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A spectral finite element formulation for the analysis of stationary vibration of straight
fluid-filled pipes is introduced. Element formulations for flanges and rigid masses attached
to the pipe are also presented. In the spectral finite element formulation, the base functions
are frequency-dependent solutions to the local equations of motion. The formulation is
valid for arbitrarily long pipes and losses may be distributed in the system and may
vary with frequency. The solutions of the equations of motion are expressed in terms
of exponential functions, describing propagation in the waveguide, together with
corresponding cross-sectional mode shapes. These solutions are found by using an FE
discretization of the cross-sectional motion. To increase the numerical efficiency, methods
for using FE shape functions with higher order polynomials are developed. The numerical
accuracy is investigated by comparisons with results achieved with an exact formulation.
It is found that, for frequencies of interest in many engineering problems, pipes may be
modelled by using only one element to describe the fluid motion. The vibrations of a simple
pipe structure with an infinite pipe, a flange and a small rigid mass are calculated. Just
below the cut-on frequency of a shell mode, the stiffness controlled shell mode and the rigid
mass may resonate, resulting in high vibration levels concentrated near the mass.
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1. INTRODUCTION

Pipework systems in ships, oil and gas transport and processing industry form a very
significant and vulnerable component of large scale critical systems. Vibrations in
pipeworks often cause excessive noise radiation and may result in failure due to fatigue.

Predictions of vibrational response and vibration transmission in fluid-filled pipes by
using the transfer matrix method have been made by Wang and Pinnington [1] and
de Jong [2], both restricting the analysis to beam-type motion for the pipe walls. Frid [3],
using a dynamic stiffness method and modal decomposition, calculated stationary and
transient responses in fluid networks, while not considering the dynamics of the pipe wall.
El-Raheb [4] calculated the resonances in finite length pipes, describing the cylinder motion
with the ‘‘dry’’ modes, calculated with no fluid loading. Then, upon applying the kinematic
coupling condition between cylinder and fluid, a transcendental eigenvalue problem for the
fluid sound pressure was formulated. Apparently, this approach had limitations when
formulating and assembling elements to describe structural motion [5]. Instead, the transfer
matrices for pipe segments were formulated as in reference [4], with dry modes used for
the cylinder, but with polynomial functions used to describe the axial dependence of the
sound pressure [5]. The method is thus restricted to short pipe systems and comparatively
low frequencies.
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In this paper, a spectral finite element formulation is applied to straight fluid-filled pipes.
This method [6–8], is a merger of the direct dynamic stiffness method (see, e.g., references
[9–11]) and the finite element displacement method (see, e.g., reference [12]). Elements are
formulated and assembled as in the standard FEM while the base functions are the
frequency dependent local solutions of the equations of motion. Compared with the
standard FEM, this allows a reduction of the number of d.o.f., while increasing accuracy.
The FE formalism increases the applicability of the dynamic stiffness method since
standard FE approximations can be incorporated. Moreover, the routines for calculating
the dynamic stiffness matrices when base functions are exponential functions, originally
developed in reference [7], reduces the efforts in the element formulation considerably.

The solutions of the equations of motion (that is, for the waves in a fluid-filled pipe)
were originally investigated by Fuller and Fahy [13]. Their approach, namely solving the
characteristic equation, once the sound pressure is expressed as a linear function of the
radial displacement, results in a non-linear, transcendental, eigenvalue problem, which is
non-trivial to handle. Pavic [14], deriving expressions for the power flow in pipes, reduced
this eigenvalue problem to non-linear algebraic form, by employing a series expansion of
the Bessel functions describing the sound pressure.

In prismatic waveguide structures, as e.g., pipes, the solutions of the equations of
motion are expressed by using exponential terms, which describe the propagation in the
axial direction, together with corresponding cross-sectional mode shapes. As originally
proposed by Gavric [15], and in a slightly different form by Etouney et. al. [16], the
cross-sectional mode shapes may be described with standard linear FE shape functions.
Upon applying such a description, the equations of motion take the form of a set of
coupled ODE’s with constant coefficients. Thus, the solutions of these equations are
exponential functions. Upon assuming this, and applying the transformations used by
Gavric [15] (or the slightly improved version in reference [17]), a standard linear eigenvalue
problem results.

When applying a Fourier decomposition of the angular dependence of the displacements
of fluid-filled pipes, the cross-sectional mode shapes are given by the relative amplitudes
of the radial, axial and tangential cylinder displacements and the radial dependence of
the sound pressure in the fluid. When applying the FE technique, by discretizing the sound
pressure in cylindrical segments, the dispersion relations are found by standard linear
matrix operations, with considerably higher efficiency than the methods in references [13]
and [4]. The robustness of the FE method, and of standard linear algebra, suggests that
the proposed method is suitable not only for research but also for engineering application.

Standard linear shape functions are, however, not fully efficient in describing the fluid
motion. ‘‘The requirement that the mesh of elements in the fluid be sufficiently fine to
capture the sharp radial gradients of pressure near the wall is a source of considerable
burden of computation’’ [5]. To overcome this, a variant of the p-version of the FE
method [18], or perhaps a variant of the hierarchical FE method (see, e.g., reference [19]),
is applied. That is, the shape functions used are polynomials of higher order, this leading
to a tremendous increase in accuracy achieved with a given number of d.o.f.. A versatile
method is developed to calculate suitable sets of higher order shape functions and the
corresponding dynamic stiffness matrices.

In section 2, the equations governing the coupled motion of a thin-walled cylinder and
a viscous fluid are formulated, as well as those for flanges. In section 3 the dispersion
relations for straight fluid-filled pipes, are found by using the FE method. The accuracy
of the method is estimated by comparisons with results achieved with the exact formulation
by Fuller and Fahy [13]. In section 4, the spectral finite element formulation for arbitrarily
long pipes is presented together with formulations for flanges and rigid masses attached
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to cylinders. Finally, in section 5, a small calculation example is given as a demonstration
of the kind of problems that may be investigated within minutes on a PC. This example
also reveals a possible mechanism for fatigue in thin-walled pipe structures.

2. GOVERNING EQUATIONS

The functionals, similar to those used in the method of virtual work, governing the
motion of a cylindrical pipe with a contained viscous fluid are formulated. The correspond-
ing functional describing an attached flange’s motion is also derived. The equations are
formulated in the frequency domain with a time dependence, e−ivt, implicitly assumed.
Dissipative losses, possibly frequency dependant are, for each structural component,
assumed proportional to either its inertia or its stiffness. That is, the equations below apply
equally when

E=E0(1− ihe), G=G0(1− ihs), r= r0(1+ ihn), (1)

where E is Young’s modulus, G is the shear modulus, r is the density and he , hs , hn are
loss factors.

As shown in reference [7], these losses may be accounted for by employing a variational
principle similar to that of Hamilton whereby, in the functionals describing kinetic and
potential energies, the quadratic forms in the displacements are replaced with symmetric
bi-linear forms in the displacements and in the complex conjugates of the displacements
in an adjoint negatively damped system [20, 21]. While conceptually slightly more complex,
this approach does not require any extra calculation effort. With this approach, the
machinery of variational methods is also retained for non-conservative systems. Thus, it
is possible to formulate the energies in whatever co-ordinate system is appropriate or
convenient, to use Lagrange multipliers to impose restraints on motion, and to formulate
the equations of motion without having to express forces explicitly, these requiring a more
complex description than the displacements. Finally, by using a Rayleigh-Ritz procedure
to formulate the equations of motion, it is possible to choose the variational parameters
at will. Hence, the trial functions could be exact solutions to the local equations of motions,
as in reference [7], or approximate solutions, as in reference [8], or, as in this work, a
mixture of exact solutions and FE polynomial approximations.

2.1.  

The Arnold and Warburton theory for vibrations of cylinders is beautifully presented
in the original work [22], but for the sake of self-consistency it is recapitulated here.
Also, most of the intermediate expressions are needed for the element formulations in
sections 3 and 4.

As shown in Figure 1, a thin walled cylinder is considered for which the strains

ez = gzx = gzf =0. (2)

Figure 1. Cylinder co-ordinate system.
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Hence, with the trapezoidal form of a cylinder segment neglected, an analogy to strain
energy, ep , is

ep =E' g dx g
2p

0

R df g
Tc/2

−Tc/2

dz[ea
xex + ea

fef + n(ea
xef + ea

fex)+ gga
xfgxf ], (3)

where R is the cylinder radius, Tc is the shell thickness, E'=E/(1− n2), g=G/E', n is
Poisson’s ratio and the superscript a denotes the complex conjugate of the corresponding
strain in the adjoint system.

The Kirchhoff hypothesis is adopted and a trigonometric dependence of f is assumed
for the displacements:

ux =(u+ zu1) cos (nf), uf =(v+ zu2) sin (nf), uz =w cos(nf), (4a)

in which, from equations (2),

u1 =−1w/1x, u2 = (v+ nw)/R. (4b)

Upon using these displacements, while neglecting all but the dominating terms in z/R, the
strains are given by [22]

ex =(ox + zk1) cos (nf), ef =(of + zk2) cos (nf), gxf =(g+ zt) sin (nf), (5)

where
ox = 1u/1x, of =(nv+w)/R, g=−(nu/R)+ 1v/1x,

k1 =−12w/1x2, k2 = (nv+ n2w)/R2, t=(2/R)(1v/1x+ n 1w/1x). (6)

The same relations apply between the complex conjugates of strains and displacements in
the adjoint system. Thus, upon carrying out the integration over z and f, the functional
Lcyl , which is stationary for true motion of the cylinder, is found to be

Lcyl =g (ep − ek) dx3 =E'TcRLn g dx[oa
xox + oa

fof + n(oa
xof + oa

fox)+ ggag

+(T 2
c /12)(ka

1k1 + ka
2k2 + n(ka

1k2 + ka
2k1)+ gtat)−v2/c2

L(uau+ vav+waw)], (7)

where ek is the analogy to kinetic energy density and where

c2
L =E'/r, Ln =2p for n=0, Ln = p for ne 1. (8)

Thus, requiring Lcyl to be stationary is equivalent to requiring the displacements to be
solutions of the equations of motion (see, e.g., equation 2.9b of reference [23]).

2.2.   

The flanges, see Figure 2, are considered as flat circular annuli outstands with thickness,
Tf , having outer radius r=R0 and joined to the cylinder at r=Ri . Upon adopting the
Kirchhoff hypothesis the out-of-plane strains are

ex = gxr = gxf =0, (9)

and upon assuming a trigonometric dependence on f, compatible with that for the
cylinder, the displacements and the in-plane strains are

ur =(u− x 1w/1r) cos (nf), uf =(v+ xnw/r) sin (nf), ux =w cos (nf), (10)

er =(or − xk1) cos (nf), ef =(of − xk2) cos (nf), gxf =(g− xt) sin (nf), (11)
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Figure 2. Flange co-ordinate system.

where

or = 1u/1r, of =(u+ nv)/r, g=−(nu+ v)/r+ 1v/1r,

k1 = 12w/1r2, k2 = (1/r)1w/1r− n2w/r2, t=(2n/r)[(w/r)− 1w/1r]. (12)

Inserting these expressions, and the corresponding ones for the adjoint system, into the
functional governing the virtual work, Lfla , and carrying out the f and x integrals, results in

Lfla =E'TfLn g
R0

Ri

r dr[oa
r or + oa

fof + n(oa
r of + oa

for)+ggag

+(T2
f /12)(ka

1k1 + ka
2k2 + n(ka

1k2 + ka
2k1)+ gtat)−v2/c2

L(uau+ vav+waw)]. (13)

2.3.       

In the absence of sources, for a time dependence e−ivt, the acoustic motion of a viscous
fluid is determined by [24, p. 15]

−ivd+ rf div (u)=0, −irfv(1+ ihv)u=−9p, d= p/c2(1− ihe), (14)

where p is the sound pressure, u is the particle velocity, d is the acoustic perturbation of
the density, rf is the density, c is the sound speed and hv and he are loss factors, possibly
frequency dependent, as discussed in reference [7]. Examples of such loss factors are found
in reference [25, see p. 254 and p. 283]. The equation of motion for this fluid is

92p+(v2/c2)[(1+ ihn)/(1− ihe)]p=0 (15)

Consider now an adjoint, negatively damped, system described by

−ivdA + rf div (uA)=0, −irfv(1− ihv)uA =−9pA, dA = pA/c2(1+ ihe), (16)

92pA +(v2/c2)[(1− ihv)][(1+ ihe)]pA =0. (17)

The complex conjugate of the sound pressure in the adjoint system, i.e. pa =(pA)* is a
solution to:

92pa +(v2/c2)[(1+ ihv)/(1− ihe)]pa =0. (18)

That is, the same equation applies to p and pa. The functional Lf is defined, in analogy
with the Lagrangian, so that Lf is stationary for the solutions of equations (15) and (18).
Hence, requiring that

dLf =0, (19)
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is equivalent to equations (15) and (18), if Lf is given by

Lf =C g dx3$9pa9p−
v2

c2

1+ ihv

1− ihe
pap%. (20)

C is an arbitrary constant, which will be determined so that Lf expresses the analogy of
the virtual work. Now, the kinematic coupling condition between fluid and structure is

−ivw= nu, (21)

where n is the unit vector, in the direction of the outward pointing normal to the fluid
domain. The work done by the fluid when the structure is displaced an amount w, in the
direction, n, is

Bfc =g paw+ pwa dx2. (22)

This work is evidently equal to minus the work on the fluid. In the absence of sources,
Bfc is therefore equal to minus the ‘‘virtual work ’’ in the fluid, so that the functional
Lf +Bfc should be stationary. Upon taking the variation of pa, one has

g dpa[Cn9p+w] dx2 −C g dpa$92p+
v2

c2

1+ ihv

1− ihe
p% dx3 =0. (23)

Hence, upon using equation (14b), equation (21) is satisfied if

C=−1/rfv
2(1+ ihv). (24)

In analogy to the standard acoustic velocity potential [25], to obtain a resulting functional
with a frequency dependence similar to that in the structure’s functional and a dependence
on f compatible with that of the cylinder, the velocity potentials c and ca are introduced:

p= rfv cos (nf)c, pa = pfv cos (nf)ca. (25)

Thus, the functionals Lf and Bfc are

Lf =−Ln
rf

1+ ihv g $01ca

1x
1c

1x
+

1ca

1r
1c

1r
+

n2

r2 cac1−
v2(1+ ihv)
c2(1− ihe)

cac%r dr dx, (26)

Bfc =LnR g rfv[caw+cwa] dx. (27)

This expression differs by a factor 1/(1+ ihv) from the corresponding expression for the
‘‘Lagrange density’’ given by Morse and Ingard [25, equation 6.2.28]. In this way,
the functional expresses an analogy to the virtual work and may directly be used together
with the corresponding functionals for the structure. That is, subtracting Lf +Bfc from
the functional describing the pipe vibration, Lcyl , equation (7), produces a functional

L=Lcyl −Lf −Bfc , (28)

which is stationary for true motion. This means that requiring dL=0 is equivalent to
finding a solution to the equations of motion for the fluid (15), the kinematic coupling
condition ( 21) and the equations of motion for the cylinder [23, equation (2.9b)], as can
be verified by direct calculations.
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3. DISPERSION RELATIONS

The possible waves in a fluid filled pipe are found, expressed by exponential terms
determining the propagation along the pipe, together with corresponding cross-sectional
mode shapes. As a circular dependence on f is already assumed, these mode shapes are
given by the relative amplitudes of the cylinder displacement and by the radial dependence
of the fluid velocity potential, here approximated by polynomials. First, a standard FE
approximation with piece-wise linear functions within cylinder segments is used. To
improve efficiency, higher order polynomial approximations are also derived, providing
a tremendous increase in accuracy for a given number of d.o.f.. With polynomial trial
functions, the cross-sectional motion is expressed as an explicit function of nodal
displacements. Upon inserting these functions into the functional L, equation (28), the
resulting Euler-Lagrange equations are a set of coupled ODE’s which, as in reference [17],
are transformed to a standard linear eigenvalue problem.

3.1.        

A set of subroutines was developed to manipulate polynomial functions so that the
dynamic stiffness matrices are easily and systematically calculated. As these may be of
common interest they are here presented in a general form, while being directly applicable
to any of the elements presented.

Consider one trial function, u(x), used in a 1-D FE formulation;

u(x)=Pu ( Bu (W, (29)

where the column vector W contains the variational parameters, usually the nodal d.o.f.,
the row – vector Pu is

Pu(x)= [a1xn1 a2xn2 · · · amxnm], (30)

and the m ( m matrix Bu projects Pu onto the nodal d.o.f.. For instance, the trial function
used for a standard Euler-Bernoulli beam of length 2l is defined by

Pu =[1 x/l (x/l)2 (x/l )3], W=[u(−l) 1u(−l)/1x u(l) 1u(l)/1x]T, (31)

while the columns of the matrix Bu contain the coefficients of the first order Hermitian
shape functions [12, equation (3.125)].

To manipulate easily trial functions of the form (29), the coefficients of Pu are stored
in the 2 ( m matrix U,

U=$Au

Nu%=$a1

n1

a2

n2

· · ·
· · ·

am

nm%, (32)

so that operating on Pu is represented by functions with U as the argument. Similarly a
polynomial Pv will be represented by a matrix V.

The routines below are presented by using the array operators ‘‘dot product’’,
‘‘dot power’’ and ‘‘dot division’’, all as implemented in the Matlab code.

3.1.1. Evaluating the elements of Pu

Ev(U, c)=Pu(x= c)=Au ·* (c ·g Nu). (33)
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3.1.2. Differentiating Pu

If PV = 1Pu/1x, then

V=Dif (U)=$Au ( Nu

Nu −1%. (34a)

Define
Dif (U, 2)=Dif (Dif (U)). (34b)

3.1.3. Integrate the outer product of Pu and Pv

Define the matrix generating function

Int (U, V, L)=g
L[2]

L[1]

[Pu]T ( Pv dx,

and define the matrix Q with elements

Q[i, j ]=Nu[i]+Nv[ j ]+1; (35a)

then

Int (U, V, L)= [[Au]T ( Av] ·* [L[2] ·ggg Q−L[1] ·ggg Q] ·/Q. (35b)

Similarly

Intr (U, V, L)=g
L[2]

L[1]

[Pu]T ( Pvx dx, Qr[i, j ]=Nu[i]+Nv[ j ]+2, (36a)

Intr (U, V, L)= [[Au]T ( Av] ·* [L[2] ·ggg Qr−L[1] ·ggg Qr] ·/Qr, (36b)

with the exception for those elements in Qr which are zero. If element [i, j ] of the matrix
Qr is zero then the [i, j ] element of P=Intr (U, V, L) is

P[i, j ]=Au[i] ( Av[ j ] ( (Ln (L[2])−Ln (L[1])), (36c)

provided that x=0 is not in the integration range. Define

Int (V, L)= Int (V, V, L), Intr (V, L)= Intr (V, V, L). (37)

3.1.4. Multiplication with a one-term polynomial

If Pw =Pu ( Pv, where Pv =V(1) ( xv(2), then

W=Mul(U, V)=$Au ( V(1)
Nu +V(2)%. (38)

3.1.5. Adding two polynomials

If Pw =Pu +Pv, then

W=Add (U, V)=$Au +Av

Nu %, (39)

provided that Nu =Nv.
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3.1.6. Example

Upon using these routines for the Euler-Bernoulli beam then Bu, if not known, is

Ev (U, −l) −1

Ev (Dif (U), −l)
Bu =G

G

G

K

k
Ev (U, l)

G
G

G

L

l

. (40)

Ev (Dif (U), l)
The Lagrangian is

L=g
L(2)

L(1)

(B(12u/1x2)2 −v2m(u)2) dx=WT ( Lag ( W, (41)

where L=[−l l], B is the bending rigidity, m is the mass per unit length and the dynamic
stiffness matrix Lag is

Lag=[Bu]T ( [B Int (Dif (U, 2), L)−v2m Int (U, L)] ( Bu. (42)

To sum up, giving the Lagrangian, the nodal d.o.f. and the degree of the polynomial to
use, the dynamic stiffness matrix is evaluated with three lines of command: (32), (40)
and (42).

3.2.     

3.2.1. Fluid
As originally proposed by Gavric [15], the cross-sectional mode shapes in a prismatic

wave guide are approximated with standard FE shape functions. Thus, the fluid domain
is divided into cylindrical segments in which the velocity potential, equation (25), is

c(r, x)=Pf(r) ( Bf ( C(x), (43)

where, for an element defined in a segment, Ri E rERo , with piece-wise linear shape
functions,

Pf =[1 r/Ri ], Bf =
1

Ro/Ri −1 $Ri/Ro

−1
−1

1%, C=[c(Ri , x) c(Ro , x)]T. (44)

Similarly, for the adjoint system

ca(r, x)=Pf ( Bf ( Ca. (45)

Now, define R=[Ri Ro ] and, as in Section 3.1, represent the polynomials Pf and n/r Pf

with the matrices U0 and U1:

U0 =$10 1/Ri

1 %, U1 =$ n
−1

n/Ri

0 %. (46)

Then, the functional Lf , equation (26), is

Lf =−[Ca]T ( [k0 −v2m] ( [C]− [1Ca/1x]T ( [k2] ( [1C/1x], (47)

where

k0 =Ln
rf

1+ ihv
BT

f ( [Intr (Dif (U0), R)+ Intr (U1, R)] ( Bf, (48a)
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m=Ln
rf

c2(1− ihe)
BT

f ( [Intr (U0, R)] ( Bf, k2 =Ln
rf

1+ ihv
BT

f ( [Intr (U0, R)] ( Bf.

(48b, c)

These matrices may be assembled into global matrices K0, K2 and M.
If r=0 is within the elements’ domain and if ne 1, the shape function must be modified

since, as the functional must remain finite, the constant velocity potential is not an
admissible function in this case. Instead, the trial function is as in equation (29), with

Pf =[r/Ro (r/Ro)2], Bf =$ 1
−1

0
1%, C=$Ro

1c(0)
1r

c(Ro)%
T

, (49)

whereas the matrices U0 and U1 are changed accordingly. With these definitions, the rest
of the calculations, i.e., equations (47) and (48), remains unchanged.

3.2.2. Coupling conditions
The coupling of fluid and cylinder is, as in equation (28), accounted for by the functional

Bfc which is expressed as

Bfc =v[wa [Ca]T] ( $ 0
CT

C

0% ( $w
C%, C=LnRrf Ev (U0, R) ( Bf. (50)

3.2.3. Higher order polynomial shape functions
To increase the efficacy of the FE method in calculating cross-sectional mode shapes

and wavenumbers, a higher order polynomial approximation is attempted. For the one-
dimensional elements used, approximating the solution to a second order equation, there
are only two boundary conditions to satisfy. Hence, the additional d.o.f.’s must be specified
by other means. Often (see, e.g., references [12, section 3.8] and [18, section 8.7]), extra
d.o.f.’s are specified as the functions’ values at interior nodes. This approach, however,
leads to rather complex algebra and appears to apply unnecessary constraints; since
variational parameters can be chosen at will, they need not be nodal displacements.

Now, consider a trial function of polynomial form

u(x)=F(x) ( $ W

Wint%, (51)

where W contains m nodal d.o.f.’s, Wint are n-m internal d.o.f.’s and where

F=[1 x · · · xn−1] ( a= f(x) ( a. (52)

The n ( n matrix a is to be determined so that the boundary conditions, which u should
satisfy, depend solely on W, with the coupling of the element to other elements being
independent of Wint.

The boundary conditions which u and hence F, should obey are, for instance, of the form

u(x1)=W[1], u(x2)=W[2], 1u/1x(x1)=W[3], . . . .
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These conditions are, in matrix form,

Ev (f, x1)

W Ev (f, x2) W W
A ( a ( K

k Wint

L
l=G

G

G

K

k
Ev (Dif (f), x1)

G
G

G

L

l

( a ( K
k Wint

L
l=[I O] ( K

k Wint

L
l.

.

.

.
(53)

As these conditions should apply for all W and Wint and the dimension of the matrix A

is m ( n, there are m ( n conditions for the n ( n unknown elements of a. To find a solution
of this under-determined equation system, apply a singular value decomposition of A [26,
section 5.2.5],

A=Q2S[Q1]T, S=[S1 0], (54)

where S1 is a m ( m diagonal matrix and 0 is an m ( (n–m) matrix of zeros. Q1 and Q2

are orthogonal matrices of size n ( n and m ( m. On this basis, define

a=Q1b. (55)

Then the boundary conditions (53) are, with b in partitioned form,

A ( a=Q2[S1 0]$b1.1

b2.1

b1.2

b2.2%=[I 0]. (56)

This equation implies nothing about submatrices b2.1 and b2.2, while from it b1.2 is
determined as a matrix of zeros and b1.1 as

b1.1 =[S1]−1[Q2]T. (57)

Finally, one may chose b2.2 as an identity matrix and b2.1 as a matrix of zeros, thus ensuring
that the internal d.o.f. Wint projects onto displacements which on the boundary are linearly
independent and which are in the null space of A, hence not influencing the coupling
to other elements. To sum up, a trial function u, of polynomial order n, which obeys
m boundary conditions, mQ n, is

u(x)= f(x)Q1$[S1]−1[Q2]T

0

0

I%$ W

Wint%. (58)

This quite simple expression is of the form (29), so that the routines defined in Section 3.1
could be applied to calculate the dynamic stiffness matrix for the element. For the fluid
element, with trial function defined in equation (43), one may identify Pf = f, so that the
boundary conditions are governed by A:

A=$Ev (Pf, Ri)
Ev(Pf, Ro)%. (59)

The matrix Bf is identified from equations (54) and (58) and after modifications of the
matrices U0 and U1 according to the polynomial degree of Pf, equations (47), (48) and (50)
apply equally for calculating the dynamic stiffness matrices.
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3.2.3. Fluid-filled pipe formulation
The cylinder functional, Lcyl , is a function of the amplitudes of the cylinder displacements

and their first and second x-derivatives, all these being functions only of x, so that it may
be directly assembled. Before this, as proposed by Gavric [15], to achieve real valued
matrices (in the absence of losses) and symmetric matrices (any losses), the variational
parameters are chosen as

−iu= u1, v, w, iua = ua
1, va and wa. (60)

Upon this being done, the Euler-Lagrange equations corresponding to the assembled
functional L, equation (28), are

K4 14U/1x4 +K2 12U/1x2 +K11U/1x+K0U+vKBU−v2MU= 0, (61)

where the matrices are detailed in the Appendix and where

U=[u1, v, w, c1, c2, . . . , cN−3]T. (62)

ci are the N-3-d.o.f. in the fluid, as specified in the element formulations.
The set of ODE’s, (61), have constant coefficients, so the solutions are of the form eilx.

Upon assuming this, the equations are, as in reference [17], transformed into a standard
linear eigenvalue problem:

[A− lI]X= 0. (63)

Hence, the solutions of equation (61) are

U=Xmeilmx (64)

where lm is any of the 2(N+1) eigenvalues and where Xm contains the N appropriate
elements of the corresponding eigenvector as detailed in reference [17].

3.3.      

To assess the numerical accuracy of the FE method presented in calculating
wavenumbers in fluid-filled pipes, comparisons are made with results achieved with the
exact formulation of Fuller and Fahy [13], here amended with the terms needed to be
compatible with the Arnold and Warburton theory for cylinders [23, equation (2.9b)]. As
good routines for complex valued Bessel functions are hard to find, e.g., in mathematical
packages such as Maple and Matlab, the comparison is restricted to real-valued
wavenumbers, corresponding to propagating waves in loss-less pipes.

The approach used in reference [13], namely solving the characteristic equation, once
the sound pressure is expressed as a linear function of the radial displacement, results in
a non-linear eigenvalue problem which here is solved by a standard routine in Matlab.
Sometimes it is hard to get convergence of the solutions, even with starting approximations
good to at least four digits accuracy. As the dispersion curves should be reasonably smooth
functions of frequency, the values, shown in the figures below, when the routines converge
to another solution are considered as outliers. No effort has been made to improve the
routines for solving the non-linear eigenvalue problem. Even so, the problems encountered
demonstrate the advantages of the FE method, resulting in a stable standard linear
eigenvalue problem. Also, as implemented, when using one six-d.o.f. element for the fluid,
the calculation time is hundreds, if not thousands, times smaller.
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T 1

Geometrical and material parameters

Material Poisson’s ratio (n) Density r (kg/m3) Free wave speed zE/r, cf (m/s)

Steel 0·3 7800 5196
Water – 1000 1500
Air – 1·3 340

Shell thickness 6 mm; shell radius 300 mm.

Figure 3. FE mesh used in the calculations. (a), six-d.o.f element; (b), standard FE, 1 element; (c), standard
FE, 6 elements; (d), standard FE, 60 elements; +, node.

Figure 4. Propagating wavenumbers for n=0; ——, FE method with one six-d.o.f. element; · · · · , exact
solution (only visible at the outliers).
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Figure 5. As Figure 3 but n=1.

Figure 6. As Figure 3 but n=2.

Figure 7. As Figure 3 but n=5.
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Figure 8. Relative errors in wavenumbers for n=0; FE method with one six-d.o.f. element compared to exact
solution; notably, the dots at the very top of the figure are considered as outliers—see text.

Figure 9. As figure 8 but for n=1.

Figure 10. As figure 8 but for n=2.
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3.3.1. Water-filled pipe
The dispersion relations are solved for a loss-less water-filled steel pipe, with a

trigonometric dependence: n=0, 1, 2 or 5. The data used are found in Table 1 and the
FE mesh is shown in Figure 3(a). The results below are shown as functions of
non-dimensional frequency: frequency/ring frequency=2pRf/zE'/r. In Figures 4–7 are
the real-valued wavenumbers, calculated with the exact method and the FE method with
one six-d.o.f. element for the fluid. In Figures 8–11 are shown the relative differences
between the solutions. Notably, for n=0, as the torsional motion of the cylinder is
uncoupled from the fluid motion, the relative difference is of the order of the digital noise
in the computer. Near the cut-on frequencies the relative errors increases. This is
anticipated, as by definition, the wavenumber is zero at cut-on, hence, if there is any error,
the relative error is very large. Besides the outliers discussed above and, perhaps, at the
cut-on frequencies, it is seen that for frequencies up to well above the ring frequency
(2·8 kHz), the relative errors are less than 10−2, decreasing with higher order n, while being
very much smaller at lower frequencies.

The accuracy of the FE method when using standard linear shape functions is displayed
in Figures 12–14, where, for n=1, the relative errors in calculations, for 1, 6 and 60
elements in the fluid, are shown. The FE-meshes used are shown in Figures 3(b–d). For
frequencies up to approximately one third of the ring frequency, the single element solution
is quite good; the six element model may be used at somewhat higher frequencies.
For frequencies up to the ring frequency, the 60 element model is good while not quite
as good as the single six-d.o.f. element model, though performing better at even higher
frequencies.

Figure 11. As figure 8 but for n=5.

Figure 12. Relative errors in wavenumbers for n=1; FE method with one standard two-d.o.f. element
compared to exact solution.
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Figure 13. As Figure 12 but 6 elements.

Figure 14. As Figure 12 but 60 elements.

Figure 15. Radial fluid displacements for propagating modes, n=2, V=2; (a), (b), (c), (d), modes with axial
wavenumber in increasing order; ——, exact solution [13]; – – –, spectral FE with polynomial of sixth-order (only
visible when different).

3.3.2. Mode shapes
Mode shapes for propagating waves in a water filled steel pipe (data as in Table 1) are

calculated by using the exact formulation [13] and a polynomial trial function with
six-d.o.f.. For n=2 at frequency V=2, there are four waves that may propagate; see
Figure 6. In Figure 15 the radial displacements of the fluid are shown, normalized with
the radial displacement of the cylinder so that the exact value at r=0·3 is unity. The mode
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with the highest fluid wavenumber, Figure 15(a), is the one with the lowest axial
wavenumber. This mode is just above cut-on; see Figure 6. Similarly, the mode with the
sharp decay away from the pipe-wall, Figure 15(d), is the one which has the highest axial
wavenumber and which is cut-on at a very low frequency. The mode shape for this mode

Figure 16. Two estimates of the relative errors in wavenumbers in an air filled pipe when using 100 standard
two-d.o.f. elements; ——, o1; *, o2.

Figure 17. Wavenumbers in an air filled pipe, n=1.

Figure 18. Estimated relative error of wavenumbers in an air filled pipe when using one six-d.o.f element: o6d .
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is not accurately calculated. This is not surprising as the length scale is very short; the fluid
wavenumber is imaginary and its amplitude is large: =kfR=1 19. For this mode, the fluid
loading on the cylinder is of an inertia character. Apparently, see Figure 10, even though
the mode shape is not captured so well, the fluid loading is calculated sufficiently
accurately.

The ability of the higher order polynomial shape functions to adapt to different
displacement fields is one of the major advantages. When using standard linear shape
functions, for the mode in Figure 15(d) a very fine mesh near the pipe-wall is needed
whereas for the other modes the nodes should be uniformly distributed. Thus, if the same
model is used, in either case there will be redundant d.o.f.. The higher order polynomial
shape functions, however, in both cases use all of their ability to model the motion.

For standard FE there are rules of thumb for the mesh size, e.g., when using cubic shape
functions for a beam there should be approximately six elements per wavelength. For
higher order polynomial shape functions, the similar rule is that the number of half-
wavelengths in the trial function with the shortest wavelength should be at least as many
as in the true solution [19]. Hence, with a polynomial of degree six, it should be possible
to model two or three half-wavelengths [19, Table 1]. Some numerical experiments have
been made, with the six-d.o.f. element derived in section 3.2, confirming this rule of thumb.
With this element, very good accuracy results if there is one wavelength per element; quite
good accuracy results if there is one and a half wavelength, while if there are two
wavelengths, the results are inaccurate. Similarly, when there is an exponential decay, as
in Figure 15(d), results are good if =kfR=E 9 while, as in the figure, when the ‘wavenumber’
is twice as big, results are poor. With higher order polynomial shape functions, the
transmission from good results to poor results is rather abrupt.

3.3.3. Air-filled pipe
The dispersion curves for the same pipe, filled with air, are calculated for n=1, with

the preferred single six-d.o.f. element used for the fluid. In this case, the routines for solving
the non-linear eigenvalue problem did not converge properly; hence other means were used
to establish the accuracy of the FE method. For standard, piece-wise linear, finite elements
applied to a second order equation, it is well known [12] that the errors are proportional
to the square of the element size. Hence, increasing the number of elements by a factor
z2 reduces the errors by half. To establish this, calculations were made with 50, 71 and
100 standard finite elements. Then, it is believed

Wa50 1Wa(1+4o), Wa71 1Wa(1+2o), Wa100 1Wa(1+ o), (65)

where Wa50 is a wavenumber calculated with 50 elements, Wa is the correct wavenumber
and o is an estimate of the relative errors resulting from the 100 element calculation.
In Figure 16, two estimates of o, namely

o1 = =Wa100 −Wa71=/Wa100, o2 = =Wa71 −Wa50=/2Wa100, (66)

are plotted, showing the assumption to be approximately true. Then, applying a
Richardson extrapolation [26, section 7.2.2] reduces the errors considerably. Thus, the
improved estimate of the wavenumbers, shown in Figure 17, is

Waimp =2Wa100 −Wa71. (67)

With this estimate used as a reference, an on-the-average conservative estimate of the
relative errors resulting when using the single six-d.o.f. element, shown in Figure 18, is

o6d = =Waimp −Wa6d =/Waimp , (68)
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where Wa6d are the wavenumbers calculated with the six-d.o.f. element. From Figure 18
it is concluded that for an air-filled pipe the single six-d.o.f. element could be used for
frequencies up to well above a third of the ring frequency: that is, for a pipe with
600 mm diameter up to approximately 1 kHz and for a pipe with 100 mm diameter up
to 6 kHz.

4. SPECTRAL FINITE ELEMENT FORMULATION

For a beam element, it is possible to design an Exact Spectral Finite Element; ‘‘Exact’’
indicating that base functions are chosen as the local solutions of the governing, source
free, equations of motions [6]. The basic steps are, as demonstrated in reference [7]: (1)
formulate a bi-linear functional expressing the ‘‘virtual work’’ on the true element and on
an adjoint element; (2) assume cross-sectional displacements, expressed as linear functions
of displacements on the elements axis (or as functions of any other convenient variational
parameters); (3) derive equations of motion by varying these ‘displacements’; (4) calculate
the base functions from the linear eigenvalue problem resulting, when solutions to the
equations of motion with an exponential spatial dependence are sought for; (5) calculate
trial functions, by standard matrix algebra, as linear combinations of the base functions
having an explicit dependence of the nodal displacements, i.e., the displacements at the
beam ends; (6) calculate the local dynamic stiffness matrix, utilizing the exact expressions
for derivatives of exponential functions and of integrals of products of such functions;
these calculations, avoiding numerical quadrature, result in expressions that are easily
performed by standard matrix algebra.

Whereas in reference [7] the beam cross-sectional displacements were assumed according
to the Navier hypothesis, here, in section 3, the cross-sectional displacements were found
by a trigonometric decomposition and a polynomial assumption. Upon this basis, steps
(3) and (4) were performed, producing equation (64) as the solutions of the equations of
motion. These solutions are used below as base functions in a spectral finite element
formulation for a straight fluid filled pipe. Also, FE formulations for rigid masses and
flanges attached to straight pipes are derived.

4.1.   

The essential boundary conditions for a finite element based on the functional L,
equation (28), are the displacements u, v, w, the rotational displacement of the cylinder
wall 1w/1x and the value of the velocity potential, c(r), on the cross-section. If the pipe
is joined to a similar pipe or if the fluid obeys a pressure release or blocked displacement
boundary condition, the boundary conditions for the velocity potential could equally be
expressed as conditions on C, the variational parameters used in the fluid formulations
in Section 3.2.

With this assumed, a trial function for a straight fluid filled pipe, which is a solution
to its equations of motion and which depends linearly on its nodal values of displacements
and velocity potential at the ends, is

u cos nfBu

n sin nfBv V1

G
G

G

K

k
w

G
G

G
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=G
G

G

K

k
cos nfBw

G
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l

( diag (exp(ax− apL)) ( A ( K
k V2

L
l, (69)

c cos nfPf(r) ( Bf ( BF
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where Pf and Bf are defined in section 3.2, the 2N+2 length row vectors a, ap, Bu, Bw

are

a[m]= ilm, ap [m]=6a[m],
−a[m],

Re (a[m])e 0
Re (a[m])Q 07

Bu[m]= iXm[1], Bv[m]=Xm[2], Bw[m]=Xm[3], (70)

while the (N−3) ( (2N+2) matrix BF has elements

BF[q, m]=Xm[3+ q], (71)

where lm and Xm are the eigenvalues and eigenvectors found from the dispersion relations.
These are defined in equation (64).

The vectors V1, V2 contain the nodal displacements, u, v, w, −1w/1x and C at the two
ends. If these ends are at x=2L, the (2N+2) ( (2N+2) matrix A is governed by
boundary conditions

K LBu
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The scaling of the base functions used in equations (69) and (72), and originally introduced
in reference [7], results in the exponential functions having magnitudes that are unity at
one end, then decreasing exponentially towards the other end. For cylinders, this scaling
is necessary as the near field terms, especially those corresponding to the standing decaying
waves [13], have wavenumbers with large real parts. With this scaling, the results in [7]
indicate that the formulation presented here could be used for arbitrarily long cylinders
without any numerical difficulties, except for extremely short cylinders (for which anyway
the Arnold and Warburton cylinder theory is not valid [23]).

Because of the symmetry of the original equations, the adjoint system’s displacements
are as those of the true system, i.e., as in equation (69), except that they are functions of
the adjoint systems nodal displacements. By inserting the displacements into the functional
L it is calculated, as in reference [7] that

L=[VaT

1 VaT

2 ] ( Lagpipe ( $V1

V2%, (73)
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where the dynamic stiffness matrix Lagpipe is

Lagpipe =E−Is(a, L) ·* [E'TcRLn(oT
x ox + oT

fof + n(oT
x of + oT

fox)

+ ggTg+(T2
c /12)(kT

1k1 + kT
2k2 + n(kT

1k2 + kT
2k1)+ gtTt)

−v2/c2
L(BT

uBu +BT
v Bv +BT

wBw))

+BT
F ( [k0 −v2m] ( BF +diag(a) ( BT

F ( k2 ( BF ( diag (a)

−v(BT
w ( C ( BF +BT

F ( CT ( BW)], (74)

where the matrices k0, m, k2 and the vector C are defined in equations (48) and (50) and
where

ox = a ·* Bu, of =(nBv +Bw)/R, g=−nBu/R+ a ·* Bv,

k1 =−a ·ggg 2 · * Bw, k2=(nBv + n2Bw)/R2, t=2/R(a ·* Bv + na ·* Bw). (75)

The matrix generating function E−Is is defined in reference [7] as

E−Is(a, L)=g
L

−L

exp(ax− apL)T ( exp(ax− apL) dx

=(exp (aL− apL)T ( exp(aL− apL)

− exp(−aL+ apL)T ( exp(−aL− apL)) ·/Al

where

Al[i, j ]= a[i]+ a[ j ]. (76)

The formulas above apply directly if the fluid is described by only one finite element.
If instead, many elements are used to describe the fluid motion, k0, k2 and m are block
diagonal matrices where for each element the corresponding block is calculated as in
equation (48). Notably, when using one six-d.o.f. element for the fluid, the complete
element formulation for an arbitrarily long pipe (that is, assembling the dispersion
relations and solving these, as in section 3, and the evaluation of the dynamic stiffness
matrix, equation (74)), requires only 0·2 s on a PC (586) with Matlab. When using a more
efficient code and a more powerful computer, it should be substantially quicker.

4.2. 

The motion of the flanges are described by the functional Lfla , equation (13), with the
displacements as in equation (10). The flanges are divided into cylindrical segments,
Ri E rERo , in which a polynomial description of u, v and w are assumed with that for
u and v compatible:

u(r)=Pu(r) ( Au ( U, v(r)=Pu(r) ( Av ( U, w(r)=Pw(r) ( Aw ( U. (77)

U contains the variational parameters which must include the values of u, v and w and
1w/1r at the boundaries. All other variational parameters in U must project on d.o.f.
without any boundary displacements. On this basis, Au, Av and Aw are determined as in
Section 3.2. Inserting the displacements into the functional Lfla , equation (13), yields

Lfla =UT ( Lagfla ( U, (78)
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where, upon representing the polynomials Pu, Pu/r with matrices h0, h2 and the polynomial
Pw with matrix k0 and defining

h1 =Dif (h), In,m =Intr (hn, hm, R), R=[Ri , Ro ],

k1 =Dif (k0, 2), k2 =Add 0Mul 0Dif (k0), $ 1
−1%1, Mul 0k0, $−n2

−2%11,
k3 =Dif 0Mul 0k0, $−2n

−1 %11, Jn,m =Intr (kn, km, R), (79)

the dynamic stiffness matrix Lagfla is found to be

Lagfla =E'TfLn [AT
u ( I1.1 ( Au +[Au + nAv]T ( I2.2 ( [Au + nAv]

+n([Au + nAv]T ( I2.1 ( Au +AT
u ( I1.2 ( [Au + nAv])

+g(AT
v ( I1.1 ( Av −[nAu +Av]T ( I2.1 ( Av −AT

v ( I1.2 ( [nAu +Av]

+[nAu +Av]T ( I2.2 ( [nAu +Av])

+(T2
f /12)AT

w ( [J1.1 + J2.2 + n(J1.2 + J2.1)+ gJ3.3] ( Aw

−v2/c2
L(AT

u ( I0.0 ( Au +AT
v ( I0.0 ( Av +AT

w ( J0.0 ( Aw)]. (80)

4.3.  

The functional determining the ‘virtual work’ of a rigid mass is

Lmass =[Ua]T ( Lagmass ( U, (81)

where U=[u v w fx fy fz ]T are the displacements at a local node at the mass centre, with
respect to co-ordinate axes coincident with the principal axes. The dynamic stiffness matrix
in this case is

Lagmass =−v2 diag (M M M Jx Jy Jz), (82)

where M is the mass and Jx , Jy , Jz are mass moments of inertia.
When the rigid mass is on a pipe, its inertia will result in forces that couple the waves

in the pipe. Hence, if a pipe is modelled with several co-existing spectral finite elements,
describing waves with different trigonometric dependence on f, these elements are
coupled. The motion of a point on the cylinder is the sum of the motion of all trigonometric
orders n, each being as in equation (69). So, with directions as in Figure 19, the motion is

u= s
a

n=0
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2 01uy
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−

1
R

1uf

1f1, (83)

where f0 represents the polarization of the element. Notably, for each trigonometric order,
except for n=0, in the general case there should be two elements with f0 differing by p/2.
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Figure 19. Displacements at a point on cylinder.

It is seen in the equations above that if the polarization of an incoming wave is f0 =0
then at f=0 there are only displacements u, w and fy . Similarly, if f0 = p/2 the only
displacements are v, fx and fz . With the mass above f=0 and the principle axes of the
mass in the x-, y-, and z- directions, these sets of displacements are uncoupled and may
be treated separately.

The displacements u, v, w, fx and fy are thus expressed in terms of the nodal d.o.f. of
the cylinder elements. Hence, the functional Lmass is also expressed in the same terms and,
by using the transformation [7, equation (117)] to account for the offset of the mass centre
from the pipe-wall, its dynamic stiffness matrix is assembled to the global dynamic stiffness
matrix.

The fz displacement, however, is more difficult to handle, as, with the 1uy/1x term, it
is not locally described but depends on the motion of the entire pipe. With the
displacements as in equation (69), it is possible to describe the fz component as a function
of the nodal displacements and the nodal displacements of the nearest cross section, on
each side. This, however, leads to a rather complex element formulation, restricting the
flexibility of the method. It is believed, although not demonstrated, that the most efficient
formulation would instead result from using a small ring element, with cross-sectional
displacements as in equation (69), but with a polynomial axial dependence.

If the rigid mass has a finite size, there is a spatial filtering of the waves with high order
n, reducing the number of terms required in the summation (83). Also in the axial direction
there is filtering, while, for a given n, the axial wavenumbers are always finite. The axial
filtering is non-local and is positively best described by using the ring element proposed
above.

If the rigid mass is at −aEfE a, the circular filtering results in motion as in equation
(83), but with each term multiplied by the factor sin (na)/(na). This result is obtained when
it is required that the average motion of the pipe should equal the motion of the rigid body.
This may, of course, be only approximately true. Whereas it is perhaps more appropriate
to impose this condition dynamically, by using Lagrange multipliers, it is believed that the
errors when using the geometrically imposed restraints could be less than those resulting
when a small and stiff object is treated as rigid.

Finally, it should be noted that the formulation and discussion above are not restricted
to rigid masses. Any element could be similarly handled, provided it is connected to a point
on the cylinder, or rigidly over a rectangular area, with the coupling being described by
the six-displacement components. Thus, for example, any beam element or mass–spring
system could be included in the model.

5. CALCULATION EXAMPLE

To demonstrate the spectral finite element formulations in the previous section, analysis
of vibration of a simple pipe structure is presented. This example also reveals a mechanism
that perhaps may cause failure due to fatigue.
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Figure 20. Investigated pipe structure.

Figure 21. FE mesh used in the calculation example. Nodes joined by a dotted line belong to the same
pipe-element; o, node. The nodes at x=220×106 m are not shown.

T 2

Data used in the calculation example

Pipe Radius (mm) Thickness (mm)
Lengths (km)

ZxxxxxxvzxxxxxxV
150 2 20 000 0·006 0·006 20 000

Flange Thickness (mm) Outer radius (mm) Loss factor Steel (he) Water (hf)
10 75 0·005 0·005

Mass Lx(mm) Ly(mm) Lz(mm) Mass (kg)
65 65 200 4

100 100 126 10

Figure 22. Mobility of a pipe structure for n=0, 1, 2, 3, 4 and 5.
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The structure investigated consists of two, very long, water-filled steel pipes, with a
flange at their connection. The structure is defined in Figure 20 and the FE-mesh is shown
in Figure 21. The material data are as in Table 1 with the loss factors and the geometry
specified in Table 2. The element formulations are as in section 4. The flange is divided
into three elements in which the in-plane motion is described with linear shape functions
and out-of-plane motion with cubic functions. That is, the radial dependence of the flanges’
displacements are described with standard thin-shell FE shape functions. The fluid motion
is, for this low-frequency problem, described with three-term polynomials. Calculations
are made with six terms in the trigonometric decomposition and the total calculation time,
on a PC, with Matlab, is 5 seconds per frequency.

In Figure 22 the mobilities radial velocity/radial force are shown for each trigonometric
order, n=0, 1, . . . , 5, at the point x=−6 m. The mobility for the n=0 mode is low
for all frequencies. At lower frequencies, the largest mobility is for the n=1, beam mode.
At cut-on of the shell modes, n=2 (26 Hz) and n=3 (82 Hz), the mobilities of these

Figure 23. Point mobility of a pipe structure; ——, cylinder point mobility; – – –, point mobility for mass 10 kg;
· · · , point mobility for mass 4 kg.

Figure 24. Transfer mobility of a pipe structure; ——, n=0, 1, 2, 3, 4 and 5; · · · , total transfer mobility.
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modes are large. Just above cut-on, there are ripples in the mobilities caused by the
reflections from the flange. Notably, this ripple is small for the beam mode. In Figure 23
the point mobility is shown, which is the sum of ‘‘all’’ (n=0, 1, . . . , 5) trigonometric
orders. Also in Figure 23 are shown the point mobilities for rigid masses, 4 and 10 kg.

The pipe structure is excited on one side of the flange and the response on the other
side is calculated. The excitation is only in the beam mode, thus imitating an arbitrary
source far away in the structure so that all but the n=1 mode have vanished due to
reflections at restrictions such as flanges. In Figure 24 the responses at the rigid mass
(10 kg) are shown for the different trigonometric orders. Whereas the response of the beam
mode is almost as it would be if there was no mass, just below the cut-on frequencies, for
the n=2 and n=3 modes, the response is high. As discussed in the previous section, the
inertia force of the mass is a point force that excites all modes. Near cut-on, a mode’s
mobility is very large so that the total response is predominantly restricted by this mode’s
impedance. Below cut-on, this impedance is of stiffness character and may resonate with

Figure 25. Increase in vibration velocity level when rigid mass is attached to pipe; ——, rigid mass 10 kg; · · · ,
rigid mass 4 kg.

Figure 26. Phase plot of wavenumbers in water filled steel pipe for the n=2 shell mode; lowest four solutions
of the dispersion relations.
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the mass’s impedance. Also, below cut-on, there is no radiation damping for this mode,
hence, at resonance, the response is predominantly restricted by the structural damping
which, for a pipe structure, is often very small.

The total response of the pipe at the attachment point is calculated with masses of 4 kg
and 10 kg, and, also without a mass. The increases in velocity level with the two masses
are shown in Figure 25. Even though no attempt is made to match the mass and the pipe
impedances, the velocity level is seen to increase by as much as 18 dB, when a mass is
mounted on the pipe.

In Figure 26 is shown a phase plot of the wavenumbers for the n=2, shell mode.
Notably, the magnitudes of the wavenumbers are not zero at cut-on. This means that the
axial stress, as well as the circumferential stress, could be large for the resonances discussed.

6. CONCLUSIONS

A spectral finite element formulation for the analysis of stationary vibration response
in straight fluid filled pipes has been presented. In this finite element formulation, the base
functions are the frequency dependent local solutions to the equations of motion. The
formulation is valid for arbitrarily long pipes and losses may be distributed in the system
and may vary with frequency.

In prismatic structures, the solutions of the equations of motion are expressed in terms
of exponential functions, describing the propagation in the waveguide, together with
corresponding cross-sectional mode shapes. The dispersion relations are found by using
an FE discretization of the cross-sectional motion. To increase the numerical efficiency,
methods for using FE shape functions with higher order polynomials have been developed.
This reduces the required number of d.o.f. in the FE model by, roughly, a factor of the
order of 10.

The numerical accuracy has been investigated by comparisons with results achieved with
the exact formulation by Fuller and Fahy [13]. It is found that for a thin walled, water-filled
steel pipe, and with only one finite element with a polynomial of sixth order, the accuracy
is good for frequencies up to well above the cylinder ring frequency. For an air-filled steel
pipe, the accuracy is similarly good, with only one FE, up to approximately one-third of
the ring frequency. That is, for an air filled pipe with a diameter of 600 mm the accuracy
is good up to approximately 1 kHz, this frequency increasing in inverse proportion to the
diameter. Hence, many engineering problems can be solved by using only one, or a few,
elements to describe the fluid.

The vibration response of a simple pipe structure consisting of an infinite pipe, a flange
and a small rigid mass has been calculated. It is found that just below the cut-on of a shell
mode, the stiffness controlled shell mode and the rigid mass may resonate, resulting in high
vibration levels concentrated near the mass. It is believed that the stresses around the mass
may become large, perhaps causing fatigue.

The major contribution of this work is considered to be the application of a modified
Hamilton’s principle describing non-conservative vibrations in the frequency domain. In
this manner, the Gavric method [15] for calculating dispersion relations in wave guides is
extended to cope with fluid elements and viscous motion. Also, the solutions to these
dispersion relations are used in FE formulations. Finally, the approach has enabled the
simultaneous use of dynamic stiffness methods and standard finite elements.
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APPENDIX

The matrices K4, K2, K1, K0, Kb and M in equation (61) are

K4 =$k4cyl

0

0

0%, K2 =−$k2cyl

0

0

k2%, K1 =−i$k1cyl

0

0

0%,
KB =−$ 0

CT

C

0%, K0 =$k0cyl

0

0

k0%, M=$mcyl

0

0

m%,
where the matrices k2, k0, m, describing the fluid are assembled with submatrices for each
element as in equation (48). C is detailed in equation (50).

By using the Arnold and Warburton theory for cylinders, one finds

k4cyl =BR3&000 0
0
0

0
0
b',

k2cyl =BR&100 0
(1− n)/2

0

0
0

2n2b'+ bBR&000 0
2(1− n)
n(2− n)

0
n(2− n)

0 ',
k1cyl =B& 0

−n(1+ n)/2
−n

−n(1+ n)/2
0
0

−n

0
0 ',

k0cyl =
B
R &n

2(1− n)/2
0
0

0
n2

n

0
n

1+ bn4'+ b
B
R &000 0

n2

n3

0
n3

0',
mcyl = rTcRLn&100 0

1
0

0
0
1',

where

B=LnETc/(1− n2), b=T2
c /12R2.


