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Three groups of elastic constants, defined as orthotropic constants, have been introduced
in this paper, and utilizing these constants enables the transformed stiffness to be expressed
in rather simple forms. To simulate spatial fiber orientation in a preferred direction, a
distribution function controlled by two parameters is introduced. The equivalent composite
elastic properties are then simulated by an aggregated model. Three special cases for fiber
orientation have been discussed and the closed-form stiffnesses have bene obtained.
Equations of motion for a composite plate in a general state of non-uniform initial stresses,
where the effects of transverse shear and rotatory inertia are included, are derived by using
Trefftz equations and the variational principle. Finally, the stability and vibration
equations are solved for simply supported rectangular plates in a state of normal stresses
plus an edge twisting stress. The effect of fiber orientation on the fundamental frequencies
and buckling loads has been discussed.
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1. INTRODUCTION

Fiber architecture has been considered to be the most important feature in composite
design. Placing fibers where they are needed is a direct and efficient method of using the
fibers to improve composite performance. Depending on the loading conditions and
structural requirements, the orientation of the fibers in a composite can be linear, planar,
or spatial. In recent years, composites composed of spatially distributed fibers have become
popular in a wide variety of applications, especially through fabrication techniques such
as injection molding, bulk molding compound, and three-dimensional weaving and
braiding. Using spatial fibers as reinforcing elements in a controlled manner could provide
more balanced properties, which leads to an improved through-the-thickness
stiffness/strength and a better ability to formulate complex shapes. However, it is almost
impossible to control the movement of fibers in perfect alignment. A probabilistic study
on fiber orientation is therefore necessary. Instead of the unachievable perfect alignment,
partial alignment is typical, indicating that fibers are oriented in a preferred direction. In
principle, the distribution of fiber orientation can be represented by either a density
function or a cumulative function, although the function is quite hard to obtain without
the help of computers together with the techniques such as laser beam scatter optical
scanner and image analysis [1–3].

As spatially reinforced composites gain popularity, the need for a basic understanding
of the composites grows. The most essential material properties of such a composite are
elastic constants, which govern the composite static and dynamic behavior. Several
approaches have been proposed in predicting their effective properties. Micromechanics
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focusing on the interactions between inhomogeneities (or inclusions) and the surrounding
matrix can be the most powerful tools [4–6], although mathematical formulations can be
very complex, and limitation still exists when applied to rather high fiber volume fractions.
Another method is the so-called aggregate model [7, 8], used mainly for cases with irregular
fiber orientation. Although the latter approach might be unable to reflect the geometrical
aspects of composites, it provides for a simple means to examine the effect of the
component distribution on the overall properties, and this method is even more suitable
for handling higher fiber fraction. Therefore, the concept of the aggregate model will be
used in this paper.

It is known that initial stresses can be due to several sources, such as thermal expansion
mismatch, plastic deformation, or residual stress during the curing of composites. These
initial stresses could significantly affect its structural behavior. For better material
utilization, a controlled prestressing for advanced fiber-reinforced composite structures is
feasible. Therefore, the prediction of the stability and dynamic behavior of a plate under
initial stress has attracted considerable attention [9–11]. Undoubtedly, a study of thick
plates in an arbitrary state of initial stress will provide structural engineers with more
information about plate behavior.

The purpose of this paper is to investigate the effect of initial stresses on the buckling
and vibration response of thick plates. The framework for this study is based on Trefftz’s
definition of stress [12, 13] and Mindlin plate theory in which both rotatory inertia and
shear deformation effects are taken into account. No terms are dropped unnecessarily, and
the equation derived here can be used to study non-linear post-buckling and large
deformation vibration behavior as well as non-conservative stability and dynamic
problems for various states of initial stresses. In the work described herein, the equations
for initially stressed thick plates have been applied to simply supported rectangular
plates subjected to in-plane normal stresses and a twisting stress acting on the edges of
the plate.

2. THREE-DIMENSIONAL TRANSFORMATIONS

In the first part of the present work, an attempt is made to accomplish the 3-D
elastic transformation that is essential concerning a rotated element. The (1, 2, 3) system
is termed the material co-ordinate since this co-ordinate is defined to relate the local
principal material directions; and (x, y, z) system is termed the geometrical coordinate
for referring to the global structure geometry. For an orthotropic element arbitrarily
placed in space, its orientation can be expanded by three linearly independent rotational
vectors.

To represent the 3-D orientation, the following three-step rotation is adopted as shown
in Figure 1. First, the rotation of an angle u about the z-axis of the original co-ordinate
(x, y, z) yields a co-ordinate (x', y', z'). Then, the rotation of an angle f with respect to
the y'-axis results in the (x0, y0, z0) co-ordinate. Finally, the rotation of an angle v with
respect to the z0-axis generates the (x1, y1, z1) co-ordinate. The (1, 2, 3) system is then
designed to be coincident with the (x1, y1, z1) system. Note that the u, f, and v are
usually termed as Euler angles. The geometrical relations of u, f, and v in a spatial
rotation are illustrated in Figure 2.

Giving a set of (u, f, v) should uniquely determine an orientation and vice versa except
f=0 or p, in which cases u and v are linearly dependent. It should be noted that the
order of the rotations is not commutative; different rotational ordering of an identical set
of angles can result in dissimilar orientations.
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Figure 1. Schematic drawing of spatially orientated fibers in a plate.

Let u1, u2 and u3 be the unit vectors in the (1, 2, 3) coordinate and ux , uy and uz be the
unit vectors in the (x, y, z) coordinate. The relations between these two sets of vectors can
be expressed as

&ux

uy

uz'= &mpr− ns
npr+ms

−qr

−mps− nr
mr− nps

qs

mq
nq
p '&u1

u2

u3', (1)

where the symbols are m=cos (u), n=sin (u), p=cos (f), q=sin (f), r=cos (v), and
s=sin (v).

Since both stress and strain are second-order tensors, the transformation between these
two co-ordinates can be readily obtained using tensor transformation laws. The
engineering shear strains are two times the corresponding tensorial shear strains. Thus, to

Figure 2. Three-dimensional rotation of a spatially oriented element.
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relate these two sets of strains, a 6×6 diagonal matrix [R], in which the diagonal terms
are {1, 1, 1, 2, 2, 2}, is introduced. Denote the stiffness with respect to (1, 2, 3) and (x, y, z)
systems as [Q] and [Q� ] respectively. For an orthotropic material with nine constants, the
non-zero terms in [Q] are Q11, Q12, Q13, Q22, Q23, Q33, Q44, Q55, and Q66. Using tensor laws,
the transformed stiffness matrix can be easily proven to be

[Q� ]= [T]−1[Q][R][T][R]−1, (2)

where [T] is the stress transformation matrix, which can be established from the
co-ordinate transformation matrix in equation (1) using the second-order tensor law. The
details of [T] are listed in the Appendix, Equation (A1). All matrices in equation (2) are
6×6.

Equation (2) can be easily evaluated based on numerical computations providing that
all Qij and the angles are given numerically. However, direct mathematical solutions not
only provide an easier way to obtain numerical values, but more importantly offer a
comprehensive tool that could elucidate the fundamental nature of transformed properties.
Nevertheless, direct symbolic expansions of equations (2), involving multiplication of five
6×6 matrices, contain too many terms to have hardly any practical applicability from
an engineering design point of view. In dealing with this difficulty, three special material
constants have been found to be helpful. These material constants are termed as orthotropic
constants for orthotropic materials as following.

K1 =Q22 +Q33 −2Q23 −4Q44, K2 =Q33 +Q11 −2Q13 −4Q55,

K3 =Q11 +Q22 −2Q12 −4Q66. (3)

It is clear that the K’s are cyclic with respect to axes 1, 2, and 3. Physically, they might
be interpreted as deviations from an isotropic medium since K1 =K2 =K3 =0 for an
isotropic medium.

By incorporating these orthotropic constants, the terms in each Q� ij are greatly simplified
and can be expressed in a minimum number of terms as listed in the Appendix, equation
(A2). The transformation for the compliance matrix can be similarly treated and is not
listed herein.

3. COMPOSITE COMPOSED OF RANDOMLY ORIENTED FIBERS

In this section, effective elastic properties of a composite containing randomly oriented
orthotropic fibers are discussed. It is assumed that the composite contains multiple
material components. Each component can have distinct material properties. For the
composite studied, the components are fibers and matrix. The rotational angles of a fiber
can generally be represented by the three angles f, u, and v. The concept of aggregate
modeling has been used for evaluating effective moduli of composites. Averaged composite
stiffnesses can be calculated according to

Q
 ij =
1
V gV

Q� ij(v) dv

=Vf g
2p

0 g
p

0 g
2p

0

Q� f
ij(u, f, v)b(u, f, v) sin (f) dv df du+(1−Vf)Qm

ij , (4)

where Vf is the total fiber volume fraction in the composite, Q� f
ij the stiffness of a fiber, Qm

ij

the stiffness of the matrix, and b(u, f, v) the probability density function for the
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Figure 3. Fiber distribution in a preferred direction.

distribution of fiber orientation. Sin (f) in the integrand of equation (4) is to account for
the surface area of a sphere. In consideration of composite processing, fiber orientation
distribution might depend on position, resulting in a macroscopically inhomogeneous
composite. To simplify the analysis, only when b is independent of position is discussed.
Since the matrix is isotropic and is independent of rotation, equation (4) can be simplified
by introducing Qij and Q� ij defined as

Qij =VfQf
ij +(1−Vf)Qm

ij , Q� ij =VfQ� f
ij +(1−Vf)Qm

ij (5)

As a result of the aggregate model, equation (5) is known to be most suitable for predicting
elastic constants that are dominated by fibers. For example, for a unidirectional composite
equation (5) can predict the longitudinal modulus better than the transverse and shear
moduli, which are matrix controlled. Therefore, for a composite possessing well-distributed
fibers and no specific direction in which the fiber content is extremely low, such as the one
discussed in this paper, equation (5) would be adequate. Modified forms of equation (5)
based upon micromechanics or empirical data for certain types of composites can be found
in the literature [14–16]. Incorporating equation (5) with equation (4) results in

Q
 ij =g
2p

0 g
p

0 g
2p

0

Q� ij(u, f, v)b(u, f, v) sin (f) dv df du (6)

Once the b(u, f, v) is given, Q
 ij can be evaluated symbolically or numerically. To
illustrate how fiber orientation affects the composite elastic and mechanical behavior,
discussed herein is the case in which fibers are spatially distributed in a preferred direction.
Let the preferred direction be the x-axis. As shown in Figure 3, fibers are assumed to be
uniformly distributed over the given region; namely, b is a constant over the region. The
corresponding distribution region is defined by

−u0 E uE u0, p/2−f0 EfE p/2+f0, 0EvE 2p (7)
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where u0 and f0 are prescribed values, and v is so given that any fiber is free to rotate
with respect to its axial direction. From equation (7), the corresponding density function
is found to be

b(u, f, v)=1/8pu0 sin (f0) (8)

Thus, equation (6) becomes

Q
 ij =
1

8pu0 sin (f0) g
u0

−u0
g

p/2+f0

p/2−f0
g

2p

0

Q� ij(u, f, v) sin (f) dv df du (9)

The explicit result of the integration in equation (9) can be obtained for any given u0

and f0 since the solutions of Q� ij have been obtained explicitly. However, the general explicit
results for Q
 ij could be quite lengthy, and listed here are only the following special cases.

(a) u0:0, f0:0. This represents the situation in which all fibers are aligned and parallel
to the x-axis, and hence fibers are free to rotate only with respect to the three axial
directions. By substituting equation (A-2) into equation (9) and performing the integration,
one finds that the non-zero Q
 ij terms are

Q
 11 =Q33, Q
 22 =Q
 33 = 1
2(Q11 +Q22)− 1

8K3, Q
 23 =Q12 + 1
8K3,

Q
 12 =Q
 13 = 1
2(Q13 +Q23), Q
 44 =Q66 + 1

8K3, Q
 55 =Q
 66 = 1
2(Q44 +Q55) (10)

It can be proved that Q
 44 = (Q
 22 −Q
 23)/2, indicating that yz-plane is the plane of
isotropy and the composite is transversely isotropic. The resulting composite includes five
elastic constants.

(b) u0 = p, f0:0. This represents the case in which fibers are uniformly lying on the
xy-plane, and is therefore a two-dimensional in-plane distribution. The non-zero terms are

Q
 11 =Q
 22 = 1
4(Q11 +Q22)+ 1

2Q33 − 1
16(K1 +K2)− 3

64K3, Q
 33 = 1
2(Q11 +Q22)− 1

8K3,

Q
 23 =Q
 13 = 1
4(Q13 +Q23)+ 1

2Q12 + 1
16K3, Q
 12 = 1

2(Q13 +Q23)+ 1
16(K1 +K2)− 1

64K3,

Q
 44 =Q
 55 = 1
4(Q44 +Q55)+ 1

2Q66 + 1
16K3, Q
 66 = 1

2(Q44 +Q55)+ 1
16(K1 +K2)− 1

64K3. (11)

It can be proved that Q
 66 = (Q
 11 −Q
 12)/2, indicating that the xy-plane is the plane of
isotropy, and the composite is transversely isotropic with respect to the z-axis, and among
the nine non-zero terms, five are independent.

(c) u0 = p, f0:p/2. This represents the case in which fibers are uniformly distributed
in all directions, which may be termed as completely random distribution. From the
definition, the composite behavior should be independent of direction, or the composite
is isotropic. The non-zero terms are

Q
 11 = Q
 22 =Q
 33 = 1
3(Q11 +Q22 +Q33)− 1

15(K1 +K2 +K3),

Q
 12 = Q
 13 =Q
 23 = 1
3(Q23 +Q13 +Q12)+ 1

30(K1 +K2 +K3),

Q
 44 = Q
 55 =Q
 66 = 1
3(Q44 +Q55 +Q66)+ 1

30(K1 +K2 +K3). (12)

Due to symmetric distribution of yarn orientation, the composite as a whole is
macroscopically isotropic; this can be easily proved from the fact that Q
 44 = (Q
 11 −Q
 12)/2.
According to the theory of elasticity, Young’s modulus E and Poisson ratio n can be
obtained as

E=[(Q
 11 −Q
 12)(Q
 11 +2Q
 12)/(Q
 11 +Q
 12), n=Q
 12/(Q
 11 +Q
 12) (13)

The above constants can be in turn expressed by the basic engineering constants of the
fiber and matrix.
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Once the stiffness matrix [Q
 ] is obtained from equation (9), the inversion of the stiffness
matrix results in the compliance matrix [S
 ] from which the composite engineering constants
including Young’s moduli (Ex , Ey , Ez), shear moduli (Gyz , Gxz , Gxy), and Poisson ratio
(nyz , nxz , nxy) can be calculated. Note that the Young’s and shear moduli predicted by this
stiffness approach is a known upper-bound solution; on the other hand, a compliance
approach yields a lower-bound solution. Both bounds can be obtained by the methodology
developed in this paper, and the characteristics of the bounds depend on the K’s; detailed
discussion on this topic is not presented herein.

4. VARIATIONAL FORMULATION FOR PLATE GOVERNING EQUATIONS

This section examines the governing equation of motion for a plate composed of
spatially reinforced fiber composite and subjected to initial stresses. According to Bolotin
[13] the equilibrium equation and boundary traction condition in tensor forms can be
expressed in terms of Trefftz stress components as

[tij(us + u0
s ),j + sij(dsj + us,j + u0

s,j)],i +X0
s +Xs +DXs − rüs =0,

P0
s + ps +DPs =[tij(us + u0

s ),j + sij(dsj + us,j + u0
s,j)]ni , (14)

where tij , u0
s , X0

s and P0
s stand for the initial stress, displacement, body force, and surface

traction respectively, and sij , us , Xs and ps are the corresponding perturbation quantities.
The terms DXs and DPs represent changes in the body force and surface traction due to
perturbation.

Since the composite is in an equilibrium state before perturbation, the equation for
incremental stresses and displacements can be reduced as follows:

(tijus),i +[sij(dsj + us,j + u0

s ,j
)],i +Xs +DXs − rüs =0,

ps +DPs =[tijus,j + sij(dsj + us,j + u0
s ,j
)]ni . (15)

The equation of the virtual work can be obtained by multiplying equation (15) by the
variation of the displacement component dus and then integrating the resulting expression
over the initial volume V. Upon using the product differentiation rules and the divergence
theorem, the equation becomes

d(V� +W� )+gV

rüsdus dv=gs

[tijus,j + sis + sij(us,j + u0
s,j)]dusni ds+gv

(Xs +DXs) dus dv,

(16)
where

dV� = d gv

1
2sijoij dv, dW� = d gv

1
2tijus,ius,j dv (17)

The surface integral in equation (16) consists of the integration over the areas Sp and
Su in which surface tractions and displacements are prescribed respectively. Therefore,
from the second of equation (15), the virtual work theorem is finally represented as

d(V� +W� )+gV

rüsdus dv=gSp

(ps +DPs)dus ds

+gSu

[tijus,j + sis + sij(us,j + u0
s,j)]dusni ds

+gv

(Xs +DXs) dus dv. (18)
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The tensor form of the virtual work theorem is valid not only for linear and conservative
problems but also non-linear and non-conservative ones. The equation will be used
subsequently in deriving the equations of motion for arbitrarily prestressed plates.

In dealing with the perturbing displacements in a plate, several displacement functions
have been used. For rather thin plates, Kirchhoff types of displacement functions could
be sufficient. For thick plates and detailed three-dimensional displacement and stress
analysis within a plate, many higher order functions with rather complex analysis have
been proposed [17, 18]. Taking into account both displacement and stress continuities
within an elastic body and on boundary surfaces these theories generally yield better results
and inevitably require elaborated equation manipulations and numerical computations.
For the sake of simplicity, Mindlin plate theory [9–11] is adopted in this paper:

u1(x, y, z, t)= u(x, y, t)+ zCx(x, y, t), u2(x, y, z, t)= v(x, y, t)+ zCy(x, y, t),

u3(x, y, z, t)=w(x, y, t). (19)

where u, v, and w are mid-plane displacements in x-, y-, and z-directions respectively, and
Cx and Cy are rotatory angles.

For a linear elastic plate, the constitutive equation is

sxx Q
 11 Q
 12 Q
 14 Q
 15 Q
 16

syy Q
 12 Q
 22 Q
 24 Q
 25 Q
 26

G
G

G

G

G

K

k

syz G
G

G

G

G

L

l

= G
G

G

G

G

K

k

Q
 14 Q
 24 Q
 44 Q
 45 Q
 46 G
G

G

G

G

L

l

([o0]+ z[k]), (20)

sxz Q
 15 Q
 25 Q
 45 Q
 55 Q
 56

sxy Q
 16 Q
 26 Q
 46 Q
 56 Q
 66

where

[o0]= [u,1, v,2, w,2 +Cy , w,1 +Cx , u,2 + v,2]T, [k]= [Cx,1, Cy,2, 0, 0, Cx,2 +Cy,1]T (21)

and Q
 ij are transformed reduced stiffnesses for the composite as defined in equation (9).
The force and moment resultants in the plate are defined as

[Nx , Ny , Qy , Qx , Nxy ]=g
h/2

−h/2

[sxx , syy , syz , sxz , sxy ]T dz,

[Mx , My , Myz , Mxz , Mxy ]=g
h/2

−h/2

z[sxx , syy , syz , sxz , sxy ]T dz. (22)

The plate extensional, coupling, and bending stiffnesses are defined as

(Aij , Bij , Dij)=g
h/2

−h/2

Q
 ij(1, z, z2) dz (23)

Consider a plate with side length a and b and thickness h as shown in Figure 1. Also,
assume that the system is conservative and that no transverse initial stresses act on the
plate. Performing all the integrations in equation (18), taking variations with respect to
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all variables, neglecting small terms and collecting terms that contain variations of the
same displacements, one obtains

g
a

0 g
b

0

{H1du +H2dv +H3dw+H4dCx +H5dCy} dy dx

+g
a

0

[I1du + I2dv + I3dw+ I4dCx + I5dCy ]y= b
y=0 dx

+g
b

0

[J1du + J2dv + J3dw+ J4dCx + J5dCy ]x= a
x=0 dy=0, (24)

where Hi , Ii , Ji consist of the displacement functions (equation (19)), the stiffnesses
(equation (23)), and the initial forces and moments. The details of Hi , Ii , and Ji are listed
in the Appendix, equation (A3). The initial forces and moments in Ei , Fi , and Gi , denoted
as barred N’s and M’s, are defined as

(N� x , N� y , N� xy)=g
h/2

−h/2

(t11, t22, t12) dz, (M� x , M� y , M� xy)=g
h/2

−h/2

(t11, t22, t12)z dz,

(M� *x , M� *y , M� *xy)=g
h/2

−h/2

(t11, t22, t12)z2 dz. (25)

The initial normal stresses are assumed to be constants and the shear stress linear as
shown in Figure 4:

t11 = sx0, t22 = sy0, t12 = (2z/h)t0 (26)

and all other initial stresses vanish. The stresses sx0, sy0, and t0 are constants so that the
initial stresses are uniform. The non-zero initial forces and moments are

(N� x , N� y)= (sx0, sy0)h, M� xy = t0h2/6,

(M� *x , M� *y )= (sx0, sy0)h
3/12. (27)

Figure 4. An initially stressed plate: (a) normal stresses; (b) shear stress.
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Figure 5. Young’s moduli versus u0 for various f0: — · —, Ex ; ——, Ey ; – – –, Ez .

For simply supported plates, the following displacement functions satisfying the
boundary conditions are introduced:

u=C1h sin (j) cos (h) eiv̄t, v=C2h cos (j) sin (h) eiv̄t,

w=C3h sin (j) sin (h) eiv̄t, Cx =C4 cos (j) sin (h) eiv̄t,

Cy =C5 sin (j) cos (h) eiv̄t, (28)

where j=mpx/a and h= npy/b. Ci , v̄, and t are coefficients, frequency and time,
respectively.

The plate characteristic equation can be found by substituting equation (28) into the
equation of motion (24). A set of five homogeneous equations can be obtained as

KijCj =0 i, j=1, . . . , 5 (29)

where kij are listed in the Appendix, equation (A4). For non-zero solutions to exist, the
determinant of the coefficient matrix [K] must vanish, enabling evaluation of the
eigenvalues for plate stability and vibration under initial stresses.

5. RESULTS AND DISCUSSIONS

The material properties of a carbon/epoxy system have been used in the numerical
examples. The constants used are E33 =180 GPa, E11 =20 GPa, G13 =12 GPa, n31 =0·4,
n12 =0·3 for the fiber, and Em =5·0 GPa, nm =0·3 for the matrix. The fiber volume fraction
is assumed to be 0·65. Using these constants, the reduced stiffnesses for fiber and matrix,
as required by equation (5), can be calculated. The fiber is transversely isotropic although
all the theoretical formulations are not restricted to this.

The most fundamental issue concerning such a composite is probably the resulting
elastic stiffness. Figure 5 shows the relation between fiber orientation and Young’s moduli
Ex , Ey , and Ez . When both u0 and f0 are small, most fibers are closely aligned with the
x-axis, resulting in a rather high Ex and low Ey and Ez . When u0 increases, Ex drops rapidly
until about u0 =135°, where a minimum is reached. Ey reaches a maximum at about
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Figure 6. Shear moduli versus u0 for various f0: —·—, Gxy ; ——, Gxz ; – – –, Gyz .

u0 =120°. The transverse modulus Ez is independent of u0. The composite is isotropic and
these moduli are identical when u0 =180° and f0 =90°. Results for shear moduli are
shown in Figure 6. Gxy is significantly increased with u0 when u0 E 60°, followed by a
wave-like variation. On the other hand, Gxz drops slowly when u0 is increased up to about
u0 =130°. As f0 increases, it is found that all the transverse moduli (Ez , Gxz , Gyz) increase,
while all the in-plane moduli (Ex , Ey , Gxy) decrease.

Typical results for the plate fundamental frequencies under the initial stresses sx0 and
sy0 are shown in Figure 7. It is found that the fundamental frequencies are increased when
either sx0 or sy0 is increased; this is simply due to plate tensioning. When both sx0 and sy0

Figure 7. Fundamental frequencies of the plate under initial sx0 and sy0 (GPa): (a/t=10, b/t=10, u0 =0·1,
and f0 =0·2).
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Figure 8. Fundamental frequencies of the plate under t0 and sx0 (GPa): (a/t=10, b/t=10, u0 =0·1, and
f0 =0·2).

vanish, the point corresponds to the natural frequency. As sx0 becomes negative, the
fundamental frequency will eventually vanish as the compressive stress increases, resulting
in plate buckling. Higher compressive stress is required to buckle the plate if the tensile
stress in other directions (sy0) increases. Figure 8 illustrates the effect of initial shear stresses
on the fundamental frequency of the plate. As t0 increases, the fundamental frequencies
are reduced and will eventually vanish when plate buckling due to the initial shear stress
occurs. Unlike the normal stresses, positive and negative shear stresses yield the same
results for fundamental frequencies and buckling loads. It should be noted that the results
in Figures 7 and 8 are the lowest, and the corresponding mode is m= n=1; it is possible

Figure 9. Influence of u0 on the natural frequencies (a/t=10, b/t=10) with varying f0 (°).
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Figure 10. Influence of f0 on the natural frequencies (a/t=10, b/t=10) with varying u0 (°).

that the lowest results can occur in other mode shapes if the plate aspect ratio, material
constants, or fiber orientation are changed.

The effect of fiber orientation on the natural frequency of the plate is shown in Figures
9 and 10. As the plate natural frequency is dependent on the plate rigidity, it is expected
that the Young’s and shear moduli are crucial to the problem. Among six elastic moduli,
the in-plane ones (Ex , Ey , Gxy) are dominant terms, whereas the transverse moduli
(Ez , Gxz , Gyz) will not influence the plate vibration and buckling unless the plate is thick
enough. As u0 is increased, the frequencies follow wave-like curves due to opposite trends

Figure 11. Critical initial stress sx0 for plate buckling (a/t=10) for varying, f0 (°). b/t: —q—, 10;
—W—, 100.
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Figure 12. Critical initial shear stress t0 for plate buckling (a/t=10, b/t=10) with varying f0 (°).

by Ex and Ey . On the other hand, when f0 increases, all three in-plane moduli are found
to be reduced, and, as a result, the frequencies are monotonously decreased.

The plate buckling behavior is generally controlled by three factors: stiffness, structure
geometry, and loading type. Unlike beam buckling, which is dominated solely by the
longitudinal modulus, all in-plane moduli can be crucial to plate buckling. This fact is
illustrated in Figure 11 showing the critical normal stress sx0 for plate buckling as a
function of plate aspect ratio and u0. For a square plate (a/t=10, b/t=10), the sx0 is
increased as u0 increased until about u0 =60°, followed by a slightly wavy variation. On
the other hand, when the plate is long in the y-direction (a/t=10, b/t=100), the influence
of Ey and Gxy becomes minimal. In this case, the plate buckling behaves like a beam
buckling and the critical load curves are found to be very similar to the Ex curves in Figure
5. Figure 12 shows the roles of u0 and f0 in the critical initial shear stress for a square
plate. The results are quite similar to the Gxy in Figure 12, suggesting that the in-plane shear
modulus is the dominant term for this problem.

It should be noted that the results in Figures 7–12, based upon m= n=1, are the lowest
compared with other modes. However, for a long plate subjected to initial shear stresses
such as the case studied (a/t=10, b/t=100), the lowest critical loads are found to occur
at rather high vaules of n. Shown in Figure 13 are the critical shear stresses for different
modes. It is found that the lowest values depend not only on the mode but also on the
u0 and f0. For the case examined, the corresponding mode having lowest shear stress is
m=1 and n=16 at u0 up to about 60°, beyond which the corresponding mode varies
among n=8–13.

6. CONCLUSIONS

Introduced in this paper are three orthotropic constants, which enable the stiffness
transformation to be greatly simplified. Based upon the aggregated model, the elastic
constants of a composite composed of spatially distributed fibers have been explicitly
evaluated. The fiber orientation is described by a two-parameter function to simulate a
bias distribution. The six composite moduli have been found to vary monotonously with
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Figure 13. Influence of f0 and buckling mode on critical t0 (a/t=10, b/t=100, f0 =45°, m=1), for various
modes (n).

f0, while they follow wave-like curves with u0 except E2. Using the virtual work theorem
and Trefftz stress components, the equations of equilibrium of the composite plate under
initial stresses have been obtained and applied to evaluate the fundamental frequencies of
the plate. The role of f0 on plate behavior is quite predictable; an increase in f0 results
in lower in-plane moduli, which in turn lead to lower vibration frequencies and buckling
loads. For u0, however, its influence is affected by other factors such as the type of initial
stress, mode shape and aspect ratio. Numerical examination is therefore necessary to
determine the effect of u0 on the plate behavior.
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APPENDIX

     [T]
T11 = (mpr− ns)2, T12 = (ms+ npr)2, T13 = q2r2,

T14 =−2npqr2 −2mqrs, T15 =−2mpqr2 +2nqrs, T16 =2(npr+ms)(mpr− ns),

T21 = (mps+ nr)2, T22 = (mr+ nps)2, T23 = q2s2,

T24 =2mqrs−2npqs2, T25 =−2nqrs−2mpqs2, T26 =2(nr+mps)(−mr+ nps),

T31 =m2q2, T32 = n2q2, T33 = p2,

T34 =2npq, T35 =2mpq, T36 =2mnq2, T41 =−mnqr−m2pqs,

T42 =mnqr− n2pqs, T43 = pqs, T44 =mpr− np2s+ nq2s,

T45 =−npr−mp2s+mq2s, T46 =m2qr− n2qr−2mnpqs,

T51 =m2pqr−mnqs, T52 = n2pqr+mnqs, T53 =−pqr,

T54 = np2r− nq2r+mps, T55 =mp2r−mq2r− nps, T56 =2mnpqr+m2qs− n2qs,

T61 = (−mpr+ ns)(nr+mps), T62 = (npr+ms)(mr− nps), T63 =−q2rs,

T64 =−mqr2 +2npqrs+mqs2, T65 = nqr2 +2mpqrs− nqs2,

T66 = p(r2 − s2)(m2 − n2)−2mnrs(1+ p2). (A1)

  Q� ij

Q� 11 =Q11(mpr− ns)2 +Q22(mps+ nr)2 +Q33m2q2 −K1m2q2(mps+ nr)2

−K2m2q2(mpr− ns)2 −K3(mpr− ns)2(mps+ nr)2,

Q� 12 =Q12p2 +Q13q2s2 +Q23q2r2 +K1mnq2(mps+ nr)(mr− nps)

+K2mnq2(ns−mpr)(ms+ npr)

+K3(mpr− ns)(ms+ npr)(mps+ nr)(mr− nps).
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Q� 13 =Q12n2q2 +Q13(mr− nps)2 +Q23(ms+ npr)2 +K1mpq2s(mps+ nr)

+K2mpq2r(mpr− ns)+K3q2rs(ns−mpr)(mps+ nr),

Q� 14 =
q
2

[−2Q12np+2Q13s(nps−mr)+2Q23r(ms+ npr)

+K1m(mps+ nr)(nq2s− np2s+mpr)

+K2m(mpr− ns)(nq2r− np2r−mps)

+K3(mpr− ns)(mps+ nr)(2nprs−mr2 +ms2)],

Q� 15 =
q
2

[−Q11r(mpr− ns)−Q22s(mps+ nr)+Q33mp

+K1m(mps+ nr)(mq2s−mp2s− npr)

+K2m(mpr− ns)(mq2r−mp2r+ nps)

+K3(mpr− ns)(mps+ nr)(2mprs+ nr2 − ns2)],

Q� 16 = 1
2{Q11(mpr− ns)(ms+ npr)+Q22(mps+ nr)(nps−mr)+Q33mnq2

−K1mq2(mps+ nr)(2mnps−m2r+ n2r)

−K2mq2(mpr− ns)(2mnpr+m2s− n2s)

−K3(mpr− ns)(mps+ nr)[2mnrs(p2 +1)− p(m2 − n2)(r2 − s2)]}

Q� 22 =Q11(ms+ npr)2 +Q22(nps−mr)2 +Q33n2q2 −K1n2q2(mr− nps)2

−K2n2q2(ms+ npr)2 −K3(ms+ npr)2(mr− nps)2

Q� 23 =Q12m2q2 +Q13(mps+ nr)2 +Q23(mpr− ns)2 +K1npq2s(nps−mr)

+K2npq2r(ms+ npr)+K3q2rs(ms+ npr)(mr− nps),

Q� 24 =
q
2

[−Q11r(ms+ npr)−Q22s(nps−mr)+Q33np

+K1n(nps−mr)(nq2s− np2s+mpr)

+K2n(ms+ npr)(nq2r− np2r−mps)

+K3(ms+ npr)(nps−mr)(2nprs−mr2 +ms2)],

Q� 25 =
q
2

[−2Q12mp+2Q13s(mps+ nr)+2Q23r(mps− ns)

+K1n(nps−mr)(mq2s−mp2s− npr)

+K2n(ms+ npr)(mq2r−mp2r+ nps)

+K3(ms+ npr)(nps−mr)(2mprs+ nr2 − ns2)],

Q� 26 = 1
2{Q11(mpr− ns)(ms+ npr)+Q22(mps+ nr)(nps−mr)+Q33mnq2

−K1nq2(nps−mr)(2mnps−m2r+ n2r)

−K2nq2(ms+ npr)(2mnpr+m2s− n2s)

−K3(ms+ npr)(nps−mr)[2mnrs(p2 +1)− p(m2 − n2)(r2 − s2)]},

Q� 33 =Q11q2r2 +Q22q2s2 +Q33p2 −K1p2q2s2 −K2p2q2r2 −K3q4r2s2,
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Q� 34 =
q
2

[−Q11r(ms+ npr)−Q22s(nps−mr)+Q33np

+K1ps(np2s− nq2s−mpr)+K2pr(np2r− nq2r+mps)

+K3q2rs(2nprs−mr2 +ms2)],

Q� 35 =
q
2

[−Q11r(mpr− ns)−Q22s(mps+ nr)+Q33mp+K1ps(mp2s−mq2s+ npr)

+K2pr(mp2r−mq2r− nps)+K3q2rs(2mprs+ nr2 − ns2)],

Q� 36 =−Q12mnq2 +Q13(mps+ nr)(mr− nps)+Q23(ns−mpr)(ms+ npr)

+K1pq2s[mnps−(r/2)(m2 − n2)]+K2pq2r[mnpr+(s/2)(m2 − n2)]

−K3q2rs[mnrs(p2 +1)− (p/2)(m2 − n2)(r2 − s2)],

Q� 44 =Q44(mpr− ns)2 +Q55(mps+ nr)2 +Q66m2q2 +K1npq2s(nps−mr)

+K2npq2r(ms+ npr)+K3q2rs(ms+ npr)(mr− nps),

Q� 45 =−Q44(mpr− ns)(ms+ npr)−Q55(mps+ nr)(nps−mr)−Q66mnq2

+K1pq2s[mnps−(r/2)(m2 − n2)]+K2pq2r[mnpr+(s/2)(m2 − n2)]

−K3q2rs[mnrs(p2 +1)− (p/2)(m2 − n2)(r2 − s2)],

Q� 46 =
q
2

[2Q44r(mpr− ns)+2Q55s(mps+ nr)−2Q66mp

+K1n(nps−mr)(mq2s−mp2s− npr)

+K2n(ms+ npr)(mq2r−mp2r+ nps)

+K3(ms+ npr)(2mprs+ nr2 − ns2)(nps−mr)],

Q� 55 =Q44(ms+ npr)2 +Q55(nps−mr)2 +Q66n2q2 +K1mpq2s(mps+ nr)

+K2mpq2r(mpr− ns)−K3q2rs(mpr− ns)(mps+ nr),

Q� 56 =
q
2

[2Q44r(ms+ npr)+2Q55s(nps−mr)−2Q66np

+K1m(mps+ nr)(nq2s− np2s+mpr)

+K2m(mpr− ns)(nq2r− np2r−mps)

+K3(mpr− ns)(mps+ nr)(2nprs−mr2 +ms2)],

Q� 66 =Q44q2r2 +Q55q2s2 +Q66p2 +K1mnq2(mps+ nr)(mr− nps)

+K2mnq2(ns−mpr)(ms+ npr)

+K3(mpr− ns)(ms+ npr)(mps+ nr)(mr− nps). (A2)

   (24)
H1 =A11u,xx +A66u,yy +(A12 +A66)v,xy − rhü+N� xu,xx +N� yu,yy +2M� xyCx,xy ,

H2 =A22v,yy +A66v,xx +(A12 +A66)u,xy − rhv̈+N� xv,xx +N� yv,yy +2M� xyCy,xy ,

H3 =A55w,xx +A44w,yy +A55Cx,x +A44Cy,y − rhẅ+N� xw,xx +N� yw,yy ,

H4 =−A55w,x −A55Cx +D11Cx,xx +D66Cx,yy +(D12 +D66)Cy,xy − 1
12rh3C� x

+2M� xyu,xy +M� *x Cx,xx +M� *y Cx,yy ,
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H5 =−A44w,y −A44Cy +D22Cy,yy +D66Cy,xx +(D12 +D66)Cx,xy − 1
12rh3C� y

+2M� xyv,xy +M� *x Cy,xx +M� *y Cy,yy ,

I1 =A66u,y +A66v,x +M� xyCx,x , I2 =A12u,x +A22v,x +M� xyCy,x ,

I3 =A44w,y +A44Cy +N� yw,y , I4 =D66Cx,y +D66Cy,x +M� *y Cx,y ,

I5 =D12Cx,x +D22Cy,y +M� *y Cy,y , J1 =A11u,x +A12v,y +M� xyCx,y ,

J2 =A66v,x +A66u,y +M� xyCy,y , J3 =A55w,x +A55Cx +N� xw,x ,

J4 =D11Cx,x +D12Cy,x +M� *x Cx,x , J5 =D66Cx,y +D66Cy,x +M� *x Cy,x . (A3)

  Kij

K11 =Q
 11l
2
x +Q
 66l

2
y − rh2v̄2 + sx0l

2
x + sy0l

2
y , K12 = (Q
 12 +Q
 66)lxly ,

K14 = 1
3t0lxly , K22 =Q
 22l

2
y +Q
 66l

2
x − rh2v̄2 + sx0l

2
x + sy0l

2
y , K25 = 1

3t0lxly ,

K33 =Q
 55l
2
x +Q
 44l

2
y − rh2v̄2 + sx0l
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where

lx =mph/a and ly = nph/b.


