Neue Oxochloroniobate der Seltenen Erden

M. H. THOMAS* und R. GRUEHN

Institut für Anorganische und Analytische Chemie der Justus Liebig Universität, Heinrich-Buff-Ring 58, D-6300 Gießen, Germany

Received October 17, 1991; in revised form January 15, 1992; accepted January 17, 1992

The new compounds $Nd_3NbO_4Cl_6$ and $Ln_3NbO_5XCl_3$ have been prepared. $Nd_3NbO_4Cl_6$ was prepared by reacting $NdCl_3$, NdOCl, and Nb_2O_5 (3:3:1) in evacuated, sealed silica ampoules (850°C, 48 hr). It is isostructural with $Pr_3NbO_4Cl_6$ and crystallizes in the hexagonal space group $P6_3/m$ (Nr.176) with cell dimensions a=12,724(2) Å, c=3,932(1) Å (powder data). New representatives of a group of isostructural compounds of formula $Ln_3MO_5XCl_3$ (Ln=La-Nd or Th, U; M=Nb, Ta, W, U⁶⁺; X=OH, F, O) could be obtained by firing stoichiometric quantities of oxides, oxyhalides, and chlorides in silica ampoules. They also crystallize in the hexagonal space group $P6_3/m$. The cell dimensions were obtained with a Guinier camera. © 1992 Academic Press, Inc.

Einleitung

Wie die Untersuchung der Systeme Ln/ M/O und Ln/M/O/Cl mit M = Ta zeigte, bleiben mehrere der beobachteten Verbindungstypen nur auf wenige (oftmals nur zwei) benachbarte Seltene Erden beschränkt; dies gilt zum Beispiel für $M-LnTa_3O_9$ (Ln = Ce, Pr, Nd) (1, 2), $O-LnTa_2O_0(Ln$ = La, Ce) (1,3), $M1-LnTa_3O_9$ (Ln = Pr, Nd) (4), und $Ln_2Ta_2O_7Cl_2$ (Ln = Pr, Nd) (5).

Auch in den entsprechenden Systemen mit M = Nb liegen inzwischen Beobachtungen vor. So wurde über die Verbindungen $Ln\text{Nb}_2\text{O}_6\text{Cl}$ (Ln = La, Ce) (6, 7) und $Ln_3\text{NbO}_4\text{Cl}_6$ (Ln = La, Ce, Pr) (8, 7, 9) in den Systemen Ln/Nb/O/Cl (Ln = La-Pr) berichtet. Die genannten Verbindungstypen verdeutlichen das unterschiedliche Verhalten von Niob und Tantal: So gibt es zwar

Ziel der gegenwärtigen Arbeit war es daher, zu den Verbindungen der Systeme Ln/Ta/O/Cl vermutlich isotype Oxochloroniobate darzustellen, als auch zu untersuchen, ob es in den Systemen Ln/Nb/O/Cl von den schwereren Seltenen Erden (Ln =

Verbindungen des Typs Ln_3 TaO₄Cl₆ (Ln =La-Nd) (10, 11), die mit den entsprechenden Oxochloroniobaten isotyp sind, aber es gelang noch nicht, die mit LnNb2O6Cl isotypen Seltenerdoxochlorotantalate zu synthetisieren. Desweiteren konnten Nb-analoge Verbindungen des Typs Ln₂Ta₂O₂Cl₂ (Ln = Pr. Nd) (5) bisher noch nicht dargestellt werden. In den Systemen Ln/Ta/O/Cl existiert aber auch eine große Familie isohexagonaler Verbindungen $Ln_3TaO_5XCl_3$ bzw. $Ln_2M^{4+}TaO_6Cl_3$ (Ln =La-Nd; M^{4+} = Ce, Th; X = OH, F, O). bekannte Vertreter Bisher $Ln_3TaO_5(OH)Cl_3$ (Ln = La-Nd) (10, 11), $La_3TaO_5FCl_3$ (10), $Ln_2CeTaO_6Cl_3$ (Ln =La-Nd) (12), und La₂ThTaO₆Cl₃ (13).

^{*} Teil der Diplomarbeit.

TABELLE I

ZELLPARAMETER VON Ln_3 NbO₄Cl₆ MIT Ln = La,
Ce, Pr, Nd; RG: $P6_3/m$ (Nr.176)

Verbindung	a (Å)	c (Å)	Volumen (Å ³)	Literatur
La ₃ NbO ₄ Cl ₆	12,811(1)	4,0382(8)	573,96	(8)
, , ,	12,793(6)	4,053(7)	574,6(1)	(27)
Ce ₃ NbO ₄ Cl ₆	12,7547(5)	3,9994(2)	563,47(6)	(7)
Pr ₃ NbO ₄ Cl ₆ Nd ₃ NbO ₄ Cl ₆	12,7301(4) 12,724(2)	3,9626(2) 3,932(1)	556,1 551,2(2)	(9)

Sm, Eu) noch stabile Oxochloroniobate gibt. Bisher war es nicht gelungen, Seltenerdoxochlorotantalate mit Ln = Sm, Eu zu synthetisieren. Im Gegensatz dazu gibt es Beispiele unter den Verbindungen der Systeme Ln/Si/O/Cl (Yb₃Si₂O₈Cl (14), Ln_3Si_2 O₈Cl mit Ln = La-Nd (15), $La_3SiO_4Cl_5$ (16), $LnSiO_3Cl$ mit Ln = Y, La (17)), Ln/Ti/O/Cl ($Ln_3TiO_4Cl_5$ mit Ln = La-Nd (18), Ln_2Ti_3 O₈Cl₂ mit Ln = Pr, Nd (19, 20), $SmTiO_3Cl$ (21)), und Ln/W/O/Cl ($Ln_3WO_6Cl_3$ mit Ln = La-Nd, Sm-Gd (22), $O-LaWO_4Cl$ mit Ln = La-Sm (23), und $M-LaWO_4Cl$ mit Ln = Eu-Tm (24)).

Präparation

A. Darstellung von Nd₃NbO₄Cl₆

Gemenge (3:3:1) aus NdOCl (aus NdCl₃ · 6H₂O, durch Erhitzen an Luft, 12 hr bei T = 600°C), NdCl₃ · 6H₂O (Fluka AG; puriss, 99,9%), und Nb₂O₅ (Ges.f. Elektrometallurgie, OG; vorher 12 hr bei 1000°C geglüht) wurden innig verrieben (Achatreibschale), und in einer halbseitig geschlossenen Quarzglasampulle im dynamischen Vakuum (p = $5 \cdot 10^{-3}$ Torr) mit 2°C/hr auf 350°C aufgeheizt, um das Kristallwasser zu entfernen. Anschließend wurde die Ampulle im Vakuum abgeschmolzen und 48 hr bei 850°C in einem Röhrenofen isotherm getempert. Wir erhielten Nd₃NbO₄Cl₆ als hellviolettes pulverförmiges Produkt. Röntgenographische Untersuchungen (Guiniermethode) zeigen die Isotypie zu Pr₃NbO₄Cl₆ (9). Eine Ubersicht der Zellparameter von Ln₃NbO₄Cl₆ enthält Tabelle I.

Versuche, die isotype Sm-Verbindung aus einem Gemisch von SmOCl, SmCl₃, und Nb₂O₅ auf analoge Weise darzustellen, gelangen nicht. Das Guinierdiagramm zeigte nach Umsetzungen bei 800°C als auch bei 850°C (jeweils 48 hr) nur Reflexe von SmCl₃ und SmNbO₄. Unterhalb 800°C fand keine Reaktion statt.

B. Darstellung von $Pr_3NbO_5(OH)Cl_3$ und $Nd_3NbO_5(OH)Cl_3$

Die grünen bzw. violetten Präparate wurden durch isothermes Tempern eines Gemenges aus PrOCl (aus PrCl₃ · 7H₂O durch Erhitzen an Luft; 12 hr bei $T = 600^{\circ}$ C) bzw. NdOCl und Nb₂O₅ (6:1) erhalten (evakuierte Quarzglasampulle, 20 hr bei $T = 850^{\circ}$ C). Die Umsetzung entspricht der Reaktionsgleichung:

$$6 LnOCl + Nb_2O_5 + H_2O$$

= $2 Ln_3NbO_5(OH)Cl_3$. (1)

Sie führten zu einem mit wenig $LnNbO_4$ und LnOCl verunreinigtem Pulver. Das erforderliche Wasser stammt aus der Wand der Quarzglasampulle, die nicht wie sonst üblich zum Entfernen des anhaftenden Wassers im dynamischen Vakuum ausgeheizt wurde (25). In weiteren Versuchen wurde die nach Gleichung (1) nötige Menge Wasser (aus der Zersetzung von $BaCl_2 \cdot 2H_2O$) einkondensiert. Der Zusatz von Wasser führt jedoch zur vermehrten Verunreinigung des Reaktionsproduktes durch Bildung von $LnNbO_4$ und LnOCl nach:

$$Ln_3\text{NbO}_5(\text{OH})\text{Cl}_3$$

= $2 Ln\text{OCl} + \text{LnNbO}_4 + \text{HCl}$. (2)

Die Verbindungen $Ln_3NbO_5(OH)Cl_3$ (Ln = Pr, Nd) sind nach Pulveraufnahmen isotyp mit den Verbindungen $La_3TaO_5(OH)Cl_3$ (10), $Ln_3WO_6Cl_3$ (Ln = La-Gd) (22), und $Ln_3UO_6Cl_3$ (Ln = La-Nd) (26), die in der Raumgruppe $P6_3/m$ (Nr.176) kristallisieren.

TABELLE II
ZELLPARAMETER VON Ln_3 NbO ₅ X Cl ₃ MIT $Ln = La$, Ce. Pr. Nd; $X = OH$, F; RG: $P6_1/m$ (Nr.176)
Ce, Π , Π u, $\Lambda = \Omega\Pi$, Π , Π G. Π Ω Π Π Π Π

Verbindung	a (Å)	c (Å)	Volumen (Å ³)	Literatur
La ₃ NbO ₅ (OH)Cl ₃	9,509(6)	5,461(9)	427,7(5)	(27)
Pr ₃ NbO ₅ (OH)Cl ₃	9,460(2)	5,407(2)	411,8(3)	
Nd ₃ NbO ₅ (OH)Cl ₃	9,326(2)	5,392(2)	406,1(2)	
La ₃ NbO ₃ FCI ₃	9,460(6)	5,478(3)	424,6(4)	(27)
Ce ₃ NbO ₅ FCl ₃	9,400(1)	5,441(2)	416,3(2)	
Pr ₃ NbO ₃ FCl ₃	9,353(1)	5,415(2)	410,2(2)	
Nd ₃ NbO ₅ FCl ₃	9,309(1)	5,390(1)	404,5(1)	

Die Zellparameter von Ln_3 NbO₅(OH)Cl₃ (Ln = La, Pr, Nd) gibt Tabelle II.

Die analoge Darstellung von Sm₃NbO₅(OH)Cl₃ gelang nicht. Guinieraufnahmen zeigten das Vorliegen von SmNbO₄, SmOCl, und SmCl₃ · 6H₂O nach Öffnen der Ampulle.

C. Darstellung von Pr₃NbO₅FCl₃ und Nd₃NbO₅FCl₃

Im Hinblick auf die vergleichbaren Ionenradien (ca. 1, 4 Å) von F⁻ und OH⁻ wurde versucht, eine gegenseitige Substitution durchzuführen.

Die mit La₃NbO₅(OH)Cl₃ und La₃NbO₅FCl₃ (27) isotypen Verbindungen Ce₃NbO₅FCl₃, Pr₃NbO₅FCl₃ (hellgrün), und Nd₃NbO₅FCl₃ (hellviolett) konnten durch Umsetzung (*T* = 900°; 20 hr) von Gemengen LnOCl und NbO₂F (3:1) (NbO₂F wurde durch Auflösen von Nb₂O₅ in 40%-iger HF, Eindampfen bis zur Trockene und Erhitzen des Rückstands (2 Tage bei 300°C) erhalten) in einer mit Argon befüllten und zugeschweißten Platinampulle dargestellt werden:

 $3 LnOC1 + NbO_2F = Ln_3NbO_5FCl_3$. (3) Die Zellparameter von $Ln_3NbO_5FCl_3$ (Ln = La-Nd) gibt Tabelle II.

D. Darstellung von $Pr_2M^{4+}NbO_6Cl_3$ und $Nd_2M^{4+}NbO_6Cl_3$ ($M^{4+} = Ce, Th, U$)

Eine partielle Substitution von O²⁻ durch einfach negative Ionen (Abschn. B und C)

ist "unnötig," wenn anstelle von Nb^{5+} ein Kation höherer Ladung M^{6+} ($Ln_3WO_6Cl_2$) vorliegt oder ein Drittel der Ln^{3+} -Ionen durch ein vierwertiges Kation ersetzt wird.

 $I.\,M^{4+}=Ce^{4+}$. Zur Darstellung von rostbraunem $Pr_2CeNbO_6Cl_3$ und gelbbraunem $Nd_2CeNbO_6Cl_3$ wurde ein innig verriebenes Gemisch von LnOCl und $CeNbO_4$ (2:1) ($CeNbO_4$ wird durch Erhitzen (24 hr, 1350°C) eines Gemenges CeO_2 (Fluka AG, puriss. > 99%) und $Nb_2O_5 = 2:1$ als grünschwarzes Pulver mit einer großen Phasenbreite $CeNbO_{4+x}$ erhalten) in einer Quarzglasampulle mit einem Überschuß an Chlor isotherm getempert (48 hr, 900°C):

$$2 LnOCl + CeNbO4 + \frac{1}{2}Cl2$$

= $Ln2CeNbO6Cl3$. (4)

Die Guinieraufnahmen von Ln_2 CeNbO₆Cl₃ zeigen Isotypie zu Ln_2 CeTaO₆Cl₃ (12); eine Verbreiterung der Linien läßt auf eine Phasenbreite gemäß Ln_2 CeNbO₆Cl_{3-x} schließen.

 $2. M^{4+} = Th^{4+}$. Zur Darstellung von hellgrünem $Pr_2ThNbO_6Cl_3$ und hellviolettem $Nd_2ThNbO_6Cl_3$ wurden stöchiometrische Mengen der Ausgangsstoffe LnOCl (Ln = Pr, Nd), $LnCl_3 \cdot xH_2O$ (x = 6, 7), Nb_2O_5 , und ThO_2 (Johnson Matthey 99,9%) (3:1:1:2) innig miteinander verrieben, in einer Quarzglasampulle langsam entwässert (2°C/min bis 350°C), abgeschmolzen und isotherm getempert (48 hr, 900°C):

$$3 LnOCl + LnCl_3 + Nb_2O_5 + 2 ThO_2$$

= $2 Ln_2ThNbO_6Cl_3$. (5)

3. $M^{4+} = U^{4+}$. Erstmals gelang es auch, U^{4+} in Verbindungen des Typs Ln_3MO_5X Cl₃ einzubauen. Zur Darstellung der dunkelgrünen Verbindungen Pr_2U^{4+} NbO₆Cl₃ und Nd₂U⁴⁺NbO₆Cl₃ wurden stöchiometrische Mengen (3:1:1:2) der Ausgangsstoffe LnOCl (Ln = Pr, Nd), $LnCl_3 \cdot xH_2O$ (x = 6, 7), Nb₂O₅, und UO₂ (dargestellt durch langsames Zersetzen von $UO_2(NO_3)_2 \cdot 6H_2O$ (Merk p.a.), 2°C/min bis 200°C, 10°C/min bis 600°C im N₂-Strom, und

TABELLE III
Zellparameter von Ln_2M^{4+} NbO ₆ Cl ₃ mit $Ln =$
Pr, Nd; $M^{4+} \approx \text{Ce}$, U, Th; RG: $P6_3/m$ (Nr.176)

Verbindung	a (Å)	c (Å)	Volumen (Å ³
Pr ₂ CeNbO ₆ Cl ₃	9,259(2)	5,384(2)	399,7(2)
Pr ₂ UNbO ₆ Cl ₃	9,269(2)	5,381(2)	400,3(2)
Pr ₂ ThNbO ₆ Cl ₃	9,305(2)	5,411(1)	405,7(2)
Nd ₂ CeNbO ₆ Cl ₂	9,230(2)	5,362(2)	395,6(2)
Nd ₂ UNbO ₆ Cl ₃	9,258(6)	5,359(6)	397,8(7)
Nd ₂ ThNbO ₆ Cl ₃	9,277(1)	5,383(1)	401,2(1)

anschließende Reduktion bei 900°C im H₂-Strom) innig miteinander verrieben und in einer Quarzglasampulle langsam entwässert (2°C/min bis 350°C), abgeschmolzen und in einem Röhrenofen isotherm getempert (48 hr, 850°C):

$$3 LnOC1 + LnCl_3 + Nb_2O_5 + 2 UO_2$$

= $2 Ln_2UNbO_6Cl_3$. (6)

Die Zellparameter von Ln_2M^{4+} NbO₆Cl₃ ($Ln = Pr, Nd; M^{4+} = Ce, Th, U$) gibt Tabelle III.

In einer Reihe von Temperversuchen mit $LnOC1/Nb_2O_5$ (Ln = Pr, Nd) im Verhältnis (1:2); (1:1); (2:1); (4:1); (6:1); und von $LnOC1/LnC1_3/Nb_2O_5$ im Verhältnis (1:1:1); (3:1:1); (3:3:1); (0:2:1); (0:3:1); (800°C bis 950°C) konnten keine neuen Verbindungen entdeckt werden.

E. Chemischer Transport von Oxochloroverbindungen

Kristalle von $Pr_3NbO_5(OH)Cl_3$, konnten durch chemischen Transport (28) von $Pr_3NbO_4Cl_6$ mit Chlor (1 atm bei 298 K) von $T_2 \rightarrow T_1$ mit $T_2 = 900^{\circ}$ C, $T_1 = 800^{\circ}$ C dargestellt werden. Das erforderliche Wasser stammt aus der Wand der Quarzglasampulle:

$$Ln_3\text{NbO}_4\text{Cl}_6 + 2 \text{ H}_2\text{O}$$

= $Ln_3\text{NbO}_5(\text{OH})\text{Cl}_3 + 3 \text{ HCl}.$ (7)

Mit HCl als Transportmittel, welches das Gleichgewicht (7) zu Gunsten von Ln_3 NbO₄Cl₆ (Ln = Pr, Nd) verschiebt, ist ein chemischer Transport von Ln_3 NbO₄Cl₆ (Ln = Pr, Nd) ebenfalls möglich. HCl wurde durch Zugabe von 20 mg NH₄Cl (Zerfall in HCl, H₂, und N₂) pro Ampulle (V = ca.7,5 cm³) eingeführt.

Ergebnisse und Disskussion

A. Indizierung und Verfeinerung der Gitterkonstanten

Die Gitterkonstanten wurden mit Hilfe von Guinier-Aufnahmen (Cu $K\alpha_1 = 1,54051$ A) verfeinert. Dazu wurden die feinkristallinen Pulver bzw. die durch chemischen Transport erhaltenen Kristalle fein zerrieben und mit T-Quarz (α -Quarz) als internem Standard vermengt. Eine Ausgleichsrechnung nach der Methode der kleinsten Fehlerquadrate mit Hilfe des Rechenprogramms SOS (29)liefert Gitterkonstanten. Die Zellparameter aller dargestellten Verbindungen im Vergleich mit bekannten (isotypen) Verbindungen enthalten Tabelle I bis III.

B. Vergleich der Zellparameter

 Ce^{4+} , Th, U^{4+} vermögen die Lanthanidionen Ln^{3+} zu einem beträchtlichen Teil zu ersetzen, ebenso wie O^{2-} durch F^- und OH^- ersetzt wird. Das Ausmaß der Substitution zu $\frac{1}{3}$ Ln^{3+} bzw. $\frac{1}{6}$ O^{2-} ist durch die Stöchiometrie der Verbindung festgelegt. Dabei setzt man voraus, daß M^{4+} und Ln^{3+} bzw. O^{2-} , OH^- , und F^- jeweils statistisch auf die gemeinsamen kristallographischen Lagen verteilt sind (10, 13).

Die graphischen Gegenüberstellungen der Längen der a- und c-Achsen sowie der Zellvolumina der Verbindungen Ln_3 NbO $_4$ Cl $_6$, Ln_3 NbO $_5$ XCl $_3$, und Ln_2 M $^{4+}$ NbO $_6$ Cl $_3$ (Ln = La-Nd; $M^{4+} = Ce$, Th, U) sind in den Abbildungen 1 bis 3 wiedergegeben. Ein Vergleich der Zellparameter zeigt deutlich die

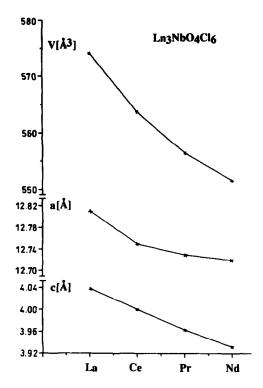


ABB. 1. Vergleich der Zellparameter von $Ln_3NbO_4Cl_6$ mit Ln = La-Nd.

erwartete Verringerung der Gitterkonstanten und des Zellvolumens mit abnehmender Größe der Lanthanidionen.

C. Stabilität der Oxochloroniobate

Die experimentellen Ergebnisse zur Darstellung von Verbindungen des Typs $Ln_3\text{NbO}_5(\text{OH})\text{Cl}_3$ aus LnOCl und Nb_2O_5 in Gegenwart geringer Mengen H_2O zeigen, daß mit abnehmender Basizität der $Ln_2\text{O}_3$ -Komponente die Gewinnung phasenreiner Präparate zunehmend problematischer wird. Es müssen Nebenreaktionen in Betracht gezogen werden:

$$2 LnOC1 + Nb_2O_5 + H_2O$$

= $2 LnNbO_4 + 2 HC1$. (8)

Vergleicht man die Ergebnisse mit denen vorangegangener Untersuchungen in den

Systemen Ln/Nb/O/Cl, so sieht man deutlich die Unterschiedlichkeit der Lanthanide, die im betrachteten Bereich einerseits besonders zwischen La, Ce und Pr, Nd und andererseits zwischen Nd und Sm am stärksten hervortritt.

Die zu den Verbindungen $LnNb_2O_6Cl$ (6, 7, 27) und $Ln_2NbO_4Cl_3$ (Ln = La, Ce) (7, 27) analogen Pr- bzw. Nd-Verbindungen konnten nicht synthetisiert werden.

Die Oxochloroniobate Ln_3 NbO₅XCl₃ und Ln_3 NbO₄Cl₆ sind wie ihre isotypen Tantalate in einem größeren Bereich stabil, obwohl phasenreine Präparate mit abnehmender Basizität vom Ln_2 O₃ zunehmend schwieriger zu erhalten sind. Die entsprechenden Sm-Verbindungen konnten dagegen weder mit Nb noch mit Ta dargestellt werden.

Ein kristallchemischer Unterschied

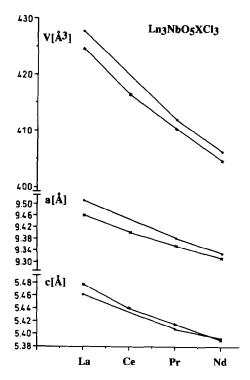


ABB. 2. Vergleich der Zellparameter von Ln_3 NbO₅XCl₃ mit $Ln = La-Nd; \cdot X = OH; + X = F.$

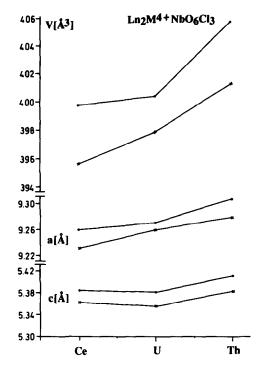


ABB. 3. Vergleich der Zellparameter von Ln_2M^{4+} NbO₆Cl₃ mit M^{4+} = Ce, U, Th; · Ln = Pr; + Ln = Nd;

zwischen Nb und Ta zeigt sich darin, daß kein mit Ln_2 Ta₂O₇Cl₂·(Ln = Pr, Nd) (5) vergleichbares " Ln_2 Nb₂O₇Cl₂" dargestellt werden konnte.

Zusammenfassung

Es wurden die neuen Verbindungen $Nd_3NbO_4Cl_6$, $Ln_3NbO_5XCl_3$ (Ln = Pr, Nd; X = OH bzw. Ln = Ce, Pr, Nd; X = F), und $Ln_2M^{4+}NbO_6Cl_3$ (Ln = Pr, Nd; $M^{4+} = Ce$, Th, U) erhalten. $Nd_3NbO_4Cl_6$ wurde durch Umsetzung von Gemengen $NdCl_3$, NdOCl, und Nb_2O_5 (3:3:1) in evakuierten, abgeschmolzenen Quarzglasampullen dargestellt (850°C, 48 hr). Die hexagonale (RG: $P6_3/m$; Nr.176) Verbindung mit den Gitterkonstanten a = 12,724(2) Å, c = 3,932(1) Å (Guiniermethode) ist isotyp mit $Pr_3NbO_4Cl_6$.

Durch entsprechende Umsetzung stöchiometrischer Mengen der Oxide, Oxidhalogenide, und Chloride in Quarzglasampullen konnten die oben genannten neuen Vertreter der hexagonalen (RG: $P6_3/m$) Verbindungsklasse der Zusammensetzung Ln_3 MO_5X Cl₃ bzw. $Ln_2M^{4+}MO_6$ Cl₃ ($Ln = La-Nd; M^{4+} = Ce, Th, U; M = Nb, Ta, W, U^{6+}; X = OH, F, O)$ erhalten werden. Die anhand von Guinieraufnahmen bestimmten Zellparameter wurden miteinander verglichen.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die finanzielle Unterstützung; Herrn Dr. Höfer (Heraeus-Quarzschmelze, Hanau) für das großzügige Überlassen von Quarzglas.

Literatur

- U. SCHAFFRATH UND R. GRUEHN, Z. anorg. allg. Chem. 565, 67 (1988).
- G. STEINMANN, U. SCHAFFRATH, UND R. GRUEHN, Z. anorg. allg. Chem. 582, 61 (1990).
- 3. B. Langenbach-Kuttert, J. Sturm, und R. Gruehn, Z. anorg. allg. Chem. 548, 33 (1987).
- 4. U. Schaffrath, G. Steinmann, und R. Gruehn, Z. anorg. allg. Chem. 565, 54 (1988).
- 5. U. Schaffrath und R. Gruehn, Naturwissenschaften 75, 140 (1988).
- 6. J. C. CALABRESE, L. H. BRIXNER, UND C. M. FORIS, J. Solid State Chem. 48, 142 (1983).
- 7. R. Hofmann, geplante Dissertation, Univ. Gießen.
- G. BLASSE, M. J. J. LAMMER, H. C. G. VERHAAR, L. H. BRIXNER, UND C. C. TORARDI, J. Solid State Chem. 60, 258 (1985).
- L. H. BRIXNER, J. C. CALABRESE, UND C. M. FORIS, Mater. Res. Bull. 18, 1493 (1983).
- U. Schaffrath und R. Gruehn, Naturwissenschaften 74, 342 (1987).
- B. Langenbach-Kuttert, G. Steinmann, W. Mertin, und R. Gruehn, Z. anorg. allg. Chem. 573, 119 (1989).
- U. SCHAFFRATH UND R. GRUEHN, Z. anorg. allg. Chem. 589, 139 (1990).
- U. SCHAFFRATH UND R. GRUEHN, J. Less-Common Met. 137, 61 (1988).
- C. AYASSE UND H. A. EICK, Inorg. Chem. 12, 1140 (1973)
- 15. P. GRAVEAU, B. ES-SAKHI, UND C. FOUASSIER,

- Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C44, 1884 (1988).
- P. GRAVERAU, B. ES-SAKHI, UND C. FOUASSIER, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. C45, 1677 (1989).
- 17. W. LEHMANN UND T. J. ISAACS, J. Electrochem. Soc. 125, 445 (1978).
- N. HÜBNER, U. SCHAFFRATH, UND R. GRUEHN,
 Z. anorg. allg. Chem. 591, 107 (1990).
- N. HÜBNER UND R. GRUEHN, Z. anorg. allg. Chem. 597, 87 (1991).
- K. Fiedler, N. Hübner, und R. Gruehn, Z. Kristallogr. 195, 265 (1991).
- N. HÜBNER UND R. GRUEHN, Z. anorg. allg. Chem. 602, 119 (1991).

- L. H. BRIXNER, H. Y. CHEN, UND C. M. FORIS,
 J. Solid State Chem. 44, 99 (1982).
- L. H. BRIXNER, H. Y. CHEN, UND C. M. FORIS,
 J. Solid State Chem. 45, 80 (1982).
- L. H. BRIXNER, H. J. CHEN, UND C. M. FORIS, Mater. Res. Bull. 12, 1545 (1982).
- 25. G. SCHMIDT UND R. GRUEHN, J. Cryst. Growth 57, 585 (1982).
- 26. G. HENCHE, K. FIEDLER, UND R. GRUEHN, Z. anorg. allg. Chem., in Vorbereitung.
- 27. R. HOFMANN, Diplomarbeit, Gießen (1988).
- H. Schäfer, "Chemische Transportreaktionen," Verlag Chemie, Weinheim (1962).
- G. MEYER UND J. SOOSE, Staatsexamensarbeit J. Soose, Gießen (1980).