The lattice energy in the e-phase is - 235.60 eV per W03 
formula unit which is found to be in good agreement with the experimental value. In the a-phase, the 
contribution of van der Waals interactions plays also an important role in the lattice energy as well as 
the monoclinic StrWtUI’e. 0 1991 Academic Press. Inc. 

1. Introduction 

Not only the structures of W03 correlated 
with phase transitions and formation of 
crystallographic shear (CS) planes (I -3) 
but also the physical properties associated 
with polarons formed in WO, are of great 
interest (4-6). Experimental results on 
these investigations are now available in de- 
tail, but these experiments require rigorous 
interpretations based upon reliable theoreti- 
cal criteria. In fact, the dynamic properties 
of CS planes formed in WO, and their micro- 
structures, observed in electron micro- 
scopic and X-ray measurements, are ana- 
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lyzed quantitatively, using strain energy 
calculations (1-3, 7-20). There are good 
correlations between the theoretical predic- 
tions made by strain energy calculations and 
the experimental results. Sometimes, how- 
ever, these calculations are too simple to 
account for more essential problems with 
C’S planes and also with electronic behav- 
iors of a polaron associated with a local lat- 
tice distortion. They require more sophisti- 
cated theoretical treatments (22, 22). The 
shell model which we have employed fre- 
quently (21-13) is surely one of the candi- 
dates for such treatments. In fact, the shell 
model reveals that the lattice relaxation due 
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to the electronic polarizability of oxygen 
ions plays a very significant role in the for- 
mation of CS planes (23). Furthermore, the 
combination of the shell model and Ander- 
son’s attractive potential (24) enables us to 
describe the polaron behaviors theoretically 
in the Ti-0 binary system (15). One should 
remember, here, that the shell model starts, 
first, with the calculation of the lattice en- 
ergy (i.e., cohesive energy) of a perfect crys- 
tal, consisting of the long range coulombic 
interaction energies, the short range over- 
lapping repulsive energies, and the van der 
Waals interaction energies. In spite of a 
rather simple treatment in evaluating the 
coulombic interaction energies (Madelung 
energies) (16,17), the overlapping repulsive 
energies between ions are determined em- 
pirically (II, 12, Z8), in general using the 
experimental values for compressibility, 
bulk modulus, elastic constants, force con- 
stants, and lattice energy which are not yet 
available in W03 because of the apparent 
difficulties in growing single crystals large 
enough for measuring these properties. In 
addition, the expression for van der Waals 
energies contains electronic polarizabilities 
and approximate average excitation energ- 
ies of ions (19), which have not been yet 
obtained experimentally. Thus, theoretical 
estimation of the lattice energy in WO, looks 
difficult and, consequently, quantitative in- 
terpretations of the behaviors of CS planes 
and polarons in this material are postponed, 
unfortunately, in comparison with the Ti-0 
binary system. However, the development 
of the theoretical treatments now enables us 
to calculate the repulsive and van der Waals 
energies in WO, without experimental data. 
In this report, we calculate overlapping re- 
pulsive energies, polarizabilities of ions, van 
der Waals energies in the monoclinic struc- 
ture of WO, at the room temperature, and, 
finally, the lattice energy in this structure. 
Although we previously calculated polariz- 
abilities for WO, (20), our calculations con- 
tained theoretical errors and wrong values 

TABLE I 

ION POSITIONS IN THE MONOCLINIC STRUCTURE 
OF woj 

Ions x Y 2 

W6'(1) 0.2465 0.0269 0.2859 
W6'(2) 0.2538 0.0353 0.7807 
0*-x1 0.0025 0.0350 0.2106 
02-x2 0.9974 0.4636 0.2161 
02-yl 0.2840 0.2605 0.2848 
02-y2 0.2099 0.2568 0.7318 
o"-zl 0.2827 0.0383 0.0046 
02-22 0.2856 0.4840 0.9944 

were presented. Therefore, we have carried 
out the recalculation on polarizabilities in 
this report. 

Once the physical parameters relevant to 
repulsive interactions between ions and po- 
larizabilities are available, they would be 
very helpful in understanding the essential 
behaviors of CS planes and polarons which 
the strain energy calculations cannot ex- 
plain. 

2. Theoretical Treatment and Results 

2. 1. Crystal Structures 
WO, has several structures correlated 

with phase transitions (I). Though there are 
several reports on the monoclinic structure 
at room temperature (2I-23), we have re- 
ferred to the results obtained by Loopstra 
et al. (24), using the neutron diffraction 
method, with the lattice parameters, a - 
0.7306 nm b - 0.7540 nm c - 0.70692 - - 

nm, and j3 ‘= bO.88”. All ions ‘are0 in general 
positions as presented in Table I. 

2. 2. Overlapping Repulsive Energies 
between Ions 

Repulsive interactions between ions are 
generally approximated by some variation 
of the Born-Mayer potential, Aexp(-Br), 
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FIG. 1. The repulsive energy (eV) of each ion pair in 
W03 as a function of the interionic spacing (nm). 

the parameters of which, A and B, are deter- 
mined from perfect crystal properties. As 
described in the introduction, however, 
these properties are not yet available for 
WO,. Alternatively, we calculated the re- 
pulsive energies within the framework of 
the free ion model constructed by Wedepohl 
(25-27) as we did in our previous reports 
(28, 29). Each ion is assumed to consist of 
a spherical negative charge distribution of 
electrons. To determine the charge distribu- 
tion, the Hartree-Fock wave functions ob- 
tained by Watson for 02- (30) and that of 
the W ion calculated using the short Her- 
mann-Skillman programs (31) were used. 
The charge distribution of every ion pair can 
be truncated without serious errors at the 
truncated radius of 02- ions, 0.344 nm, 
which was estimated by the procedure of 

TABLE II 

THE BORN-MAYER PARAMETERS DETERMINED 

FROM A SEGMENTED FIT TO THE REPULSIVE ENERGIES 
OF THE ION PAIRS 

Ion pair 

wG+-w6+ 

W6f-(p 

Range of 
A(eV) B(nm-‘) separation (nm) 

1.008 x 105 61.22 r < 0.08 
6.480 x 104 55.70 r 2 0.08 
6.497 x IO3 37.00 r < 0.10 
4.934 x 10’ 34.25 0.10 5 r < 0.12 
4.239 x lo3 32.98 0.12 5 r < 0.14 
3.799 x 103 32.20 0.14 5 r < 0.16 
3.404 x 103 31.51 0.16 S r < 0.18 
3.020 x lo3 30.85 0.18 5 r < 0.20 
2.403 x lo3 29.71 0.20 s i- i 0.22 
2.633 x 10’ 30.09 0.22 c r 

Hartree-Hartree (32). In Fig. 1, are shown 
repulsive energies of ion pairs as a function 
of the interionic spacing. 

The Born-Mayer parameters, A and B, 
appropriate to the ion pairs, W6+-W6+ and 
W6+ -02-, and the designated range of sepa- 
ration were obtained by fitting the numerical 
results in Fig. 1 and are tabulated in Table II. 
As for the 02--02- pair, the Born-Mayer 
parameters are given in our previous report 
(29).’ 

2. 3. Polarizabilities 

Polarizabilities of ions in a crystal are re- 
quired in the calculations of lattice energies 
in a perfect crystal and a crystal containing 
imperfections such as lattice defects or po- 
larons. Parker proposed a theoretical 
method for estimating polarizabilities in a 
crystal (34). Taking Lorentz factors into ac- 
count, she constructed simultaneous nonlin- 
ear scalar equations of electric fields acting 
on lattice points which include unknowns 

’ Though it is described in Ref. [29] that the Born- 
Mayer constants of the 0*--O’- pair were determined 
with the wave function of Clementi and Roetti for O*- 
(33), the wave function calculated by Watson (30) was 
used actually. 



such as polarizabilities and ratios of internal TABLE III 

fields acting on lattices to the applied field. COMPONENTS OF THE LORENTZ FACTORS IN THE 
Then, we can estimate polarizabilities if the MONOCLINIC STRUCTURE OF W03 

number of unknowns is less than that of 
scalar equations. We have calculated the xx YY zz XY u YZ 

Lorentz factors in the monoclinic structure fil 4.530 4.136 3.901 0.0 - 0.058 0.0 

and found that the xy, yz, and Z,Y components 1;2 36.872 -12.082 -12.224 0.0 -0.006 0.0 
-10.512 

of the Lorentz factor at each lattice site are 
/I> 33.934 -10.856 0.0 -0.051 0.0 
/I4 -9.722 -9.930 32.218 0.0 -0.631 0.0 

not zero, although their values are very .Ji2 4.530 4.136 3.901 0.0 - 0.058 0.0 
8.091 9.295 

small compared with xx, yy, and zz compo- 
J:3 -4.820 0.0 -0.013 0.0 
Ji? 7.576 -4.521 9.511 0.0 0.374 0.0 

nents. In such a case, the number of the fi? 4.530 4.136 3.901 0.0 -0.058 0.0 
.A4 -4.111 7.979 8.699 0.0 -0.194 

unknowns exceeds that of equations, unfor- 
0.0 

Ji4 4.530 4.136 3.901 0.0 - 0.058 0.0 

tunately. In order to overcome this diffi- 
culty, we reconstructed an appropriately 
modified crystal structure as well as our pre- 
vious calculation (20) in which, however, the first unit cell with the volume V. In Table 
we found serious errors in the theoretical III, each component of FiJ evaluated using 
treatments and wrong values were pre- Eq. (3) is tabulated, where Fij = Fji. 
sented for polarizabilities. Then we recal- When the frequency of the driving field is 
culated approximate polarizabilities in the sufficiently high, only electronic polariza- 
unit cell with the lattice parameters, a = a,/ tion is effective (optical case). In addition 
2, b = b,/2, c = ~12, and p = 90.88”. Sites to Eq. (2), there is another useful relation 
1 at (O,O,O) are occupied by W6+ ions, while between the total polarization and the re- 
02- ions occupy sites 2 at (l/2,0,0), 3 at (O,l/ fractive indices, 
2,0), and 4 at (0,0,1/2). These sites in this 
unit cell are numbered for the usage only in 

(nfi + tzcj + ntk)E, = E, + 47rCjP,, (3) 

this section (2. 3). The local electric field, where nx, nY, and n, indicate x, y, and z 
Ei, acting on a particular site in the ith lattice components of the refractive index and i, j, 
is, and k are the unit vectors along the x, y, and 

Ei=Eo+ &F& 

z axes. Using the refractive indices obtained 

(1) by Salje (35), i.e., ~2 = 7.306, ns = 5.645, 
j=l and ni = 5.212, Eqs. (1) and (3) enable us to 

where E, and Pj denote the applied field and 
evaluate the electronic polarizability of the 

the polarization of an ion in thejth lattice. Fv 
02- ion in WO,. The electronic polarizabil- 

is the Lorentz factor for the dipole-dipole 
ity of ions in thejth lattice (a;) is defined by 

interaction between the lattices, i and j, 
Pi = (c$‘)EjIV. Making use of the ratios Xjk 

which has the form of the second-rank ten- 
= EjklEDk, the following scalar equations 

sor as follows, 
along the kth direction (k = x, y, or z) can 
be obtained from Eqs. (1) and (3). 

Fu = 4nZ/3 + VX>(3rinrin - rin’Z)/rin5, (2) 

where Z is the 3 x 3 unit matrix, rin is the 
Xi, = 1 + 2 (+FijXjklV i = l-4 (4) 

j=l 

vector from thejth lattice in the nth unit cell 
to the ith lattice in the first unit cell, ri,,rin n: = 1 + 4~ ~ (~~)kxj~lV. (5) 
represents the dyadic product of ri,, , ~‘j sig- j=l 

nifies the summation of the contributions of Here we have assumed that the 02- ions at 
thejth lattice in each cell to the ith lattice in every site have the same value of electronic 
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polarizability, i.e., (c$) = (c+-)~ (i = 2-4), 
as in Parker’s treatment and our previous 
calculation (20). For the electronic polariz- 
ability of the W6’ ion, we employed the 
value calculated previously, using Ruffa’s 
argument for electronic polarizabilities of 
cations in crystals (36,37), i.e., c&+ = 1 .O9l 
x 10e3 nm3, under the assumption that the 
electronic polarizability of the W6+ ion is 
isotropic in W03. Then, we can evaluate the 
electronic polarizabilities of the 02- ions in 
each direction. The results calculated by the 
Brent method are listed in Table IV. 

When the driving frequency is low (static 
case), there are additional ionic polarization 
terms in the local fields. Instead of Eqs. (4) 
and (5), the following equations apply to the 
static case in the applied field. 

i= 1-4 (6) 

+ [(O$-)k + tab2-)kl $ xjk 

( )I 9 t7) 
j=2 

where ((Y$ represents the ionic polarizabil- 
ity of the ion in the ith lattice. Even if the 
ionic polarizabilities of ions are assumed to 
be isotropic and we convert the numerical 
values for the electronic polarizabilities ob- 
tained above, the number of unknowns in- 
volved in Eqs. (6) and (7) in each direction 
is larger than the number of equations. In 
our previous work (20), we used the same 
assumption as that employed by Parker 
(34), that is, the ionic polarization is as- 
sumed either to be a displacement of the 
tungsten lattices with respect to the oxygen 

TABLE IV 

POLARIZABILITIES OF IONS ANDVAN DERWAALS 
CONSTANTS OF THE ION PAIRS IN W03 

Free ion polarizabilities (X 10m3 nm3) 

a$+ = 0.355,4- = 3.880 

Electronic polarizabilities (X IO-’ nm3) 

a$+ = 1.091 
+(a) = 6.012, @j-(b) = 5.975, 
4-(c) = 6.193, (&,-Jv = 6.060 

Ionic polarizabilities (X 10m3 nm3) 

a++(a) = 2.695, a$+(b) = 1.507, 
a$+(~) = 1.276, (c&+.+)~~ = 1.826 
a&- = 0.378 

Van der Waals constants (X 10e6 eV nm6) 

C@f-\\P+ = 104.39 
Cti+& = 74.24 
Cg-42- = 220.33 

lattices, with the oxygen lattices held fixed, 
or to be a displacement of the oxygen ions 
with respect to the fixed tungsten lattices. 
Using this assumption, it looks possible to 
evaluate the values for the ionic polarizabili- 
ties of the W6’ and O*- ions, respectively, 
because the number of unknowns reduces 
to that of the equations. However, we will 
find that Eqs. (6) and (7) never hold if the 
numerical values calculated in this way are 
substituted simultaneously for the ionic po- 
larizabilities of 02- and W6’ in these equa- 
tions because they were estimated indepen- 
dently. Therefore, our previous treatment 
was wrong. Alternatively, for the ionic po- 
larizability of the O*- ion in WO,, we em- 
ployed the value of that in BaTiO,, i.e., 
CY~Z-~ = 0.378 x 10m3 nm3 (38). Then, the 
number of unknowns reduces to that of the 
equations. In such a calculation, the static 
dielectric constant a0 determined experi- 
mentally is required. Unfortunately, there 
are no experimental results which are reli- 
able. W03 crystals as prepared are generally 
deficient in oxygen and they contain elec- 
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tronic charge carriers which result in high 
values of the static dielectric constant be- 
cause of their polaronic effects. In the pres- 
ent calculation, therefore, we employed the 
static dielectric constant of doped crystal of 
WO, in which the carriers are trapped, i.e., 
E,, = 12 (3.5). The ionic polarizabilities ob- 
tained are listed in Table IV. 

2. 4. van der Waals Constants 

The van der Waals constant between ions 
i and j, C,, has the form, 

C, = (3/2>(CrT)(oii’>EiEj/(E; + Ej), (9 

where CY~ and Ei represent the electronic po- 
larizability and some approximate average 
excitation energy of the ion i, respectively. 
Though there are several treatments for esti- 
mating values of E (39-41), we have em- 
ployed the method proposed by Cantor (41). 
Van der Waals constants were evaluated by 
equating E for W6+ with the 7th ionization 
potential of the parent W atom, 1,) assigning 
the value of 8 eV as the ionization potential 
of the 0 ion as did Cantor (41), and using 
the electronic polarizabilities of W6+ and the 
average value for the electronic polarizabili- 
ties of 0 ions along the a, b, and c axes 
which are tabulated in Table IV. Though 
there are no experimental results on the se- 
ries of the ionization potentials of the W 
atom, Rychkov calculated these potential 
energies theoretically (42). We have quoted 
his results, i.e., 1, = 117 eV. The calculated 
values for van der Waals constants are tabu- 
lated in Table IV. 

2. 5. Lattice Energies 

Based upon an ionic model, the lattice 
energy (cohesive energy) per WO, formula 
unit, E,, has the form, 

EL = (1/2N~)Xfi{q~4i(0) 
+ Xjjzi[Aijexp( - B,r,) (9) 
+ C,lr$} 
+ 9nk&,/8 

The first term in the right hand side repre- 
sents the long range coulombic interaction 
energy (Madelung energy) that is obtained 
by using the self potential r+(O) of each ion 
which is developed from Ewald’s method 
(16) by van Go01 and Piken (17), where 
q&(O) indicates the Madelung energy of the 
ith ion with charge qi. The second term, 
Xj+Aijexp( -Q-,J, is the overlapping repul- 
sive energy of the ith ion, which interacts 
with other ions in the crystal, where Cj,i 
denotes the summation of interactions of the 
ith ion with other ions in the crystal and rij 
is the interionic spacing between ions, i and 
j. The Born-Mayer parameters A and B for 
each particular ion pair are summarized in 
Table II. The third term is the van der Waals 
energy including the van der Waals constant 
C (see Table IV). The last term abbreviates 
the zero point energy which is calculated as 
in Wackman et al. (43), where n is the num- 
ber of ions per formula unit, k, and 8u repre- 
sent Boltzmann’s constant and Debye tem- 
perature, respectively. Belovo et al. (44) 
reported a value of (380 ? 15) K for the 
Debye temperature in WO,. Their result 
yields a magnitude of 0.147 eV for the zero 
point energy. In Eq. (9), the numerical fac- 
tor (l/2) comes in because all pairwise inter- 
actions are counted twice and Zfi represents 
the summation of interactions of all ions in 
the unit cell containing No “molecules” of 
W03. Table V summarizes the Madelung 
energy, the repulsive energy, the van der 
Waals energy, and the potential energy of 
each ion in the monoclinic structure. The 
total of these contributions yields a calcu- 
lated lattice energy of -235.53 eV per for- 
mula unit. 

3. Discussion 

As shown in Table V, all W6+ ions have 
nearly the same potential energy, the differ- 
ence being only 0.5 eV, while those of 02- 
ions lie in a rather wide range of -47.970 
eV to - 45.224 eV. The most unstable one 



292 IGUCHI ET AL. 

TABLE V 

MADELUNG ENERCV (EM), REPULSIVE ENERGY 
(E,J, VANDERWAALSENERGY (E,), ANDPOTENTIAL 
ENERGY OF EACH ION IN THE MONOCLINIC 
STRUCTUREOF WOx 

Ions 

Potential 
energy 

EM @VI ER (ev) E, @VI @VI 

w6+(1) 
w6+ (2) 
02-x1 
02-x2 
02-yl 
02-y2 
02-21 
02-z2 

- 372.56 52.59 
- 374.66 54.50 

- 55.36 17.75 
- 57.00 18.49 
-55.19 17.96 
- 56.24 19.35 
- 54.70 18.91 
-56.12 18.78 

- 10.54 -330.51 
- 10.94 -331.10 

- 9.42 - 47.03 
-9.46 - 47.97 
- 9.27 -46.50 
-9.62 -46.51 
-9.44 -45.23 
-9.33 - 46.67 

is O,, at (0.2827, 0.0383, 0.0046). Conse- 
quently, this oxygen ion is likely to be elimi- 
nated preferentially if an oxygen vacancy is 
formed. Table V shows a remarkable contri- 
bution of the van der Waals interactions 
which is found to be very large if compared 
with other oxides (II, 12,45). This is mainly 
due to a high ionization potential associated 
with the large valence of cations and also 
due to large electronic polarizabilities of 
O*- ions. These values are relatively larger 
in W03 than other oxides. 

The lattice energy calculated in this way 
is compared with the experimental value de- 
termined by Born-Haber cycle analysis 
(43, 46). In this cycle, we have to consider 
all the steps involved in transforming for a 
tungsten metal atom and oxygen gas atoms 
to one WO, “molecule,” that is, 

EL = AH, - L - (3/2)0, + 3A - I, (10) 

where AH, is the heat of the formation of 
WO, per molecule, -8.72 eV (47), L is the 
heat of vaporization of the W atom, 8.914 
eV (48), D, is the dissociation energy of the 
0, gas, 5.12 eV (49) or 5.09 eV (50), A is the 
affinity of the oxygen atom for two electrons 

-(6.38-7.77) eV (51-53) and I is the sum 
of the first six ionization potentials of the W 
atom, 194.82 eV (42). Then we have the 
experimental value of - (239.23-243.44) eV 
for the lattice energy per W03 formula unit 
compared with the theoretical one, a dis- 
crepancy of 3%. 

According to Shannon and Prewitt (54), 
the ionic radius of the W6+ ion with the 
configuration number of 6 is 0.060 nm. Such 
a W6+ corresponds to the one at the center 
of an 02- octahedron. When the configura- 
tion number is 4, the ionic radius of W6+ is 
0.042 nm. O*- ions have a value of 0.140 nm 
for the ionic radius. In an ionic crystal, it is 
well known that the interionic spacing in 
a cation-anion pair is nearly equal to the 
summation of ionic radii of these ions. If 
WO, crystals contain a rather strong ionic 
bonding, the interionic distance between 
W6+ and O*- is expected to be about 0.2 nm. 
In Table VI we have tabulated interionic 
spacings obtained experimentally (24) and 
found a remarkably wide range of interionic 
distances between W6+ and 02-, 
0.1732-0.2116 nm, with an average value of 
0.1930 nm, somewhat smaller than the value 
extrapolated from the ionic radii. It is very 
interesting that the W6+ ion is displaced 
from the midpoint to one oxygen site in each 
O-W-O unit, except OX,-W(l)-O,, and 

TABLE VI 

INTERIONIC DISTANCES OF W6+-02- IN 
THE &-PHASE OF Wo3 

W6’(1) we+ (2) 

0*-x1 0.1867 0.1948 
02-x2 0.1931 0.1855 
02-yl 0.1783 
02-yl 0.2092 
02-y2 0.1741 
02-y2 0.2119 
02-zl 0.2186 0.1732 
02-22 0.1740 0.2166 
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O,,-W(2)-O,,. This fact suggests a rather 
complicated bonding nature between W6+ 
and 02- and the asymmetry of tungsten po- 
sitions could be one of the dominant reasons 
responsible for the considerably larger con- 
tribution of van der Waals interactions to the 
bonding in WO,. Since interionic spacings in 
the W6+-02- bonds are smaller than the 
value estimated from ionic radii, larger re- 
pulsive energies are produced, but, as seen 
in Table V, the van der Waals contribution 
cancels out this effect. The balance of these 
contributions results in a good agreement 
between the theoretical lattice energy and 
the experimental one. 

Difficulties in determining physical pa- 
rameters required in the energy calculations 
on WO, have been delaying the progress of 
these calculations. Despite this, Cormack et 
al. (55) and Newtone-Howes et al. (56) tried 
the energy calculations of stabilities of 
WO,-related structures. Their calculations 
are, therefore, worth considering. How- 
ever, the pair potentials employed in their 
calculations are quite different from ours. 
As for the potential between W6+ and 02-, 
which is the most important one, the repul- 
sive energy evaluated by substituting the 
average distance between these ions, 0.1930 
nm, for the interionic spacing in their repul- 
sive potential is nearly equal to ours, in spite 
of remarkable differences in Born-Mayer 
parameters. The most serious difference in 
this potential is that they omitted the van 
der Waals contribution, which plays an im- 
portant role in the lattice energy of this crys- 
tal. Unfortunately, Cormack et al. (55) did 
not obtain the lattice energy of WO, using 
their own potentials. 

As described several times, theoretical in- 
terpretations on the conduction due to a 
hopping process of polarons, using shell 
models, are required in order to understand 
the essential behaviors of polarons formed 
in WO, and the physical parameters ob- 
tained here are necessary in shell model cal- 
culations. Since the dynamic motions of po- 

larons appear directly in dielectric 
behaviors and dc resistivities temperatures 
below about 200 K, we have to treat the 
energitics of the E-phase. However, there is 
no literature on the crystal structure of the 
E-phase, except one report by Salje (57). 
Even this report cannot provide the detailed 
ion positions without an assumption, al- 
though the lattice parameters are deter- 
mined precisely. The E-phase determined by 
Salje (57) has the monoclinic space group 
PC with the lattice parameters, a, = 0.5275 
nm, 6, = 0.5155 nm, c0 = 0.7672 nm, andp = 
91.7”. The W positions which Salje presents 
are 

W(1) (0.00, - 0.03,0.69) 
W(2) (0.00,0.03,0.19) 
W(3) (0.50,0.47,0.75) 
W(4) (0.50,0.53,0.25) 

The 0 positions which we have estimated 
from his experimental results on the W-O 
distances and the angle between W-O 
bondings, under the assumption that the zig- 
zag chain of W(l)-O-W(2) is on (100) and 
that of W(3)-O-W(4) on the (200) plane, 
are 

O(1) (l/2, l/2 - 6, l/2 + /.L) 
O(2) (l/2, l/2 + 6, /L) 
0(3-6) (k l/4,0.53 + l/4,0.22) 
0(7- 10) (” l/4,0.47 t l/4,0.72) 
O(ll> (0.00, 0.00 - 6, -0.06 - /.L) 
O(W (0.00,0.00 + qo.44 - p) 

where 6 = -0.1477 and p = 0.0405. 
Using the same values for the physical 

parameters employed in the calculation of 
the lattice energy in the monoclinic struc- 
ture, we have evaluated the Madelung, re- 
pulsive, van der Waals, and potential energ- 
ies of each ion in the s-phase and tabulated 
them in Table VII. The sum of the potential 
energies of ions in a unit cell and the zero 
point energy yields a value of -235.60 eV 
for the lattice energy of the E-phase per WO, 
molecule, which is found to be almost the 
same as that in the monoclinic structure at 
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TABLE VII 

MADELUNG ENERGY (EM), REPULSIVE ENERGY 
(ER), VAN DER WAALS ENERGY (E,), AND POTENTIAL 
ENERGY OF EACH ION IN THE E-PHASE OF WO, 

Potential 

IOtIS 

energy 
(ev) 

W6f(l-4) - 373.80 52.11 - 10.41 - 332.10 
02m(1,2,11,12) -43.15 14.28 - 14.30 -43.17 
02Y3,5,7,9) -56.19 21.03 - 12.69 -47.84 
02-(4,6,8,10) - 55.08 20.52 - 13.24 -47.79 

room temperature, being in very good 
agreement with the experimental value. In 
addition, our calculation reveals that every 
W ion is equivalent, while there are three 
groups of equivalent 0 ions, the first group 
consisting of 0( 1), O(2), O(11) and 0(12), 
the second of O(3), O(5), O(7) and O(9), 
and the third of O(4), O(6), O(8) and O(10). 
These equivalences are not so easy to find 
from the crystallographic considerations in 
such a distorted structure with a low point 
symmetry. 

In the E-phase, each W ion is located at a 
position slightly displaced from the center of 
an 02- octahedron, which is more distorted 
than that in the monoclinic structure. The 
four W-O bondings on a plane parallel to 
(001) in an octahedron have the same dis- 
tances, i.e., 0.185 nm. On the other hand, 
the W ions in the zig-zag O-W-O chains 
along the c-axis displace from the middle to 
one oxygen site, resulting in a remarkable 
asymmetry in the distances of W-O bond- 
ings on the zig-zag chain, i.e., 0.185 and 
0.231 nm. This is in common with the mono- 
clinic structure as described before. This 
fact indicates a rather complicated bonding 
nature in the E-phase as well as the mono- 
clinic structure. 

Comparison of the results in Table VII 
with those in Table V indicates the following 
general features. Each energy term for W 
ions in the e-phase has a value nearly equal 
to that in the monoclinic structure. Among 

O*- ions in the e-phase, those in the first 
group, O(l), O(2), O(ll), and 0(12), have a 
considerably high Madelung energy but 
their repulsive energy is rather low. How- 
ever, the 02- ions in this group are less 
stable than not only other groups in this 
structure but also the most unstable 02- 
ion in the monoclinic structure, i.e., O,, . 
Nevertheless, the O*- ions in this group 
contain the largest contributions from van 
der Waals interactions. The repulsive energ- 
ies of O*- ions in other groups of the e- 
phase are larger than those in the monoclinic 
structure. This is mainly because of the 
short W6+-02- distances, 0.185 nm, in the 
E-phase compared with 0.193 nm, on aver- 
age, in the monoclinic structure. Alterna- 
tively, the van der Waals contributions from 
02- ions in these groups are large. Because 
of the van der Waals energies of these 02- 
ions, consequently, there is a good 
agreement between the lattice energy of the 
E-phase of WO, and the experimental value. 
These facts described above are indicative 
of a very significant role of the van der Waals 
interactions in the E-phase as well as the 
monoclinic structure. 

Acknowledgments 
The authors are very grateful to Dr. E. SaIje and 

Prof. R. J. D. Tilley for helpful suggestions and advice 
on this work. This research project was supported, in 
part, by the foundation of Sumitomo Metal Industries 
Ltd. 

References 
1. 

2. 

3. 

4. 

5. 

6. 

E. IGUCHI AND R. J. D. TILLEY, Philos. Trans. R. 
Sot. Lond. A 289, 55 (1977). 
E. IGUCHI AND R. J. D. TILLEY, J. Solid State 
Chem. 24, 131 (1978). 
E. IGUCHI AND R. J. D. TILLEY, J. Solid State 
Chem. 32, 221 (1980). 
E. SALJE AND G. HOPPMAN, Philos. Mug. B 43, 
105 (1981). 
E. IGUCHI, E. SALJE, AND R. J. D. TILLEY, J. Solid 
State Chem. 38, 342 (1981). 
E. SALJE AND B. GUTTLER, Philos. Mug. B 50,607 
(1984). 

7. E. IGUCHI, J. Phys. Chem. So/ids 38, 1093 (1977). 



LATTICE ENERGY IN WOi 295 

8. E. IGUCHI, J. Solid State Chem. 23, 231 (1978). 
9. E. IGUCHI AND R. J. D. TILLEY, J. Solid State 

Chem. 24, 131 (1978). 
10. E. IGUCHI AND R. J. D. TILLEY, J. Solid State 

Chem. 29, 435 (1979). 
11. D. C. DIENES, D. 0. WELCH, C. R. FISCHER, 

R. D. HATCHER, 0. LAZARETH, AND M. SAMBERG, 

Phys. Reu. B 11, 3060 (1975). 
12. H. SAWATARI, E. IGUCHI, AND R. J. D. TILLEY, 

J. Phys. Chem. Solids 43, 1147 (1982). 
13. K. AIZAWA, E. IGUCHI, AND R. J. D. TILLEY, 

Proc. R. Sot. Lond. A 394, 299 (1984). 
14. P. W. ANDERSON, Phys. Rev. Lett. 34,853 (1975). 
IS. E. IGUCHI AND T. YAMAMOTO, J. Phys. Chem. 

Solids 49, 205 (1988). 
16. P. P. EWALD, Ann. Physik. 64, 253 (1921). 
17. W. VAN COOL AND A. G. PIKEN, J. Mater. Sci. 4, 

95 (1969). 
18. C. R. A. CATLOW, J. PHYS. C; Solid State Phys. 

6, L64 (1973). 
19. 

20. 

21. 

22. 
23. 

24. 

25. 
26. 

27. 

28. 

29. 

30. 
31. 

32. 

M. P. TOSI, in “Solid State Physics” (F. Seiyz and 
D. Turnbull, Eds.), Vol. 16, p. 1, Academic Press, 
New York (1964). 
E. IGUCHI, T. MATSUDA AND R. J. D. TILLEY, J. 
Phys. C: Solid State Phys., 17, 319 (1984). 
R. W. WYCKOFF, Crystal Structures 1, p. xxx. 
Interscience, N.Y. (1963). 
S. TANISAKI, J. Phys. Sot. Japan 1.5, 573 (1960). 
B. 0. LOOPSTRA AND P. BOLDRINI, Acta Crys- 
tallogr. 21, 158 (1966). 
B. 0. LOOPSTRA AND H. M. RIETVELD,AC~~ Crys- 
tallogr. Sect B 25, 1420 (1966). 
P. T. WEDEPOHL, Proc. Phys. Sot. 92, 79 (1967). 
P. T. WEDEPOHL, J. Phys. C: Solid State Phys., 
10, 1855 (1977). 
P. T. WEDEPOHL, J. Phys. C: Solid State Phys. 10, 
1865 (1977). 
E. IGUCHI, K. OHTAKE, T. YAMAMOTO, AND H. 
NISHIKAWA, J. Nucl. Mater. 169, 55 (1989). 
E. IGUCHI AND Y. YONEZAWA, J. Phys. Chem. 
Solids 51, 313 (1990). 
R. E. WATSON, Phys. Reu. 111, 1108 (1958). 
F. HERMANN AND S. SKILLMAN, “Atomic Struc- 
ture Calculations,” Prentice Hall, Englewood 
Cliff, NJ (1963). 
D. R. HATREE AND W. HATREE, Proc. R. Sot. 
London A 166,450 (1938). 

33. 

34. 
35. 
36. 
37. 
38. 

39. 
40. 
41. 
42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 
52. 

53. 

54. 

55. 

56. 

57. 

E. CLEMENTI AND C. ROETTI, Atomic Nucl. Data 
Tables, 14, 177 (1974). 
R. A. PARKER, Phys. Rev. 124, 1713 (1961). 
E. SALJE, private communication (1983). 
A. R. RUFFA, Phys. Rev. 130, 1412 (1963). 
A. M. MOFFA, Phys. Rev. A 133, 1418 (1964). 
S. TRIEBWASSER, J. Phys. Chem. Solids 3, 53 
(1957). 
K. KIRKWOOD, Physikal Z. 33, 57 (1970). 
I. M. BOSWARVA, Phys. Rev., B 1, 1698 (1970). 
S. CANTOR, J. Chew Phys. 59, 5189 (1973). 
V. P. RYCHKOV, Z. Oberschles. Khim. 49, 2161 
(1979). 
P. J. WACKMAN, W. M. HIRTHE, AND R. E. 
FROUNTELKAS, J. Phys. Chem. Solids 28, 1525 
(1967). 
A. J. BELOVO, H. R. SHANKS, P. H. SIDDLES, AND 

G. C. DANIELSON, Phys. Rev. B 9, 3220 (1974). 
M. J. L. SANGSTER AND A. M. STONEHAM, Philos. 
Mug. 43, 598 (1981). 
E. IGUCHI AND F. MATSUSHIMA, J. Mater. Sci. 21, 
1046 (1967). 
R. C. WEAST AND M. J. ASTLE, CRC Handbook 
of Chemistry and Physics, 63rd ed., D-34 (1982/ 
1983), CRC press, Boca Raton, Florida. 
M. W. ZEMANNSKY, “American Institute of Phys- 
ics Handbook,” 3rd ed., pp. 4-247, McGraw-Hill, 
NY (1969). 
T. L. COTRELL, “The Structure of Chemical 
Bonds,” p. 1, Academic Press, NY (1954). 
D. R. STULL, “JANAF Thermochemical Table, p. 
1, Dow Chemical Co. Midland (1965). 
T. SHERMAN, Chem. Reu. 10, 93 (1932). 
M. F. LADD AND W. H. LEE, Acta. Crystallogr. 
13, 959 (1960). 
M. L. HIGGINS AND Y. SAKAMOTO, J. Phys. Sot. 
Japan 21, 24 (1957). 
R. D. SHANNON AND C. T. PREWITT, Acta Cays- 
tallogr. B 26, 1046 (1970). 
A. N. CORMACK, R. M. JONES, P. W. TASKER AND 

C. R. A. CATLOW, J. Solid State Chem. 44, 174 
(1982). 
J. C. NEWTONE-HOWES AND A. N. CORMACK, J. 
Solid State Chem. 79, 12 (1989). 
E. SALJE, Ferroelectrics 12, 215 (1976). 


