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This paper deals with the stability of a flexible space structure subjected to an end rocket
thrust. The thrust acts upon the structure as a follower non-conservative force, thus the
structure can lose its stability by flutter or divergence depending on the system parameters.
It is assumed that the articulated free-free beams are subjected to a tangential follower
force. The model consists of two viscoelastic beams interconnected by two kinds of joints.
One of the joints is composed of a rotational viscoelastic spring while another is a shear
viscoelastic spring. A FEM formulation of the articulated structure is performed. Bending
flutter or post-flutter divergence are shown to occur depending on the joint rigidity and
the internal damping.
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1. INTRODUCTION

Free-free beams have been intensively exploited to simulate the stability behaviour of flexible
missiles and/or space structures propelled by end rocket thrust [1–8]. Beal’s paper [1] deals
with a uniform beam under constant and pulsating thrust including a simplified control
system. Matsumoto and Mote [2] have taken into account the effect of a finite time delay in
the control mechanism. Park and Mote [3] have studied a similar problem with emphasis on
the location and the inertia of a concentrated mass, the location of the follower force
direction control sensor, the sensor gain and the maximum thrust magnitude allowable for
stable planar motion. Wu’s papers [5–7] are concerned with some interesting features of
missiles with and without feedback control. The destabilizing effect of small material
damping is demonstrated by Sugiyama and his collaborators [8]. On the other hand, a
method of determining natural frequencies and mode shapes of free-free beams from the
experimental data of the corresponding constrained structures is dealt with by Chen et al. [9].

Due to the non-conservative nature of the end thrust a consistent dynamic analysis is
needed to correctly predict the stability behaviour [10–12].

2. PROBLEM STATEMENT AND SOLUTION

2.1.  

The jointed space structure under consideration, subjected to an end rocket thrust, is
represented by a simple model of jointed free-free beams, as shown in Figure 1. The joint
between the two viscoelastic beams consists of a spring Kr and a dashpot Cr related to the
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rotational motion, and a spring Ks together with a dashpot Cs connected with the shear
motion. The dimension of the joint itself is assumed to be small and is neglected. The
co-ordinate along the length of the beam is denoted by z while u stands for the lateral
displacement of the section-z. The entire structure is formed by two identical beams, each
one with a bending stiffness EI (E—Young’s modulus of elasticity, I—second area moment
of inertia) and having the Sezawa coefficient of visco-elastic resistance E* (see [13]). Force
P is assumed constant as far as its magnitude is concerned, otherwise its line of action
varies, remaining always tangent to the elastic line at the tail cross-section.

Aerodynamic forces are disregarded in this study and simple beam theory is applied.

2.2.   

The extended Hamilton’s principle can be written as

d g
T2

T1

(T+V+Wc ) dt+g
t2

t1

dWnc dt=0, (1)

where t is the time co-ordinate. Also, for the model in Figure 1, the kinetic energy T, the
elastic potential energy V, the work Wc done by the conservative component of the thrust
and the virtual work dWnc done by the non-conservative forces, are determined as follows:

T= 1
2 g

L

0

mu2
t dz,

V= 1
2 g

L

0

EIu2
zz dz+ 1

2 Kr [uz =z= zb − uz =z= zf ]
2 + 1

2Ks [u =z= zb − u =z= zf ]
2,

Wc = 1
2 g

L

0

P
L

u2
z dz, (2)

where

dWnc = dWncf + dWncd , dWncf =−Puz =z=Ldu =z=L ,

dWncd =g
L

0

E*Iutzzduzz dz−Cr [utz =z= zb − utz =z= zf ]d[u =z= zb − u =z= zf ]

− Cs [ut =z= zb − ut =z= zf ]d[u =z= zb − u =z= zf ].

dWncf is the non-conservative virtual work of the thrust whereas dWncd is due to the
viscoelastic properties of the beams and joints. Differentiation with respect to t and z are

Figure 1. The free-free model.
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Figure 2. The displacement vectors and angles of rotation.

denoted by subscripts, while zb and zf stand for the tip of the rear beam and the downstream
end of the front beam, respectively.

For simplicity the following dimensionless quantities are introduced:

j= z/L, jb = zb /L, jf = zf /L, t= t/L2zm/EI, Q=PL2/p2EI,

g=(E*/EL2)zEI/m, kr =KrL/EI, ks =KsL3/EI,

dr =(Cr /EIL)zEI/m, ds =(CsL/EI)zEI/m. (3)

Substitution of equations (2) and (3) into equation (1), after transformations, leads to
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0

1
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2
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2
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1

0

gutjjdujj dj7 dt=0. (4)

Differentiation with respect to the non-dimensional independent variables t and j have
been denoted by the corresponding subscripts.

The mechanical system under consideration is divided into N equal finite elements, as
shown in Figure 2. The vector V of the displacements and slope angles for the entire
structure is

V= {u1, u1, u2, u2, . . . , ui , ui , u*i , u*i , . . . , uN+1, uN+1}T. (5)

The displacement field within an element is assumed to be

u(j, t)= a(j)v(t) (6)

where

a(j)= {(1− j)2(1+2j), j(1− j)2/N, j2(3−2j), j2(1− j)/N} (7)

is the well-known shape function, and v(t) is the vector of the nodal displacements.
Substitution of equation (6) into equation (4) yields, upon transformations, a matrix
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equation for the entire structure

MVtt +CFt +KV= 0. (8)

Here, M is the mass matrix with elements M(i), C is the dissipation matrix consisting
of C(i), CD1 and CD2 submatrices (the last one being related to the joint dissipation). Also
K is the stiffness matrix formed by the submatrices K(i)

1 , K(i)
2 , L(Ns −N)

1 , KS1, and the joint
stiffness matrix KS2. The constituent submatrices are given in the appendix.

The displacement field varies with time according to an exponential law, namely

V(t)=V0 exp(St), V1 =SV0. (9)

From (8) and (9) one gets

AV	 =SV	 , A=$ 0

−M−1K

I

−M−1C%, V	 =6V0

V17. (10)

In this way the eigenvalue problem is reduced to analyzing the features of the eigenvalues
and the corresponding eigenvectors.

3. RESULTS AND DISCUSSION

The investigation of stability of the free-free beam has been carried out through the
features of the root loci in the complex S-plane. In the present study the internal damping
(both material dissipation within the beams and internal damping at the joint) has been
taken into account. The calculations have been performed for N=8 finite elements. The
joint is located at the center of the structure.

3.1. 

Figure 3 represents four typical fundamental eigenmodes for Q=0, kr = ks =102,
dr =0·01, ds =1·0, and g=0. Figures 3(a) and 3(b) show translational and rotational rigid
body motions, respectively, while Figures 3(c) and 3(d) depict the first and the second
bending motions.

3.2.    

In this section the instability of the beam is investigated depending on the variation of
the joint stiffness parameters kr and ks . In fact, it is assumed that the joint is relatively
rigid with respect to shear deformation. That is why relatively large values of 104, 103 and
102 have been taken for ks , whereas kr is varied within the range 100 −104. The remaining

Figure 3. Some representative eigenmodes (kr = ks =102, dr =0·1, ds =1·0, g=0): (a) rigid-body translation;
(b) rigid-body rotation; (c) first bending mode; (d) second bending mode.
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Figure 4. Root loci (kr = ks =104, dr =0·1, ds =1·0, g=0·001).

parameters, namely dr =0·1, ds =1·0 and g=0·001, are kept fixed. This data gives rise
to several types of instability.

Consider first the standard case of the structure equipped with stiff bending and shearing
springs, that is kr = ks =104. Figure 4 (kr = ks =104, dr =0·1, ds =1·0 and g=0·001)
depicts some typical root loci versus the loading parameter Q in the complex plane with
a real horizontal Re S-axis and an imaginary vertical Im S-axis. The branches 1 and 2

indicate the first and the second bending vibration modes, respectively, while the branches
A and B correspond to rigid body modes. To begin with, consider branch 1. Increasing
Q above 8·91 results in eigenvalues with positive real part. That is why this value is the
flutter critical force, i.e. Qcr =8·91. At the same time the branch 2 is located in the
stable domain. The branches A and B start from the origin for Q=0. The branch B, being
situated in the right-hand half-plane from the start, indicates flutter type of instability,
which, however, is of a rigid-body translation mode. Rigid body motion does not cause
structural damage. For this reason no critical force for rigid body modes will be specified
here.

The case illustrated in Figure 4 is referred to as the first type (I) of instability. This type
of instability can be characterized by the first bending mode flutter, together with inherent
flutter in the rigid-body translation mode. Figure 5 depicts the type of motion performed
by the structure in this type of instability. It is the first bending mode flutter at point N

in Figure 4. Several eigenforms at different instances within a period are shown.
Secondly, consider the structure equipped with a soft rotational spring of kr =101.

Branch 1 in Figure 6 (kr =101, ks =104, dr =0·1, ds =1·0 and g=0·001) shows that for
Q exceeding 11·83 a flutter type instability occurs so that the corresponding flutter force
is Qcr =11·83. Branch 2 does not appear in this figure but it exists exactly in the stable (i.e.
left-hand) region. Also, the branches A and B start from the origin for Q=0. When
afterwards Q is increased from zero, however, branch B enters into the right-hand
half-plane. Then, for Q beyond 6·51 the root locus moves along the Im S-axis=0, and
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Figure 5. First bending mode flutter (kr =104, ks =104, dr =0·1, ds =1·0, g=0·001, Q=10, point N in
Figure 4).

the real part of the root continues to increase in the positive direction. This type of
instability will hereafter be called the Post-Flutter Divergence (for short PF divergence)
with the notation Qpf =6·51 as the PF divergence force. Since any dynamic method to
control flutter does not effectively prevent divergence, PF divergence should be borne in
mind by engineers involved with the present type of structural systems under an end
follower thrust.

The case depicted in Figure 6 is referred to as type II instability. It is characterized by
the appearance of PF divergence.

Thirdly, consider the structure equipped with a very soft rotational spring of kr =1·0.
Observing Figure 7 (kr =1·0, ks =104, dr =0·1, ds =1·0 and g=0·001), we see that branch
2 yields the onset of flutter instability with a critical force Qcr =11·07. Branch 1 is located
in the stable half-plane. Branches A and B start from the origin for Q=0. But if Q is

Figure 6. Root loci (kr =101, ks =104, dr =0·1, ds =1·0, g=0·001).
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Figure 7. Root loci (kr =100, ks =104, dr =0·1, ds =1·0, g=0·001).

increased, branch B shows PF-divergence instability with a critical value Qpf =1·46. The
case considered is designated as type III instability. It can be characterized by flutter in
the second bending mode and PF divergence.

In order to help in understanding the physical aspect of type III instability, the second
bending mode flutter at point H in Figure 7 is shown in Figure 8. Moreover, Figure 9
demonstrates post-flutter divergence instability at point H( in Figure 7.

Finally, we consider the special case of the structure equipped with a soft rotational
spring and a moderate shearing spring, that is kr =5, ks =102. Branch B in Figure 10
(kr =5, ks =102, dr =0·1, ds =1·0 and g=0·001) shows a PF divergence instability

Figure 8. Second bending mode flutter (kr =100, ks =104, dr =0·1, ds =1·0, g=0·001, Q=11·5, point H in
Figure 7).
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Figure 9. Post-flutter divergence (kr =100, ks =104, dr =0·1, ds =1·0, g=0·001, Q=11, point H( in
Figure 7).

pattern. The corresponding critical force is Qpf =4·86. Branch 1 on the other hand, reaches
the horizontal Im S-axis=0, moves along it towards the right-hand half-plane, then
coalesces with a branch of the trajectory B and enters the right-hand half-plane. This
means flutter type instability for which the critical force parameter is Qcr =6·17.

The case appearing in Figure 10 is type IV instability. The feature of this type of
instability is that the locus for the first bending mode coalesces with the branch of the locus
of the rigid-body motion and also the presence of PF divergence.

It turns out also that due to coalescence and transfer of two locus branches in the course
of an increasing kr , branch form changes take place thus predicting various types of
instability: first bending mode (branch 1), second bending mode (branch 2), and rigid-body
motion (branch A). Figure 11 shows one such example where the solid lines are for kr =9,
ks =104. The two trajectories with white dots have been obtained putting kr =9·5, ks =104.
By increasing kr slightly above 9·5 and keeping ks =104, they coalesce and change the locus
for kr =10, ks =104, as can be seen in Figure 6.

Figure 10. Root loci (kr =5, ks =102, dr =0·1, ds =1·0, g=0·001).
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Figure 11. Branch evolution and transfer.

From the viewpoint of structural safety the aforementioned three instability
configurations are important. On the contrary, the other root loci, located in the right-hand
half-plane of the complex plane and corresponding to rigid-body translation modes,
cannot cause structural damage. As for the critical forces, it seems relevant to consider
the onset of structural damage itself.

It is worthwhile to note that the rigid-body-motion instability does not affect the system
kinetics for the structure is supposedly stabilized by a control mechanism. This, however,
is another problem and will not be treated in the present study.

3.3.       

Table 1 shows some critical forces and instability types versus kr and ks . When these
parameters are relatively large, a flutter instability pattern of type I occurs. Note that the

T 1

Types of instability and critical forces depending on joint stiffness

kr

ZXXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV
ks 1·0 5·0 9·0 101 102 103 104

102 Type IV Type IV Type I Type I Type I Type I Type I
PFD 1·46 PFD 4·86
F 1·99 F 6·17 F 6·02 F 5·83 4·23 4·20 4·20

103 Type III Type III Type II Type II Type I Type I Type I
PFD 1·46 PFD 4·59 PFD 6·25 PFD 6·59
F 10·62 F 11·61 F 11·42 F 11·27 8·60 8·57 8·57

104 Type III Type III Type II Type II Type I Type I Type I
PFD 1·46 PFD 4·59 PFD 6·19 PFD 6·51
F 10·7 F 12·13 F 11·98 F 11·27 8·94 8·91 8·91

PFD: Post-flutter divergence, F: flutter
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Figure 12. Stability limits (ks =104).

critical force arises even for a small kr . On the other hand, when ks is small, the critical
force declines. Thus, one concludes that ks should be kept large enough.

The instability patterns and critical forces in the case of a uniform free-free beam, that
is, for large values of kr and ks (say kr = ks =104), are dealt with in [8]. There, for instance,
the first bending-mode-instability pattern appears for Qcr =8·95. Results obtained for
infinitely large kr and ks can be found in [8] too. A similar problem with considerably (even
vanishing) smaller damping coefficients dr and ds was studied as well. This led to
PF-divergence at extremely small critical forces. For this reason it was found not to be
dangerous from a structural safety stand point.

It should be emphasized also that for ks =10 the deflections of the front and the rear
beams with respect to the joint appear to perform considerably differently. They, however,
have been found to be stable by virtue of the stability criteria adopted in this paper.
Relevant further analysis is to be carried out to reveal if these deflections could lead to
structural damage. At this stage ks should be kept large enough.

A stability map Q versus kr for ks =104 is given in Figure 12.

T 2

Effect of dr and ds on flutter limit (kr = ks =104, g=0·001)

dr

ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
ds 10−2 10−1 100 101

10−2 8·91 8·91 8·91 8·92

10−1 8·91 8·91 8·91 8·92

100 8·91 8·91 8·91 8·92

101 8·91 8·91 8·91 8·91
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T 3

Effect of dr and ds on flutter limit (kr =104, ks =102, g=0·001)

dr

ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
ds 10−2 10−1 100 101

10−2 5·72 5·72 5·72 5·72

10−1 5·40 5·40 5·40 5·40

100 4·20 4·20 4·20 4·20

101 4·48 4·48 4·48 4·49

T 4

Effect of dr and ds on flutter limit (kr =102, ks =104, g=0·001)

dr

ZXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXV
ds 10−2 10−1 100 101

10−2 8·87 8·94 9·54 10·36

10−1 8·87 8·94 9·54 10·36

100 8·87 8·94 9·54 10·36

101 8·86 8·94 9·53 10·35

3.4.        

Taking g=0·001, the effect of the joint damping parameters dr and ds (varied within
the interval 10−2–101) upon flutter limit has been investigated. Some results for
kr = ks =104; kr =104, ks =102; kr =102, ks =104 are contained in Tables 2, 3 and 4. Type
I instability appears for various values of dr and ds . When kr and ks are large, the critical
forces do not seem to be influenced by dr and ds ; but for a small kr , the magnitude of dr ,
and for a small ks , that of ds , can influence the corresponding critical forces considerably.

The results in Table 5 are obtained for kr =101 and ks =104. Instability types IV, II or
III can occur depending on the magnitude of the damping parameter dr . At the same time
ds does not affect the stability properties. It is confirmed that damping does not affect
PF-divergence limit.

That is the way in which the joint internal damping in close connection with the joint
stiffness exerts an influence upon the instability features of the free-free beams under
consideration.

4. CONCLUSIONS

The present paper has discussed stability behaviour of free-free beams which consist of
two visco-elastic modules interconnected by visco-elastic joints and subjected to a follower
thrust at the tail end. The results lead to the following main conclusions:
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T 5

Types of instability and critical forces depending on damping (kr =101, ks =104, g=0·001)

dr

ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV
ds 10−2 10−1 100 101

10−2 Type IV Type II Type III Type III
PFD 6·48 PFD 6·51 PFD 6·76 PFD 8·79
F 8·36 F 11·83 F 11·25 F 10·52

10−1 Type IV Type II Type III Type III
PFD 6·48 PFD 6·51 PFD 6·76 PFD 8·79
F 8·36 F 11·83 F 11·25 F 10·52

100 Type IV Type II Type III Type III
PFD 6·48 PFD 6·51 PFD 6·76 PFD 8·79
F 8·36 F 11·83 F 11·25 F 10·52

101 Type IV Type II Type III Type III
PFD 6·48 PFD 6·51 PFD 6·76 PFD 8·79
F 8·36 F 11·83 F 11·25 F 10·52

PFD: Post-flutter divergence, F: flutter

(1) The dependence between the various types of system instability and the joint stiffness
has been clarified. It turns out that relatively stiffer joint springs lead to flutter type
instability. Also, it is beneficial to keep the shear spring stiffer in which case the critical
force is relatively large. It will decline for a weaker shear spring irrespective of the bending
spring rigidity.

(2) The joint internal damping together with the joint stiffness makes the type of
instability and the critical forces change. The magnitude of the internal damping does not
seem to affect the critical forces whenever the joint springs are relatively stiffer. For a
relatively weaker bending spring, however, the critical force depends on the magnitude of
the bending damping. Likewise, the shear joint damping affects the critical force when the
shear springs are relatively weaker.

(3) Bending-flutter, post-flutter-divergence and folding instability at the joint appear as
important instability types from the viewpoint of structural safety.
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APPENDIX

Constituent Matrices for the Matrix Equation (8)
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