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There is much evidence that X-ray measurements of sufficient accuracy reveal deviations from the 
linear dependence of unit-cell parameters on composition, i.e., departures from Vegard's rule. The 
dependence of such deviations on composition for a random solid solution with one substitutional 
position (Ax.B).)C is usually of a parabolic form: 8a = XlX2O', where o" is positive. Many attempts 
to explain tfiese observations are based on elastic models. It is known that less than 50% of the 
predictions of these models are conect. An alternative model under consideration is a simple geometric 
one. It is concerned with secondary atomic displacements around substitutional defects, i.e., shifts of 
the second nearest neighbors. The result is structurally dependent and the analysis deals with binary 
solid solutions of B1 (CN = 6), B3 (CN = 4), and B2 (CN = 8) structure types. For instance, in 
sodium chloride structure-type solid solutions, the following simple equation is valid, 

8 h = (3/2)xIx2(AR)Z/R,  

where AR is the difference in interatomic distances of pure components and R is the average interatomic 
distance. Calculations for NaC1-KC1, NaCI-NaBr, KCI-KBr, and other systems are in good agreement 
with experimental data. �9 1992 Academic Press. lnc. 

Introduction 

T h e  70 y e a r s  fo l lowing  V e g a r d '  s d i s c o v e r y  
(1) o f  a l inea r  d e p e n d e n c e  o f  the  unit  cell  pa-  
r a m e t e r s  in a sol id  so lu t ion ,  (AxB~2)C, on the  
c o m p o s i t i o n  o f  tha t  so lu t ion ,  

a = xla 1 + x2a2 (1) 

(a,  a I, and  a 2 a re  uni t  cel l  p a r a m e t e r s  o f  a 
so l id  so lu t ion  and  e n d - m e m b e r s ,  x 1 and  x a 
a r e  m o l a r  f r ac t ions  o f  e n d - m e m b e r s ,  AC and  
BC), h a v e  w i t n e s s e d  not  on ly  a lot  o f  sup-  
p o r t  for  this  ru le  bu t  a l so  a n u m b e r  o f  dev ia -  
t ions  f rom it as wel l .  G e n e r a l l y ,  wi th  in- 
c r e a s i n g  e x p e r i m e n t a l  a c c u r a c y  the  c a s e s  o f  
d e v i a t i o n  f rom V e g a r d ' s  rule  g r o w  in 
n u m b e r .  
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N u m e r o u s  a t t e m p t s  we re  m a d e  (2-5) to  
exp la in  and p red ic t  d e v i a t i o n s  f rom Veg-  
a r d ' s  rule.  M o s t  o f  t h e m  b a s e d  on the  t h e o r y  
o f  e l a s t i c i ty  o f  e longa t ion  and  s h e a r  ( 2 - 4 )  
a re  c o n c e r n e d  with  b i n a r y  meta l  a l loys .  T h e  
ana lys i s  o f  these  m o d e l s  (6) s h o w s  tha t  the  
p r o p o r t i o n  of  c o r r e c t  p r e d i c t i o n s  is smal l ,  
abou t  40% on the ave rage .  In  Ref.  (7) a 

m o d e l  b a s e d  on the t h e o r y  o f  e l a s t i c i t y  was ,  
h o w e v e r ,  succes s fu l l y  a pp l i e d  to the  exp l a -  

na t ion  o f  the  de v i a t i ons  f rom V e g a r d ' s  ru le  
o b s e r v e d  for  the  s y s t e m  TiO2 ( ru t i l e ) -SnO2  
(cass i te r i t e ) .  S o m e w h a t  ea r l i e r  (8) the  rea-  
sons  for  de v i a t i ons  f rom V e g a r d ' s  rule  for  
e s sen t i a l l y  ionic  sol id  so lu t ions  (halo-  
gen ides ,  ox ides ,  e tc . )  were  s u b d i v i d e d  into  
g e o m e t r i c a l  and  chemica l .  
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If atomic substitution occurs  in several 
symmetry  nonequivalent  structural sites, 
deviations from Vegard 's  rule (including 
negative and sign-variable deviations) can 
often be explained by the preferential occu- 
pation of  one or several sites (9). The valid- 
ity conditions of  Vegard 's  rule for multiposi- 
tional solid solutions such as perovskite (10, 
11) or spinel (12-14)  were determined by 
means of the model of quasielastic bonds. 

Slight positive deviations can be de- 
scribed by the volume additivity rule 
(Retger 's rule) (15): 

a 3 = x la  ~ + x2 a3. (2) 

In most cases the observed deviations ex- 
hibit a parabolic composit ion dependence 

a = x l a  I -~- x 2 a  2 q- A a  

= xlal  + x2a 2 + XlX2O'. (3) 

The purpose of the present report  is to 
analyze possible geometric reasons for devi- 
ations from Vegard'  s rule in the case of  uni- 
positional substitutional solid solutions (in- 
sulators and semiconductors) .  

Local Displacements of Atoms in the Solid 
Solution Structure 

If a solid solution obeys Vegard's  rule (1), 
the average bond lengths in its structure can 
be found from the analogous additivity rule 

R ( x )  = Rl(X ) = R2(x) = XlR 1 + x2R 2 

= R  2 - x  1AR = R  l + x  2 A R ,  (4) 

where R~ and R 2 are the interatomic dis- 
tances in the end-members AC and BC, and 
AR = R 2 - R~. The assumption that all 
of  the individual bond lengths in the mixed 
crystal are equal to their average values ac- 
cording to rule (4), i.e., relaxation is com- 
pletely absent,  e = 0, corresponds to the 
idea of  the so-called virtual crystal (Fig. 1). 1 

o o I E = (Rsc - RAC)/(RBc -- R~c), where RBc is the B C  
bond length around the B impuri ty  in the A C  host  crys- 

tal, and R~c and R~c are bond lengths of pure end- 
members AC and BC, respectively. 
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FIG. 1. A schema  of A - C  and B - C  bond length 
changes  dependent  on composit ion.  VCA,  virtual crys-  
tal approximation,  no relaxation, e = 0, Vegard ' s  rule 
is flllfilled: R P. full relaxation, e 1, individual bond 
lengths are equal to those  for end members ;  and R exp, 
real changes  in individual bond lengths as a funct ion of  
composit ion.  

Under another assumption all the atoms 
in the solid solution conserve their initial 
sizes, i.e., with the structure relaxation be- 
ing at a maximum (e = I) the individual 
bond lengths are equal to the bond lengths 
in the end-members R~ and R,. This assump- 
tion underlies the model of  bond alternation. 

Both above extreme cases agree equally 
well with Vegard's  rule, which is schemati- 
cally shown in Fig. 1. It is clear that the 
actual changes in the bond lengths of various 
sorts must lie between the limits mentioned.  
In other words, partial relaxation of the 
structure does not contradict  Vegard 's  rule 
(Fig. 1). 

The determination of the degree of struc- 
ture relaxation, i.e., the local displacements 
of atoms, is an independent,  complicated 
enough, experimental  and theoretical prob- 
lem. It is especially difficult to obtain infor- 
mation on local structure by traditional 
methods which carry information on aver- 
age atomic coordinates.  Nevertheless ,  the 
early X-ray diffraction study of solid solu- 
tions K C l - K B r  and KCl-RbCl  (1 : 1) under- 
taken by J. A. Wasastjerna (16) detected a 
decrease in reflection intensities compared  
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to the case of  end-member  crystals. This 
fact cannot be explained only by thermal 
vibrations and requires the assumption of 
noticeable static displacements of  ions from 
their ideal positions. Particularly large local 
displacements,  of  the order  of the difference 
between the interatomic distances of end 
members,  proved to be experienced by the 
atoms in the mixed arrangement (K in the 
first and CI in the second case). An X-ray 
study of  alloys (17) demonstrated that if the 
mixed crystal retains the space symmetry of 
end members ,  a decrease in intensities of 
reflections and the emergence of diffuse 
scattering regions near them speak in favor 
of the local deformation of  the alloy struc- 
ture within several bond lengths around the 
impurity atom. An analysis of  such effects 
(18) showed that local displacements are of 
the order  of the difference of interatomic 
distances; no strict correlation, however,  
was observed between them. 

It was about 10 years ago when it became 
possible to directly determine individual 
bond lengths in mixed crystals by the 
EXAFS (extended X-ray absorption fine 
structure) method. In 1979-1980 this 
method allowed considerable local displace- 
ments of  atoms around impurities to be de- 
tected in metal alloys and then in mixed 
halogenides. As an example,  Fig. 2a illus- 
trates the experimental  composit ion de- 
pendencies of  the nearest  distances Ga-As  
and In -As  in the sphalerite-structure solid 
solution (Ga, In)As (its coordination num- 
ber being equal to 4) (19). As can be seen, 
the maximum change in bond length corre- 
sponding to the dilute solution amounts only 
to 20-25% of  the difference AR = R 2 - R t 
(R 2 > R 1) between the bond lengths in the 
end members.  Thus, the actual interatomic 
distances considerably differ from distances 
in the virtual crystal model,  though the 
weighted mean of  these distances is nearly 
exactly described by Vegard 's  rule. 

It was also observed in that experiment 
(19) that the distributions of  the Ga-As  and 
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FIG. 2. Changes in interatomic distances in (Ga, 
Inl_,t As solid solution by EXAFS data (19). a, dis- 
tances between nearest neighbors In-As and Ga-As. 
Average distances R - X1Rln_As + .r2RGa_A s are in 
agreement with Vegard's rule; b, distances between 
second nearest neighbors As-As; c, distances between 
second nearest neighbors In-In, Ga-Ga, and Ga-In. 

In -As  distances in the solid solution are 
nearly the same as in the end members ,  
which is in accordance with the fact that 
the nearest environment of  both cations is 
uniform and consists only of arsenic atoms. 
As distinct from this, there occurs a bimodal 
distance distribution around the As atoms 
which correspond to the mixed cation (Ga, 
In) environment of this atom. 

The distances between the second nearest  
neighbors (cat ion-cation,  anion-anion)  
considerably differ in their character .  
EXAFS data indicate the existence of  two 
different As-As  distances in the solid solu- 
tions: short distances correspond to the 
A s - G a - A s  configuration and longer dis- 
tances to the A s - I n - A s  configuration (Fig. 
2b). The weighted mean of these two dis- 
tances corresponds to Vegard's  rule (the 
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solid line in Fig. 2b). It is clear that the anion 
packing in the solid solution is strongly dis- 
torted compared to the regular cubic (close) 
packing of anions in the end members. 

A different picture is observed in the case 
of the distances of the cation-cation second 
nearest neighbors. As can be seen from Fig. 
2c all the interatomic distances Ga-Ga, 
In-In, and In-Ga vary to obey Vegard's 
rule (within deviations of the order of 0.05 
A), which follows from the virtual crystal 
model. This means that the atoms in the 
mixed (cation) sublattice, as opposed to 
those in the nonmixed (anion) sublattice, 
occupy nearly regular positions, and distor- 
tions of the ideal packing are relatively 
slight. 

Very similar results were also obtained 
with EXAFS for ionic solid solutions of the 
NaCI (CN = 6) structural type: (K, Rb)Br 
and Rb(Br, I) (20). However, in both cases 
the maximum change in distances is about 
twice that for essentially covalent crystals 
of the ZnS structural type; viz., it amounts 
to about 40%. Relatively large changes in 
distances, about 40%, were also observed 
for St-substituted fluorite CaF 2 (21). In 
these solutions the mixed sublattice can also 
be viewed as a slightly distorted packing and 
the common atoms being displaced from the 
ideal positions. The local structure of a solid 
substitutional solution observed by EXAFS 
is in good agreement with numerous theoret- 
ical calculations of structural distortions 
around the impurity in an ionic crystal 
(22-26). A typical result of such calculations 
is the fact that the displacement of the near- 
est neighbors around the impurity in the 
NaCI structure is equal to nearly half the 
difference between the interatomic dis- 
tances: 8R = �89 AR. The displacement of the 
second and more distant neighbors de- 
creases approximately proportionally to the 
square ofinteratomic distances, which is the 
consequence of the model of elastic contin- 
uum (27). 

A more detailed picture of local displace- 
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FIG. 3. Correlation between site compliance parame- 
ter C~ and first coordination number v I. Solid line, cal- 
culated, Eq. (15); points, DLS model; dashed line, av- 
eraged, DLS. 

ments is obtainable by DLS modeling which 
consists in the least-squares optimization of 
individual bond lengths, i.e., their fitting 
some standard distances (which represent 
distances in end members in the case of solid 
solutions). The application of DLS modeling 
to isovalent solid solutions of different 
structures made it possible for Dollase (28) 
to introduce the notion of "site compli- 
ance." This means the actual proportion of 
increase (or decrease) in the bond length 
relative to the difference of the bond lengths 
in the end members in the limit of infinite 
dilution (a very small amount of impurity 
atoms). Dollase made the conclusion (28) 
that the compliance parameter c~ is in- 
versely proportional to the coordination 
number of the nearest neighbors of the im- 
purity because they suffer the largest dis- 
placement (Fig. 3). Thus, less close-packed 
structures (ZnS, ReO3) are characterized by 
large changes in bond lengths, whereas 
close-packed ones (NaCI, CsC1) exhibit 
small changes in bond lengths. It should be 
noted that the calculations by the DLS 
method agree well with experiments. Thus, 
for example, the predicted relaxation of 
bond lengths in the NaC1 structural type is 
about 50% and in the ZnS-type solid solu- 
tions is close to 20%, these results being 
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close to experimental  findings (40-50% and 
20-25%, respectively).  

Primary Displacements in 
Simple Structures 

As follows from the experimental  and the- 
oretical results considered above,  the 
largest displacements in a solid solution 
structure (AxlBx2)C are experienced by 
atoms C in that sublattice where no mixing 
takes place. As regards atoms A and B, they 
form the nearly nondistorted packing. Other 
consequences  of  this assumption are as 
follows. 

If  the environment  of the common atom 
C is uniform, i.e., if it consists either of 
atoms A or of  atoms B, then all the distances 
A - C  or B - C  are the same and equal to the 
mean R (x) (see formula (4)). If the environ- 
ment of the atom C is mixed,  i.e., consists 
of  some atoms A and B, then bond chains 
A - C - B  appear  in the structure and the atom 
C is displaced from its ideal position midway 
between its neighbors toward the smaller 
atom. Let,  for example,  the atom A to be 
larger than B. In this case, the atom C is 
displaced from the center  of the A - C - B  
chain toward B and the distance A - C  be- 
comes equal to R + u, where u is a certain 
displacement of the atom C. 

A change in the distance C - B  in the 
A - C - B  chain is dependent  on the bond 
angle < A - C - B  and can be represented in a 
first order  approximation as 

u~ = u cos a,  (5) 

where o~ = < A - C - B .  Let  us call these dis- 
placements primary ones. 

In the NaC1 structure (an octahedral  ar- 
rangement) the A - C - B  chain is linear, c~ = 
180~ and, consequently,  ul = - u .  In the 
ZnS structure (a tetrahedral coordination) 
o~ = 109028 ' and, therefore,  u I = - (1 /3)  u. 

In the CsCI structure with a cubic envi- 
ronment  of the central atom there exist three 
types of  chains with the angles 180 ~ 109~ ' , 

and 70~ '. From Eq. (5) it follows that in 
this case 

H 1 ~ - -  H ,  

i 
i t  I = - ~ 1  H .  

Thus, in a first order  approximation,  the 
bond lengths around the impurity in the 
NaC1 structural type become mutually com- 
pensated, due to their changes, by + u and 
- u, respectively. In the ZnS structural type 
the displacement of  the common atom along 
one of  the bond lines by an amount of  u is 
compensated for by changes in each of the 
other  three bond lengths by - ~  u. In the 
CsCl structural type the displacement of  an 
atom from the cube center  makes the length 
of  one bond increase by u and that of the 
other bond decrease simultaneously by - u. 
In addition, an increase in the bond length 
by u is accompanied by a reduction of  the 
other  three bonds by - ~  u, and a decrease 
in the bond length by - u is accompanied by 
an elongation of  the other  three bonds by 

u. In other  words,  primary displacements 
completely compensate  for one another  and 
cannot  be the reason for deviations from 
Vegard 's  rule. 

Radial Force Model of a 
Random Solid Solution 

Now let us try to estimate primary dis- 
placements using the simple model of  radial 
forces.  Denote by e (R) the energy of a 
certain pair of  bound atoms separated by a 
distance R from each other.  The number  
of the A - C  bonds in the A - C - A  chains is 
proportional to the probability of  their oc- 
currence in the solid solution, i.e., to x2~, 
their number  in the A - C - B  chains being 
proportional to x~x2. Similarly, the number  
of  the B - C  bonds in the B - C - B  chains is 
proportional  to x~ and their number  in the 
B - C - A  chains to x2x ~. 

The energy change in the formation of  the 
solid solution may be represented as 
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A E  = Nv{x~  [el(R) - el(R1)] 

+ x 2 [e2(R ) - ez(R2) ] 

+ x lx2{e l (R 1) - el(R1)] 

+ X2Xl[e2("R2) - e2(R2)]}. (6) 

Here  N i s  Avogadro ' s  number ,  v is the coor- 
dination number ,  el(R1) and e2(R2) are the 
bond energies in the end members ,  e~(R) 
and e2(R ) are the energies of  two bond types 
( A - C  and B - C )  at a mean distance R in 
symmetr ic  bond chains, and e l (R  0 and 
e2(R2) are the energies of  these bond types 
in nonsymmet r i c  bond  chains. 

The distances R 1 and R 2 depend on dis- 
p lacements  of  C a toms in accordance  with 
the bond angles as shown in the previous 
section. For  example ,  for the NaC1 structure 

R 2 = R + u ,  

- R l  = R - u .  

Expand  the energy h E  into a Taylor  se- 
ries. Leaving  the first and second order 
terms and taking into account  that the first 
derivat ive e ' (R )  = 0 (at T = 0 K) in the 
equilibrium state, we have 

e(R)  - e(Ro) = ~ " R 2e ( o)(R - Ro) 2. 

I f  we assume that the proper t ies  of  the com- 
ponents  are close, i.e., e'[(Rl) = e~(R2) = 
e"(R), we obtain f rom (6) that 

A E  = �89 - RI)  2 

+ x2(R - Re) 2 + xlx2(R - R1 - u) 2 

+ XlX2(R _ R2 + /,/)2]. (7) 

Using Vegard ' s  rule in form (4) we can re- 
write express ion (7) as follows 

A E  = ~ N~,e"(R)[2x~x2(AR) 2 

+ (x2AR - u) 2 + ( x IAR + u)2]. (8) 

Minimizing AE as a function of the displace- 
ment  u we arrive at the condition 

d A E  _ x~x2 
N u e " ( R )  -d-d 5 

[ - 2 x z A R  + 2u - 2x~AR + 2u] = 0, 

wheref rom 4u = 2 AR(x l  + x2). As xl +, 
x 2 = 1, finally we have 

u = �89 AR. (9) 

This result means that the displacement  
of  the common  a tom in the NaC1 structure 
amounts  to half the difference of the in- 
teratomic distances in the end members .  
This est imate is close to the exper imenta l  
data reported in (20) and to the compl iance  
paramete r  of  the DLS method (28). 

In solid solutions of  the ZnS structural 
type the displacement of  the common  a t o m  
in the case of  its nonsymmetr ica l  environ- 
ment,  i.e., in the A - C - ( B )  chain, by an 
amount  o fu  is connected with the simultane- 
ous change in the length of  the other three 
bonds B - C  by - �89  u. Thus,  the individual 
bond lengths 

R~ = R  + u = R o - x  1AR + u, 

(3 •  --- R - ~u = R 1 + x~_ AR - ~u.1 (10) 

Earlier the model of  radial force field was 
used (29) for the mixed tetrahedral  coordi- 
nation of a central a tom and the following 
value of the pr imary displacement  was ob- 
tained: 

u - ~ R .  (11)  

The pr imary  displacement  obtained is in 
agreement  with the atomic displacements  
observed  by E X A F S  (20-25% of the bond 
length difference in the end members )  and 
with the predict ions of  the DLS method (28) 
(the compliance pa ramete r  c S = 0.84). 

As shown in the preceding section, in 
solid solutions of  the CsC1 structural type 
each pr imary displacement  -+u is accompa-  
nied by three displacements  w-�89 u. There-  
fore, the total energy change in the approxi-  
mation of radial forces may be expressed  as 

A E  = f ~  Nue" (R)  I2x lx2(AR)2 

+ ( x I A R  - u) 2 
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Minimizing (12) as a function of u yields 

d A E  _ xlx2 
du 2 N v e " ( R ) ( -  2x~AR 

+ 2 u -  2 x 2 A R + 2 u  +~u)  = 0 ,  

wherefrom u = ] AR. 

(13) 

This result is also in good agreement with 
the estimate of  the site compliance in the 
CsC1 structure: c~ = 0.38 (28) (cf. ~ = 
0.375). 

Generalizing the above estimates of pri- 
mary displacements of the central atom in 
the coordination polyhedron in the case of 
its nonsymmetr ic  environment,  we may 
write the expression 

3 
u = - - A R ,  (14) 

where v 1 is the first coordination number. 
This is in agreement with Dollase's conclu- 
sion (28) that the site compliance is in- 
versely proportional  to the number of li- 
gands. In other  words,  we have the 
following simple relation between cs and ~,~, 

c~ = 3/v 1, (15) 

which is compared (Fig. 3) with the DLS 
results. As seen, significant deviations from 
the solid line calculated by Eq. (15) reveal 
those structures (Li20, ReO3) which are not 
analyzed in present  paper. 

Secondary Displacements and Deviations 
from Vegard's Rule 

Primary displacements of  the neighbors 
of the central atom in a mixed coordination 
polyhedron,  which may be est imated by for- 
mula (14), entail displacements of the sec- 
ond and higher orders.  Let  us consider an 
octahedral  arrangement with one substi- 
tuted atom in the vertex of a regular octahe- 
dron if the assumption is made of  the regular 

u 2 
6 R=2~- R 

p=6(XlX5 + X2 x5 ) 

FIG. 4. Octahedral arrangement of  an atom shifted 
from center  with one substituted ligand. 6R, change of  
distances between second nearest  neighbors; P,  proba- 
bility of  the configuration. 

undistorted packing of  the mixed sublattice 
(Fig. 4). As can be seen, the displacement 
of the atom C from the octahedron center 
along the bond causes changes not only in 
the two bond lengths by amounts + u  and 
- u, respectively,  but also in the other  four 
bond lengths. It can easily be found that the 
change in the symmetric bond length is 8 t 
= ~ + u 2 - R ~ u2/2R (to second order  
terms, i.e., secondary displacements). In 
the case of two substituted atoms in the oc- 
tahedron (Fig. 5) all the bonds experience 
additional secondary displacements by 62 = 
u2/R and in the case of three substituted 
atoms (Fig. 6) by 63 = 3 u2/2R. 

The general expression for secondary dis- 
placements is as follows: 6i = (i/2)(u2/R) 

(i = I, 2, 3). The doubled and trebled dis- 
placements for i = 2 and i = 3, respectively,  
are connected with the fact that all of  the 
ligands become the second nearest  neigh- 
bors of two (i = 2) or three (i = 3) substit- 
uents. 

The proportion of various configurations 
for different compositions can be calculated 
by the binomial formula 

P = (xl + x y .  (16) 
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R=2 _~2 ~ R=O 

2 4 4 2 P = 1 2 ( x 2 x 4  + x4  x22 ) P=3 (x 1 x 2  + X l X  2 )  

FIG. 5. Octahedral arrangement with two substituted ligands and corresponding displacements 8R and 
probabilities P. 

The probabilities of individual configura- 
tions are determined by the expression 

P i  v o~ = m i x l  x 2 , (17) 

where ~ is the amount  of atoms of the other 
sort in the polyhedron vertices and rn i is 
the multiplicity of  a given configuration (the 
corresponding coefficient in the binomial 
theorem). The multiplicities m i can be found 
from the relation 

m i = --, (18) 
t/ 

where n is the symmetry  order  of the regular 

coordination polyhedron and n i is the sym- 
metry order of the ith configuration ("sub-  
st i tuted" polyhedron).  Thus, for instance, 
the multiplicity of the first configuration in 
Fig. 4 is 

48 
- -  6 ,  IT/l -- 8 

because 48 is the symmetry (m3m) order  of  
the regular octahedron and 8 is the symme- 
try (4 r a m )  order of the one-substituted octa- 
hedron. 

It should be noted that secondary dis- 
placements refer to the distances between 

_~ 3u 2 
R-z y- R 

P=Sx3 x 3 2 

u 2 
R=2 2-R 

3 3 P=12 x I x2  

FIG. 6. Octahedral arrangements with three substituted ligands and corresponding displacements 8R 
and probabilities P. 
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the central atom and second neighbors of  
the substitutional defect and that formulas 
(16) and (17) determine the probabilities of 
primary displacements.  The number  of  sec- 
ondary displacements is to the number  of  
primary displacements as l = v2/v ~, where v~ 
and v 2 are the first and second coordination 
numbers,  respectively.  Therefore ,  the rela- 
tive probabilities of  secondary displace- 
ments can be calculated by the formula 

Pi  = mi l x l  x2.  (19) 

Now it is possible to obtain the final 
equation 

aR = ~ P; a,. (20) 
i 

Taking into account  that l = 12/6 = 2 for 
NaC1 (B1) and using the above quantities 
ai = iu2/2R (i = 1, 2, 3) we may reduce sum 
(20) to the form 

(SRm= 6x~x2 ( R )  . (21) 

It was found in the preceding section that 
u = A R / 2  for the NaC1 structural type. Ac- 
cordingly, 

aR m a (AR) 2 
= ~x lx2  R (22) 

In the case of a tetrahedral arrangement 
there occur  two configurations: with one 
and with two substituents, Fig. 7. The corre- 
sponding primary and secondary displace- 
ments and their probabilities are presented 
in Fig. 7. The ratio of the numbers of second- 
ary and primary displacements l = 3 in ac- 
cordance with the ratio u2/v ~ = 12/4 = 3. 

Summation (20) yields in this case 

~)RB3=-4XlX2 ( ~ ) ,  (23) 

and, subject to u = 43 AR for the ZnS (B3) 
structure, we have 

( A R )  2 
8RB3 = ~ X~X 2 R (24) 

The cubic arrangement in the CsC1 (B2) 
structure allows 13 configurations with sub- 
stitutions in one, two, three, and four verti- 
ces of  the cube. The corresponding primary 
and secondary displacements and their 
probabilities are presented in Figs. 8-11. 
For  structure B2 the ratio of  the number of 
secondary displacements to that of  primary 
displacements is / = 3.25 in accordance with 
the fact that the second (u2 = 6), third @3 
= 12), and fourth (v 4 = 8) neighbors of 
substitutional defects take part in these dis- 
placements.  In this case summation (20) 
yields 

8RB2 = 8 xlY2 ( ~ ) .  (25) 

With u = ~ AR for structure B2 in mind, we 
arrive at the expression 

6RB. ' = 9 ( A R )  2 
_ ~ x l x  2 -R . (26) 

Equations (21), (23), and (25) can be written 
in general form 

6 R =  v l x l x 2 ( R ) ,  (27) 

whereas Eqs. (22), (24), and (26) in the form 

9 (AR) 2 
aR = - -  x Ix 2 -  (28) 

Pl R 

Comparison of the Geometric Model with 
Experimental Evidence 

Few measurements of  the composit ion 
dependence of the lattice parameter  are re- 
ported for solid solutions of the CsC1 struc- 
tural type. The deviations from Vegard 's  
rule observed in CsC1-CsBr did not exceed 
-+0.002 A for all compositions ( 3 0 - 3 2 ) .  The 
estimate by formula (26) yields the following 
result: the maximum deviation for the corn- 
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\ \  . - 

/ i ' x .  ~\.. 

I I  ".,,N 
I I  ,, 

t i  
J 

u2 
$ R = u + 3 ( - 3  +~-  R) 

P=4(x 31x2+ x l x3 ) 

2u u 2 2u u 2 
~R=2(~ + ~ ) + 2 ( - ~  4 ~  ) 

2 2 
P=6x I x 2 

F[o. 7. Tetrahedral arrangements with one (a) and two (b) substituted ligands and corresponding 8R 
and P.  

position of x I = x 2 = 0.5 amounts to 
+0.0017 ,~, which does not contradict the 
experimental evidence. 

Reference (33) reports the experimental 
results of the composition dependence of 
the unit cell parameters for low-temperature 
(structure B2) and high-temperature (struc- 
ture BI) solid solutions NH4C1-NH4Br. 
Positive deviations from Vegard's rule for 
intermediate compositions (x = 0.5) of the 
low-temperature series reach about 0.004 _+ 
0.002 * (high-angle measurements). For- 

u + u 2 .  
R=u+3(- ~ 3R ) 

7 7 
P=8 (x I x 2 +x  I x 2)  

FIG. 8. Cubic arrangement with one substituted Ii- 
gand and displacements 6R and probability P. 

mula (26) gives 0.002 A, this being in 
agreement with experiment. 

A considerably larger number of measure- 
ments have been made for solid solutions of 
the NaC1 structural type. Table I compares 
the deviations from Vegard's rule measured 
for four systems with those estimated by 
Eq. (22). As can be seen, the agreement 
between theory and experiment is very 
good. 

Less accurate measurements were made 
for systems KC1-RbC1 (38) and KBr-KI  
(39). Positive deviations of interatomic dis- 
tances from the additivity rule in the first 
system lie within the interval 0.001-0.008 
*,  whereas their theoretical values are con- 
tained within a narrower interval of 
0.001-0.003 ~,. For the second system, the 
spread of experimental deviations forms a 
wider interval from -0.001 to 0.017 A. The 
deviations calculated by Eq. (22) do not ex- 
ceed 0.006 A. 

Extensive investigations were made of 
the composition dependence of the unit cell 
parameters for solid solutions of the sphaler- 
ite (B3) and wurtzite (B4) structures. The 
results of these measurements made with 
different degrees of accuracy are sometimes 
contradictory. Thus, for instance, both posi- 
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r-- . i , ,  ,'.t" 
- 4 /  , 1 " -  

u 2 
6R=2(43u + 2u2~3R_ + 6R=2(23u + 3R ) + 

2 ( -  4u + 2u 2 2u u 2 
3 3R ) 2 ( -  3 + 3R ) 

x 2_ 6 .  12(x6x  2 + 2 6  

6R=O 

2 6 P=4(x61x2 + x I ~ )  

FIG. 9. Cubic arrangements with two substituted ligands and corresponding displacements ~R and 
probabilities P. 

tive and negative deviations from Vegard's 
rule were observed for the ZnS-CdS (B4) 
system; however, most of the measure- 
ments agreed with Vegard's rule within the 
limits of experimental errors (-+n x 10 3 A) 
(40, 41). The calculations by means of the 
geometric model (Eq. (22)) show that the 
maximum positive deviation of the parame- 
ters a and c from linearity for intermediate 
compositions does not exceed 0.012- 
0.0 5 X. 

Numerous measurements of the composi- 
tion dependence of the parameters of the 
cubic unit cell (B3) of ZnS-HgS solid solu- 
tions demonstrate agreement with Vegard's 
rule in the limits of no more than -+0.02 
(41). The calculations by means of Eq. (22) 
predict the maximum positive deviation for 
intermediate compositions to be equal to 
0.016 A. 

However, in a series of ZnS-y-MnS solid 
solutions (structure B4) there was observed 

T ~ ~ -  , \  " ,  4 v ' /  I 
I ~'4- ~ ,x.[ \  / I 

I i .~ \~'~\ I 
I .f ~..-~'17 < ~. I 

5u 2 . 5u 2 2 7 u 2 
8n=(u+y~ ) + t-u+g~ )+ ( -g u+ -g -fi- ) + 

+(- 2u+ ~ u 2) 
3 2 R  

P=24(x l x32 + 3 5 X lX  2 ) 

u u 2 u u 2 
(~ R=u+3(---~+~ ) (~R=u+3(--~-+-~ ) 

p=8(x5x32 + 3 5 P = 2 4 ( x l x 3  + x 3  5 X l X 2 )  l X 2  ) 

FIG. 10. Cubic arrangements with three substituted ligands and corresponding 8R and P. 
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I 

4u 2u 2 4u 2u 2 
8R=2('-~-+-'~ )+2(-'~-+"~- ) (~ R=O 

4 P=6x4 x 4 P=6x41x 2 

?) R=O 

4 P = 2 x  4 x 2 

2U 4u 2 
6 R=2u+3(-'~-+~-.~ ) 

~ -  _.2u+ U2.+_ .  2U + U 2. 

I :--"/,~_'~tl-. I 
I A ' / . ~ I  -.~.. I 

4 U 2 U  2 4U 2U 2 . 
R=2('-~-4"-~-'R)+2(-"'~-+'~ ) 

4 4 4 P=24 x 4 x 4 P=24 x I x 2 P=S x 4 x 2 

Fro .  11. Cubic  a r r a n g e m e n t s  wi th  four  subs t i tu ted  l igands and c o r r e s p o n d i n g  6R and  P.  

(41) a noticeable positive deviation from the 
additivity rule of the parameter a; it reached 
0.03 A for intermediate compositions. The 
geometric model predicts far smaller posi- 
tive deviations. This observation shows that 

chemical reasons for deviations of mean in- 
teratomic distances from the additivity rule 
would be additionally analyzed. 

it is possible that the accuracy of predic- 
tions by the geometric model worsens with 

T A B L E 1  

MEASURED AND CALCULATED DEVIATIONS(A) FROM VERGARD'SRULE 

NaC1-KC1 NaCI-NaBr  KCI-KBr  RbI-RbBr 

x t Experimental" Calculated Experimental ~' Calculated Experimental '  Calculated Experimental d Calculated 

0.1 0.0045 0.0046 0.0020 0.0013 0.0010 0.0010 - -  0.0020 
0.3 0.0111 0.01t0 0.0035 0.0031 0.0016 0.0023 0.0050 0.0050 
0.5 0.0127 0.0133 0.0040 0.0037 0.0023 0.0027 0.0080 0.0060 
0.7 0.0105 0.0115 0.0027 0.0031 - -  0.0023 0.0040 0.0050 
0.9 0.0053 0.0050 0.0012 0.0013 0.0008 0.0010 - -  0.0020 

a Ref. (34). 
b Ref. (35). 
c Ref. (36). 
'~ Ref. (37). 



DEVIATIONS FROM VEGARD'S  RULE 235 

a decrease in the packing density. This 
model is based on the assumption that a 
mixed sublattice forms a regular packing; 
i.e., the coordination polyhedrons around 
the central atom (in a nonmixed sublattice) 
are undistorted. In fact, it is not the case 
as can be seen from the EXAFS data for 
the InAs-GaAs system (19). Thus, the 
In-In distances are systematically 0.08 
larger than the Ga-Ga distances for the 
same compositions of the solid solution, 
whereas the Ga-In and In-Ga distances 
are of intermediate values close to the 
additive values (Fig. 2c). Therefore, solid 
solution relaxation occurs in both sublat- 
tices, though in different degrees, and both 
primary and secondary changes in bond 
lengths with respect to those in the end 
members could be less than those in the 
geometric model. 

It should be noted that deviations from 
the additivity rule, i.e., from ideality, of geo- 
metric characteristics of solid solutions are 
closely related to nonideality of other prop- 
erties. In particular, the mixing enthalpy of 
solid solutions is a function of the square of 
the size parameter AR/R, 

AHmi x = x lx2c  ( A R / R )  2, (29) 

where c is a semiempirical parameter con- 
stant for some groups of crystals (42), 
wherefrom a linear correlation between 
these quantities follows 

8R/AHm~ x = R / K ,  (30) 

where K is an energy parameter. The author 
hopes to prove in more detail the existence 
of similar simple correlations between dif- 
ferent mixing properties of substitutional 
solid solutions in another work (43). 
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