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We present results of a computer modeling study of the technologically important material Sn02. We 
concentrate on the properties of defects and dopants and show first that vacancy energies are high, 
leading to limited deviations from stoichiometry. Second, we find that both vacancy and interstitial 
(self-compensating) modes of solution may have low energies for low valence dopants. Oxidation of p- 
type doped material is found to be endothermic, hence poor conductivity is expected. In contrast we 
calculate that n-type doped samples can be exothermically reduced, and would consequently predict 
high conductivity for such materials. o 1990 Academic PM, IOC. 

I. Introduction 

The technologically important properties 
of ionic semiconductors such as SnOz are 
largely determined by the underlying defect 
chemistry of the material. Indeed in tech- 
nological materials, SnOz is deliberately 
doped to promote desired electrical charac- 
teristics (see, for example, Ref. (I)). How- 
ever, although the central role of such dop- 
ing strategies in the manufacture of device 
materials emphasizes their importance, the 
detailed influence of dopant ions on the 
electronic properties of the material is often 
unknown. 

SnOz is an extrinsic, n-type semiconduc- 
tor which finds uses in devices such as pho- 
tovoltaic cells and gas sensors. The electri- 
cal and physical properties of the material 
have been thoroughly characterized (see, 
for example, Refs. (2-5)). However, there 

is little information on the detailed atomic 
nature of lattice defects and impurity states 
which determine these macroscopic prop- 
erties. Indeed the dominant point defect re- 
sponsible for the accommodation of non- 
stoichiometry in Sn02 has yet to be 
unequivocally resolved (3, 6). 

It is therefore clear that a thorough inves- 
tigation of the defect and dopant states of 
SnOz is needed, especially if we are to un- 
derstand the sensing properties of the mate- 
rial. In this paper we report the application 
of established computer modeling tech- 
niques to the study of intrinsic disorder, 
electronic states, and impurity ions in 
SnO1. Wherever possible we compare our 
findings with those of previously reported 
experimental studies. In the following sec- 
tion we describe the simulation methods 
upon which our study is based and provide 
details of their application to SnOz . In Sec- 
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tion 3 we present the results of the com- 
puter modeling of intrinsic disorder in 
SnOz . Section 4 presents results of the ap- 
plication of simulation techniques to the 
study of dopant ions within the material. 

2. Method 

The calculations on perfect lattices and 
defects embedded in the lattice described in 
this paper are based on the Born model of 
the ionic solid, in which the crystal is con- 
sidered to be composed of discrete ions 
with integral charges. In addition to ionic 
(coulombic) forces there are “short range” 
interactions modeled by pairwise potentials 
of the Born Mayer, or Buckingham form. 
The model includes the effects of ionic 
polarization via the incorporation of the 
“shell” model of Dick and Overhauser (7). 

The techniques which permit the applica- 
tion of the Born model outlined above to 
the investigation of many phenomena in po- 
lar solids have gained wide success (see, for 
example, Refs. (8, 9)). Here we shall briefly 
describe the modeling of perfect lattices (of 
importance in deriving potentials) and the 
modeling of defect states within the lattice. 
Detailed accounts of the procedures used 
can be found in Catlow and Mackrodt (10). 

2.1. Lattice Potential for SnOz 

The model of SnOz used in the present 
study comprises short range interionic in- 
teraction potential terms and shell model 
intraionic parameters. A given set of such 
potential parameters permits the calcula- 
tion of equilibrium structures and a range of 
crystal properties (see, for example, Ref. 
(II)). Derivation of suitable potential pa- 
rameters is achieved via a least-squares fit- 
ting procedure where terms in the potential 
model are iteratively adjusted to yield opti- 
mum agreement with experimentally de- 
rived crystal properties. The data used in 

the present fitting for SnOz included unit 
cell dimensions, unit cell coordinates, static 
and high frequency dielectric constants, 
and elastic constants. It was found that the 
most effective improvement on an existing 
model for SnOz of James (12) was achieved 
by refining the oxygen-oxygen interaction 
parameters. The oxygen-oxygen parame- 
ters obtained are somewhat different from 
those used in several previous studies (see 
Refs. (12-25)). However, at equilibrium 
separations the noncoulombic interaction 
between oxygens is very small. Hence cal- 
culated properties are comparatively insen- 
sitive to this component of the potential 
model for the solid. For example, when ap- 
plied to FeO, the oxygen-oxygen potential 
of this study yields calculated properties in 
close agreement with an earlier potential 
(see Ref. (16)). The least-squares refine- 
ment of the oxygen-oxygen potential for 
Sn02 therefore represents “fine tuning” for 
this particular structure. 

We note that the potential used in the 
present work to describe the Sn-oxygen in- 
teraction is of the Born-Mayer form (i.e., 
the attractive rp6 term is neglected). At lat- 
tice spacings the contribution of this term 
will be comparatively small and its effect 
should to some extent be incorporated in 
the Born-Mayer parameters during the 
least-squares fitting procedure. The poten- 
tials used in the calculation of dopant-host 
interactions (Section 4) are also of this type 
(see Ref. (24)). 

The final set of potential parameters are 
presented in Table I and calculated crystal 
properties for this model are collected in 
Table II along with experimental values for 
comparison. We should emphasize that the 
calculated crystal properties are reported 
for a structure which has been entirely 
equilibrated by energy minimization. From 
Table II it is clear that excellent agreement 
is possible between theory and experiment 
within the constraints of a wholly ionic 
model for this solid. 
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TABLE I 

POTENTIAL MODEL FOR SnO2 

Cation charge (lel) 4.0 Shell charge 1.58 
Spring constant 2037.8 

(eV/A*) 

Anion charge (lel) -2.0 Shell charge -2.47 
Spring constant 23.09 

(eV/A*) 

Short-range parameters 
V(r) = A exp(-r/p) - C/r6 

Interaction AIeV PIA CleVA6 

Sn4+ 0*- 
02- .‘.‘.‘o*- 

1056.8 0.3683 0.0 
15123.6 0.2230 28.43 

Note. Short-range interactions were “cut off”, i.e., 
set to zero for distances greater than 1.5a (a = lattice 
parameter). 

2.2. Point Defect Simulations 

The methods used to model defect cen- 
ters in the crystal are based on the ap- 
proach of Mott and Littleton (17). Here 
ionic relaxations close to a defect are ex- 
plicitly allowed while defect interactions 
with more distant regions of the crystal are 
determined by an approximate procedure 
using the macroscopic dielectric properties 
of the material. This “two region” Mott- 
Littleton procedure forms the basis of the 
CASCADE computer program (18) used in 
the present work. The inner region (region 
I) used in the calculations contained at least 
100 atoms. 

It is generally accepted that the accuracy 
of such defect calculations is determined by 
the interatomic potentials which describe 
interactions between lattice ions, and be- 
tween lattice and defect species (19,20). As 
we have seen in the previous section a lat- 
tice potential is available which provides a 
good description of the SnOa lattice. It is 
reasonable, therefore, to extend the use of 
this model to an investigation of defect 
states within the material. 

We should note that the calculations on 

defect states described in the following sec- 
tions were performed using the equilibrated 
unit cell and unit-cell dimensions reported 
in Table II. Thus there are no residual 
strains due to the nondefective crystal in 
the explicitly modeled region of the defect 
simulations. 

The calculations were performed on a 
FPS 164 array processor supported by the 
NAS 7000 mainframe host computer at the 
SERC Daresbury Laboratory, UK. 

3. Results: Disorder in Sn0~ 

In this section we report the results of 
our static simulation calculations on intrin- 
sic disorder and electronic states in SnOz. 
The following section describes calcula- 
tions on the doped material. 

TABLE II 

CALCULATED AND EXPERIMENTAL CRYSTAL 
PROPERTIES FOR SnOr 

Measured Calculated 

Dielectric constants” 
Static field Ic* 14.0 13.8 

IIC 9.86 12.5 
High frequency Ic 3.785 3.894 

IIC 4.175 4.019 

Elastic constantsc 
Cl1 (dyne cm-* x 10”) 26.2 29.9 
G3 45.0 52.2 
G4 10.3 11.1 
CC4 20.7 22.8 
Cl2 17.7 21.2 
Cl3 15.6 19.8 

Structure 
a, b @Id 4.738 4.706 
c IA 3.186 3.332 

Rutile structural param- 
eter, u/lattice units 0.3071 0.3034 

o Ref. (31). 
* Ic perpendicular to the c axis, (Ic parallel to the c 

axis. 
c Ref. (5). 
d Ref. (32). 
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TABLE III 

POINT DEFECT ENERGIES IN SnOz 

a. Isolated defect energies 
Defect Energy (eV) Coordinates 

O*- interstitial -8.31 (u, -u, 0) 
Sn4+ interstitial -68.23 (0, t, 0) 
O*- vacancy 19.39 (u, u, 0) 
Sn4+ vacancy 87.48 (0, 0, 0) 

b. Frenkel and Schottky energies 
Defect Formation energy per defect (eV) 

Schottky trio 5.19 
Anion Frenkel pair 5.54 
Cation Frenkel pair 9.63 
“Anti” Schottky trio 8.61 

Note. Lattice energy is -110.68 eV. u is the rutile structural 
parameter. 

3.1. Intrinsic Disorder in SnOf 

Calculated energies for oxygen and tin in- 
terstitials and vacancies are presented in 
Table III. Interestingly we find that the low- 
est energy site for an anion interstitial has 
the coordinates (u, -u, 0) (u being the vari- 
able parameter of the t-utile structure) and 
not as might have been expected (0, 0.5, 0) 
(the center of an unoccupied oxygen octa- 
hedron). Combining these defect formation 
energies with the calculated lattice energy 
of SnOz permits the determination of 
Frenkel pair and Schottky trio energies; 
these are reported in Table IIIb. It is clear 
from these predicted defect formation ener- 
gies that the predominant mode of intrinsic 
disorder is of the Schottky type. Vacancy 
disorder would therefore be expected to be 
of particular importance in the nonstoi- 
chiometric material. Since SnOz becomes 
nonstoichiometric through the loss of oxy- 
gen, anion vacancies rather than cation in- 
terstitials are predicted to predominate in 
the reduced material. This prediction ac- 
cords well with the experimental findings of 
Samson and Fonstad (4) based on conduc- 

tivity measurements on single crystals and 
the thermogravimetric studies of Koinuma 
et al. (6). In contrast, the electrical conduc- 
tivity studies on pellets pressed from pow- 
ders of both Paria and Maiti (3) and 
Uematsu et al. (21) led to conclusions 
which cast doubt on the anion vacancy 
model. However, we note that the latter 
studies were directed toward the character- 
ization of the electrical properties of doped 
materials with secondary emphasis on the 
pure material. The former studies (favoring 
anions vacancies) were primarily concerned 
with the study of native defects in the pure 
material. 

The intrinsic defect energy for Schottky 
disorder reported in Table IIIb is compara- 
tively high (-2.5 eV higher than for the iso- 
structural TiO,; Ref. (25)). Examination of 
the relaxed atomic positions in the explic- 
itly modeled region of the defect simula- 
tions reveals that larger anion displace- 
ments are calculated around oxygen 
vacancies in TiOa than in SnOz. It is the 
possibility of large anion relaxations which 
leads to the readier formation of oxygen va- 
cancies within the Ti02 lattice. TiOz-, can, 
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of course, accommodate high degrees of 
nonstoichiometry by the formation of crys- 
tallographic shear planes. Shear planes are 
not, however, observed in SnOz. Catlow 
and James (22), using computer simulation 
techniques, were able to rationalize this ob- 
servation in terms of the large cation dis- 
placement polarizability in TiOz: cation re- 
laxation in the vicinity of shear planes was 
sufficiently large to stabilize this form of 
reduction. The present study reveals that 
the anion sublatticeis able to relax around 
defects to a greater extent in Ti02 than in 
the isostructural SnOz. Hence we would 
not expect such large departures from ideal 
stoichiometry for SnOz as are observed in 
TiOz-a point which will be amplified be- 
low. 

3.2. Electron Hole Formation 

The valence band of SnOz is constructed 
from oxygen 2p states and the conduction 
band from Sn s-like orbitals (23). It is thus 
possible to estimate the band gap of Sn02 
assuming that electron transfer between ox- 
ygen and tin ions occurs. Our model for the 
hole state is thus the localized O- ion while 
for the electron state it is the Sn3+ species. 
This localized description is probably ac- 
ceptable for the electron state but is some- 
what more questionable for the hole state. 
Within such a description, however, it is 
possible to combine CASCADE inter- 
atomic energies with free ion intraatomic 
energy terms to yield formation energies for 
both states. Here we make the simplifying 
assumption that such ionization energies 
differ little from free atom values (see, for 
example, Ref. (24)). Terms for this band 
gap computation are collected in Table IV. 
This calculated value of 4.69 eV for the 
thermal band gap compares with the experi- 
mentally found optical gap of 3.6 (25); the 
experimental thermal gap will be lower than 
this value. However, with a band gap of 
this size SnOz will be a poorly conducting 
material unless its electronic structure is 

TABLE IV 

ELECTRON-HOLE FORMATION 

CASCADE calculated terms Energy (eV) 

snl. (= e’) 37.84 
0; (= h’) 16.33 

Intraatomic terms Energy (eV) 
O- + e- + O*- 8.75 
Sd+ + em + Sn4+ 40.73 

Note. The thermal band gap is, therefore, EB = 37.84 
+ 16.33 - 8.75 - 40.73 = 4.69 eV. 

suitably modified. Hence it is found experi- 
mentally that high electrical conductivities 
are only observed in reduced or doped 
specimens (see, for example, Ref. (26)). In 
the light of our study of intrinsic disorder in 
the material (Section 3.1) and previous ex- 
perimental observations it seems that re- 
duction (or in some cases doping-see Sec- 
tion 4) leads to the formation of doubly 
ionized oxygen vacancies: 

O. = V; + to, + 2e’. 

Using our calculated energies we are now 
in a position to estimate the energetics of 
this reduction process, END, which we 
may write as 

ERED = &k - ii&&, - Eo + 2E,, 

where O&c is the oxygen vacancy forma- 
tion energy, Dtot) the oxygen molecule dis- 
sociation energy (for which we use a value 
of 5.18 eV), and EO is the sum of the first 
and second electron affinities of oxygen; E, 
is the energy of introducing an electron into 
the conduction band of SnOz from the vac- 
uum. We calculate a value of 3.65 eV for 
END . Owing to the several approximations 
involved in the calculation we must be cau- 
tious in giving detailed interpretations. But 
the high positive value suggests only a 
small deviation from stoichiometry in 
agreement with experiment. 



4. Dopant Ion Calculations 

In this section we report calculated ener- 
gies for dopant ions in the SnOz lattice. 
Such studies need satisfactory potentials 
for the interaction of dopant ions with the 
host lattice. For a number of ions, where 
alternative methods are not available, we 
have obtained these potentials using elec- 
tron gas (27) or “shifted electron gas” (28) 
methods of derivation. However, following 
Lewis and Catlow (14) we have preferred 
where possible to use empirically derived 
potential parameters, fitted to the structural 
and crystal properties of the dopant oxide 
in question. We frequently require the cal- 
culated lattice energy of the dopant oxide in 
studies of solution enthalpies and it is im- 
portant that the dopant oxygen potential be 
capable of accurately modeling the solute 
dopant oxide crystal. Appendix 1 gives de- 
tails of the potentials used in our calcula- 
tions . 

4.1. Incorporation of Dopants into the 
SnOz Lattice 

Defect formation energies have been cal- 
culated for a range of cations in the SnOz 
lattice as both substitutional and interstitial 
modifications of the perfect crystal. These 
energies are presented in Table V. Solution 
enthalpies for dopant oxides in SnOz may 
be readily predicted from the calculated lat- 
tice energies (Table VI) and appropriate 
charge compensating defect energies (Table 
III). + 

The choice of charge compensating de- 
fect is obviously critical in these calcula- 
tions. We recall that the intrinsic form of 
disorder predominant in SnOz is of the 
Schottky type and we might therefore 
expect anion and cation vacancies, respec- 
tively, to compensate for negative and 
positive residual charge upon impurity in- 
corporation. However, we note that 
experimental studies do not unanimously 
concur in this expectation (see, for exam- 
ple, Ref. (3)) and we have, therefore, also 
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reported values for anion and cation inter- 
stitial compensation. It is of interest to 
compare the relative enthalpies of substitu- 
tional and interstitial modes of solution. 
Calculated solution enthalpies are reported 
in Table VII. (Details of the energy cycles 
used to prepare this table are given in Ap- 
pendix 2.) We note that at this stage it has 

TABLE V 

DEFECT ENERGIES FOR DOPANT IONS IN Sn02 

Cation 

Li+ 
Na+ 
K+ 
Rb+ 

Mg*+ 
Ca2+ 
Sr*+ 
Ml?+ 
Fez+ 
co*+ 
Ni*+ 
Ba*+ 

Al’+ 
Sc’+ 
Ti3+ 
V’+ 
Cr3+ 
Mn3+ 
Fe’+ 
Y’+ 
Ce3+ 
Nd’+ 
Er-” 
Gd’+ 
Ho3+ 
Yb’+ 
Lu’+ 
Fv+ 

Ti4+ 
Si4+ 
Pb4+ 
Mn4+ 
zI4+ 
Ce4+ 
U4+ 
TV+ 

Substitutional Interstitial 
defect defect 

Energy (eV) Energy (eV) 

75.81 -4.97 
78.26 0.61 
81.73 6.86 
83.69 9.96 

55.30 -20.72 
60.26 -12.37 
63.67 -7.23 
57.35 -17.41 
56.14 - 19.35 
55.57 -20.16 
55.03 -21.15 
62.14 -9.26 

25.22 -49.11 
30.78 -40.56 
28.16 -44.17 
28.41 -43.70 
34.57 -34.92 
28.19 -44.65 
28.62 -44.23 
35.51 -33.44 
41.62 -24.52 
38.66 -28.91 
37.27 -30.89 
36.93 -31.40 
35.46 -33.50 
34.44 -35.04 
34.02 -35.61 
38.41 -29.26 

-1.18 -70.80 
-12.31 -85.33 

8.60 -55.56 
-2.74 -71.29 

2.92 -63.39 
7.59 -56.95 

12.02 -51.33 
12.22 -51.12 
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TABLE VI 

LATTICE ENERGIES OF DOPANT 
OXIDES 

Oxide Lattice energy (eV) 

L&O -29.98 
NazO -24.75 
Kz0 -22.18 
RbzO -21.18 

MgO -41.29 
CaO -35.95 
SrO -33.42 
MnO -38.73 
Fe0 -40.12 
coo -40.83 
NiO -41.58 
BaO -33.74 

A1203 - 160.50 

SC203 - 144.47 
T&O3 - 150.36 
v203 -150.37 

Cr203 - 136.82 
Mn203 -150.82 

Fe203 - 150.85 

y203 - 134.74 
Ce203 - 124.36 

NW3 - 129.22 

E”203 -131.56 

GMh -132.16 

H0203 -134.79 

Yb03 - 136.76 
Lu203 - 137.55 
fi203 - 129.63 

Ti02 - 112.45 
Si02 -126.12 
Pb02 - 103.44 
Mn02 -113.77 
zfi2 - 108.25 
Ce02 - 104.26 
uo2 - 100.59 
Th02 - 100.38 

Note. Taken from Lewis (13). 

not been possible to derive potentials that 
adequately model Sb205 which is an impor- 
tant dopant. We can, however, make im- 
portant general conclusions about the mode 
of solution of pentavalent dopants, for 
which our calculated defect energies 
strongly favor compensation by cation va- 
cancies . 

From the solution enthalpies presented in 
Table VII it is clear that tetravalent dopants 
show a strong preference for substitutional 
solution in SnOz . However, for mono-, di-, 
and trivalent dopants two forms of solution 
are important. For the lighter elements 
“self charge-compensation” is energeti- 
cally favored leading to the formation of 
both substitutional and interstitial dopant 
ions within the lattice. The heavier ele- 
ments form substitutional solutions with 
anion vacancy charge compensation. 
Which of these two modes of solution pre- 
dominates will clearly have an important 
bearing on the properties of doped SnOz. 
However, we note that at present our 
model takes no account of the possible in- 
teraction of the dopant cation with a 
charge-compensating defect. 

For the “light” mono-, di-, and trivalent 
cation impurity ions in Sn02 (those favoring 
“self-compensation”) there will be a pro- 
portion of dopant species in interstitial 
sites. We recall that the interstitial site in 
Sn02 is in the vacant channel within the 
rutile structure. Analogy with previous ex- 
perimental studies on TiOz (see, for exam- 
ple, Refs. (29, 30)) and theoretical studies 
currently underway on SnOz indicate that 
ionic migration occurs readily along this 
channel. Thus we would expect impurity 
migration to be strongly facilitated in doped 
samples-a direct result of the “self-com- 
pensating” mode of solution experienced 
by these ions. This finding will be of impor- 
tance in the understanding of device aging 
characteristics which may proceed via dop- 
ant migration. For the tri- and tetravalent 
dopants predicted to form substitutional so- 
lutions with oxygen vacancy compensa- 
tion, impurity migration would be consider- 
ably slower. 

5. Redox Properties of Doped SnOz 

One Of the main objectives of doping 
Snot is to modify its electrical properties. 
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TABLE VII 

ENERGIESOF SOLUTION FOROXIDES IN Sn02 

Mode of solution 

Oxide 

Substitutional Substitutional Interstitial Interstitial Substitutional 
dopant anion dopant cation dopant anion dopant cation interstitial 

vacancy interstitial interstitial vacancy dopant 
compensation compensation compensation compensation compensation 

Liz0 
NazO 
K20 

RbzO 

9.20 II.% 5.87 4.22 2.55 
9.04 11.79 8.83 7.19 4.73 

11.22 13.98 13.79 12.15 9.00 
12.69 15.44 16.39 14.75 11.31 

MS0 5.30 7.14 12.26 8.97 3.24 
CaO 4.92 6.76 15.27 11.98 4.56 
SIO 5.80 7.64 17.88 14.59 6.30 
MnO 4.79 6.63 13.01 9.72 3.36 
Fe0 4.97 6.81 12.46 9.17 3.18 
coo 5.16 6.95 12.36 9.07 2.49 
NiO 5.32 7.16 12.12 8.83 3.18 
BaO 4.59 6.43 16.17 12.88 4.84 

A12o3 

SC203 

T&O3 
v203 

Cr203 

a203 

Fe203 

y203 

Ce203 

NW3 

E”203 

WO, 

4.49 5.40 18.68 13.74 3.88 
2.03 2.95 19.21 14.28 2.17 
2.36 3.27 18.55 13.61 2.25 
2.61 3.53 19.02 14.09 2.56 
1.99 2.91 21.03 16.09 2.60 
2.62 3.53 18.30 13.36 2.38 
3.06 3.98 18.75 13.80 2.82 
1.90 2.81 21.47 16.53 2.63 
2.82 3.73 25.20 20.26 4.26 
2.29 3.20 23.24 18.30 3.37 
2.07 2.98 22.43 17.49 3.00 
2.03 2.94 22.22 17.28 2.92 
1.87 2.79 21.43 16.50 2.61 
1.84 2.75 20.88 15.94 2.44 
1.81 2.73 20.70 15.77 2.38 
2.24 3.16 23.09 18.16 3.30 

Ti02 
Si02 
fio2 

Mn02 
zfl2 

Ce02 
uo2 

l-ho2 

0.59” 
3.13” 
1.36” 
0.35” 
0.49” 
1.17” 
1.93” 
1.92” 

- 
- 
- 
- 
- 
- 
- 
- 

25.03 18.45 
24.17 17.59 
31.26 24.68 
25.86 19.28 
28.24 21.66 
30.69 24.11 
32.64 26.06 
32.64 26.06 

- 
- 
- 
- 

- 
- 

0 No charge compensating defect is necessary for the tetravalent impurities in substitutional sites (see Appen- 
dix 2). 

Hole states will be created on oxidation of as discussed in the previous section), and 
materials doped with low valence ions (pro- electron states, by reduction of high valent 
vided that these are not self-compensating (penta- or hexavalent ion) doped materials. 
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In the former case the defect reaction will 
be 

V,, + 40, + O. + 2h+ 

for which we can write the energy expres- 
sion 

where J??h is the energy to create a hole by 
removing an electron to the vacuum. Using 
the energies previously calculated or 
quoted we obtain an energy of 5.53 eV. 
This high value indicates that good p-type 
conductivity will require very high oxygen 
pressures. The difliculty in producing good 
p-type conduction in SnOz will be enhanced 
by the tendency for self-compensation of at 
least the lighter low valence dopants. 

Very different behavior is found with the 
pentavalent dopants, for which the appro- 
priate redox reaction is 

tV’ii - HSnOz) -+ BSnsn + tO2, 
where by (SnO& we indicate a mole of Sn02 
(from the surface) which is consumed in the 
reduction process. The energy of this reac- 
tion, END, may be written as 

ERED = &!M&~ - iEP’@ - @(02) - !d%, 

where Sn4fAc is the formation energy of the 
tin vacancy and Ep”2 is the lattice energy 
of Sn02. The calculated value of END is 
- 1.53 eV. This favorable energy indicates 
that reduction is a thermodynamically fa- 
vorable process in, e.g., Sb(v) doped mate- 
rials and that as a consequence pentavalent 
doped materials will be good n-type semi- 
conductors. 

6. Conclusions and Future Work 

The work described in this report has 
dealt with the problems of intrinsic disorder 
and dopant oxide solution in SnOz. Three 
main conclusions are evident from this 

study. First, we find that in the nonstoi- 
chiometric SnOz-, , anion vacancies will be 
the dominant type of defect. In this con- 
text, further work in which mass action 
techniques are employed to study interac- 
tion of bulk SnO;? with its gaseous environ- 
ment is planned. Second, in the doped ma- 
terial, for many important impurity ions, a 
significant proportion of dopant species will 
be in interstitial sites. This self-compensat- 
ing mode of solution will facilitate dopant 
ion migration. Third, we predict that while 
doping with trivalent ions leads to only 
poor p-type behavior, doping with pentava- 
lent species will result in good n-type con- 
ductivity. 

There remain several problems in the 
study of Snot which the present report has 
not addressed. The energetics of dopant 
ion-defect interactions may be determined 
with the Mott-Littleton approach, as may 
the migration energy as for ionic materials. 
The results of such calculations will be re- 
ported in the future. 

Appendix 1 

Potential Parameters Used in Defect 
Calculations 

Interaction AW) PC& 
Method of 
derivation 

Li+-02- 292.3 0.3472 
Na+-O*- 611.1 0.3535 
K+-02- 902.8 0.3698 
Rb+-02- 1010.8 0.3793 
Mgz+-02- 1428.5 0.2945 
C$+-02- 1090.4 0.3437 
!%t+-oZ- 959.1 0.3721 
M,$+-02- 1007.4 0.3262 
Fez+-@ 1207.6 0.3084 
coz+-02- 1491.7 0.2951 
Ni2+-@ 1582.5 0.2882 
B$+-()- 1214.4 0.3522 
Al3+-02- 1474.4 0.3006 
sc3+-02- 1299.4 0.3312 
Ti3+-02- 1715.7 0.3069 
v3+-(p 1790.2 0.3061 
w+-02- 1255.2 0.3490 

e.g. 
e.g. 
e.g. 
e.g. 
e.g. 
em. 
em. 
em. 
em. 
em. 
em. 
em. 
em. 
em. 
em. 
em. 
e.g. 
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Appendix 1 

Method of 
@teraction AfeW P(fQ derivation 

‘&,3+-02- 1257.9 0.3214 em. 
Fe3+-02- 1102.4 0.3299 em. 
y3+-02- 1345.1 0.3491 em. 
Ce3+-02- 1732.2 0.3588 e.g. 
N@+-OZ- 1379.9 0.3601 em. 
&,3+-C)- 1358.0 0.3556 em. 
G@+-02- 1336.8 0.3551 em. 
J-Jo’+-02- 1350.2 0.3487 em. 
yb3+-02- 1309.6 0.3462 em. 
La3+-02- 1347.1 0.3430 em. 
pu3+-02~ 1376.2 0.3593 em. 
&p+-(y- 858.4 0.3849 s.e.g. 
Ti4+-02- 754.2 0.3879 em. 
Si4+-02- 913.2 0.3428 e.g. 
pb4+-t-J- 2168.4 0.3489 e.g. 
&4+-02- 1396.4 0.3440 e.g. 
zr4+-o*- 1608.1 0.3509 e.g. 
&4+-o- 1986.8 0.3511 e.g. 
~4+-02~ 2246.8 0.3554 e.g. 
Th4+-02- 2201.1 0.3570 e.g. 
&g+-@- 638.5 0.4079 s.e.g. 

Abbreviations used: em., empirical (13); e.g., elec- 
tron gas (27); $.e.g., shifted electron gas (28). 

Appendix 2 

Calculation of Solution Enthalpies for 
Dopant Oxides 

A. Monovalent Oxide, M20 

(a) Substitutional solution, anion va- 
cancy compensation 

Es, = Mhs + jot, + Epo2 - iEp”. 

(b) Substitutional solution, cation inter- 
stitial compensation 

Es, = M,:bs + $Sn”,: + iEsflo2 - #PO. 

(c) Interstitial solution, anion interstitial 
compensation 

El, = M& + 40;“; - $Ep”. 

(d) Interstitial solution, cation vacancy 
compensation 

EI, = Mi+, + $Sn$& + @‘02 - Ep”. 

(e) Self-compensation 

E,K = aM,:b, + $M& + aEpo2 - $EF’. 

Key 
Mz&: Energy to replace Sn4+ at lattice 

site by M+. 
Mkt: Energy to introduce M+ into inter- 

stitial site. 
0:;: Energy to create oxygen vacancy. 
O&Y: Energy to introduce oxygen intersti- 

tial. 
Sri”,=: Energy to create tin vacancy. 
Sri!‘,:: Energy to introduce Sn4+ intersti- 

tial. 
J!$L”? Lattice energy of SnOz . 
E?‘: Lattice energy of M20. 

B. Divalent Oxide, MO 

(a) Substitutional solution, anion va- 
cancy compensation 

Es, = M;,$& + 0;; + ESjlo2 - Ef’. 

(b) Substitutional solution, cation inter- 
stitial compensation 

Es, = M$bs + &i$ + &Ef!‘” - Eri”‘. 

(c) Interstitial solution, anion interstitial 
compensation 

EI, = M$: + O$ - Ef’. 

(d) Interstitial solution, cation vacancy 
compensation 

EI, = M$ - !&r”,w + +Ef!‘@ - EF”. 

(e) Self-compensation 

Eself = &%f~&,, + ;M2: + fEsjlo2 - Ef’. Ill 

Key 
As above plus Ee”: Lattice energy of 

MO. 

C. Trivalent Oxide, M203 

(a) Substitutional solution, anion va- 
cancy compensation 

Es, = ikt$b, + fo;, + Esjlo2 - hEpi”,. 
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(b) Substitutional solution, cation inter- 
stitial compensation 

Es, = M:& + $Sn$ + $Ep% - !zEfJ203. 

(c) Interstitial solution, anion interstitial 
compensation 

EI, = Mf$ + $Sn4+ vat + 2EpQ - $Ef=“. 

(d) Interstitial solution, cation vacancy 
compensation 

El, = Mf; + #Of,,; + $EfYo2 - &?Zpo3. 

(e) Self-compensation 

Eself = $M:& + iM$ + $Esno’ - L @p. 

Key 

As above plus Ep”3: Lattice energy of 
M203. 

D. Tetravalent Oxide, MO2 

(a, b, e) substitutional solution 

Es, = Es, = Eself = M:& + EpQ - Eyo2. 

(c) interstitial solution, anion interstitial 
compensation 

EI, = M$ + 20;; - Ef@. 

(d) interstitial solution, cation vacancy 
compensation 

EI, = Mg + Sn4+ vat + Epo2 - Ef@. 

Key 
As above plus EF”2: Lattice energy of 

MOz . 
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