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Free vibration analysis of symmetrically laminated composite rectangular plates with all
edges elastically restrained against rotation was carried out based on the first order
anisotropic shear deformation plate theory. The iterative Kantorovich method and the
Rayleigh—Ritz method with three different sets of trial functions were applied to the
analysis. The numerical results were compared with each other and with experimental ones,
and they showed good agreement.
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1. INTRODUCTION

The classical thin plate theory gives overestimated results in the free vibration analysis of
thick plates, especially for fiber-reinforced laminated composite plates because of their low
transverse shear modulus ratio to the in-plane Young’s modulus. The effects of shear
deformation and rotary inertia should be considered in the governing equations for a
reliable prediction of the dynamic behavior of laminated composite plates. Among a
number of plate theories including both effects, the first order anisotropic shear
deformation theory for laminated composite plates, referred to as the YNS
(Yang—Norris—Stavsky) theory [1], is widely adopted for the dynamic analysis of
anisotropic laminated composite plates.

Using the YNS theory, Whitney and Pagano [2] and Bert and Chen [3] presented closed
form solutions for the free vibration of asymmetric angle-ply plate strips and laminates
with all edges simply supported, respectively. For the plates with other boundary
conditions, several approximate solutions are common. Craig and Dawe [4] and Chung
et al. [5] presented the Rayleigh—Ritz solutions by using Timoshenko beam functions and
by using Timoshenko beam characteristic polynomials [6] as trial functions, respectively,
for the free vibration of symmetrically laminated composite rectangular plates. Bowlus et
al. [7] presented the Galerkin solutions by using harmonic functions as trial functions.
Dawe and Wang [8, 9] presented the spline Rayleigh—Ritz solutions and the spline finite
strip solutions for the free vibration of rectangular laminated composite plates.

Recently, Bhat ef al. [10] and Lee and Kim [11] used the iterative Kantorovich method
to obtain plate characteristic functions and natural frequencies of rectangular isotropic
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thin plates and thick plates respectively. The results of their numerical examples show that
the method gives better accuracy in natural pairs and computational efficiency than other
methods.

In this paper, the free vibration analysis of symmetrically laminated composite
rectangular plates with all edges elastically restrained against rotation was carried out
based on the YNS theory. The iterative Kantorovich method and the Rayleigh—Ritz
method were applied to the vibration analysis. Three different sets of trial functions: the
newly derived plate characteristic functions, Timoshenko beam functions and
characteristic polynomials, were used to obtain the Rayleigh—Ritz solution. Some
numerical and experimental applications were performed to verify the usefulness of the
presented methods.

2. THE FIRST ORDER ANISOTROPIC SHEAR DEFORMATION PLATE THEORY: THE
YNS THEORY

The geometrical configuration and co-ordinate system of a rectangular thick plate is
shown in Figure 1 with its boundary conditions, and non-dimensional parameters are
introduced as follows:

& = x/a, n=y/b, o=alb,
KRx1 = kala/Dn, Ksz = kaza/Dn, KRyl = kRylb/DZZa KR_|~2 = kRyzb/Dzz, (1)

where a and b are the plate lengths in the x and y directions respectively, kr (refer to
Figure 1(b) for the additional subscripts x;, x,, y» and y,) are the rotational spring
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Figure 1. The co-ordinate system (a) and boundary conditions (b) of a rectangular thick plate.
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constants, and D; (i = 1, 2) are the flexural rigidities of the plate, to be described in detail
later.

Since there is no coupling of extensional/shearing behavior to bending/twisting
behavior for the symmetrically laminated composite plate, the YNS theory leads to
the following expressions for the strain energy, V, and the kinetic energy, 7, of the

system:
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where w(&, i, t) is the displacement in the z direction, and :(&, n, ¢) and ¥, (¢, n, 1)
are the cross-sectional rotations in the ¢- and p-directions respectively, as shown in
Figure 1.
For the symmetrically laminated composite rectangular plate with thickness /2 shown in
Figure 2, the flexural rigidities D; (i, j = 1, 2, 6) and the shear rigidities 4; (i,j = 4, 5) in
equation (2) are estimated as follows (see, for example, reference [12]):

h/2 .
D[/' = J‘ Q,'/'Z2 dZ

—hf2

N-1 -
= % |: Z (Qi/)”l(hsf - h31+ l) + (Qil)Nh]}V:| for l)] = 17 27 6; (4)

m=1
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Figure 2. The laminate nomenclature for symmetrically laminated composite plates.

na
A,‘,‘ = kikj f C,‘,‘ dZ

—hj2

N—-1 __ R
= 2k!k/|: Z (Cljj)m (hm - hm+ 1) + (Cljj)NhN:|

m=1
= k,‘kjS,’,’ fOI‘ l,j = 4, 5, (5)

where (Q;). and (C;), are the plane-stress reduced stiffness coefficients and the shear
stiffness coefficients of the mth layer with respect to the plate co-ordinates respectively, /4,
is the distance from the median surface of the plate to the lower surface of the mth layer
and N denotes the number of layers in the half-thickness of the plate. These coefficients
may vary from layer to layer depending on the material properties and the lamina
orientation of each layer.

The shear correction factors k;k; are introduced to allow for the fact that the transverse
shear strain distributions are not uniform through the plate thickness. An appropriate
estimation of these factors is very important in the YNS theory, but studies on this matter
are relatively scarce. Chow [13] derived formulae for the shear correction factors of
orthotropic plates with symmetric lamination considering static cylindrical bending, and
Whitney [14] extended this to cases of non-symmetric laminates. In this paper, the explicit
formulae for the shear correction factors of symmetrically laminated composite plates
based on Chow’s study are given as follows:

1 s, ﬁ Lty — b
k’z m=1 (Cii)m "

(o) PPN I (7)) YRR o
a 3D[/ (hm_ m+1)+20 DIZ/ (h’”_herl) ’ 1_4’ 59 .]_6_1, (6)

where a; = h(Q)1 /2D, am = @u 1 + (12)2D){(Q;)m — (Qs)m 1} and hy ., = 0.
The mass 2 and rotary inertia / per unit area of the plate in equation (3) are evaluated

as follows:
h/2
m= J p dz
—h/2

N-—1
== 2|: Z pm(hm - hm+1) + PNhN:|

m=1
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h/2
I= f pz2dz

—h/2

N-—1
:§|:Z p”7(h31_h31+1) +p1\/h?\’:|9 (7)

m=1

where p,, is the mass density of the mth layer.

3. THE ITERATIVE KANTOROVICH METHOD AND DERIVATION OF PLATE
CHARACTERISTIC FUNCTIONS

In this section, the iterative Kantorovich method [8, 9] is presented to obtain plate
characteristic functions and natural pairs of the symmetrically laminated composite
rectangular plate with all edges elastically restrained against rotation by iterative reduction
of the plate partial differential equation to an ordinary differential equation and solving
it exactly. This procedure itself is similar to that used in reference [9].

Assuming the harmonic motion

w(&, n, 1) =W(, n) e, Ve, 1) = Wo(E, ) e,
‘//n(éa n,t) =¥, n) e ®)

and that the variations of ¥: and W (¥, and W) in the 5 direction (£ direction) are quite
similar to each other [15], separation of the spatial variables can be undertaken as follows:

W, n) =XOYm),  Yelon)=2QYm),  ¥,(&n)=X(EOOMm). )

By virtue of expressions (9), the variations of W, ¥. and ¥, in the application of
Hamilton’s principle,

5J (T—V)dt =0,

can be expressed as follows:
oW =0XY + XoY, OV:=00Y + YD, oV, =90X0O + 6O X. (10)

At the start of the application of the Kantorovich method, Timoshenko beam functions
consistent with the boundary conditions of the plate are adopted as an assumption of
deflection shapes along one direction; say, the # direction—Y () and @ (n). Timoshenko
beam functions with ends elastically restrained against rotation were derived in reference
[6].

Since Y(n) and O(n) are assumed a priori, one can take 0Y =0=0960 in the
mathematical operation of the application of Hamilton’s principle, which leads the
boundary value problem with respect to X (&) and @(¢) as follows:

governing equations,

d*@ yu d?X yedX | oy

do v
diéz-f—ﬁndfi-i-ﬁlz@-f-;déz+;T£+;X—O,
1dX | fodX | fx d¢o do _ 0
szt s at . X+ 7y az tom dé-f—))zs‘p—(), (11)
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boundary conditions,

D16A4dX+ 2D12A2X=0,

do Dis Dig As dX
+<OC A3 KRXI>¢+OCD|] a df o D“ a

d¢ Dy,
1dx  ( Di Ass 1
a dé <O(D6ﬁB7—abD66 (Bg-Bg))aX
1Dy pdd (o0 D gy _
+ % De. By dz + <B4 Dee B2><I> =0 along £ =0, (12)
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In equation (14), ©* is the frequency parameter, defined as

Q* = i’lw*/ Dy, (15)
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and the other constants given in capital letters in equations (12), (13) and (14) can be
evaluated with the functions Y () and @(n) assumed a priori as follows:

1 b b*Ass 11,4y
A—sz; Y*dy, B—j}@di’]-{—D() A, AI_ZE dzdi’[,

11 (" de 1 dy 11
Az—AbL YTndn’ A = bJ Yd7d11, A4_Ab£ Yo dl’],

ha\»—‘

11" de 1 A
ASZJ\ dez dn’ Bl :J\ @2 dn’ Blzi
0 0

11 11 de
Gy, G = ZE [Y|q:0,1]2, Gy, Gy = |:Y:| s
n =

A A 11]dY
HZO, H21 = E GlO,lla H}(), H31 = E G20,213 H40> H41 = |: @:| s
n=0,1

1

So, S1 =3 [O]-0], I, T = (Y] -oi] (16)

- B b2

From the general solution of equations (11) and the boundary conditions (12) and (13),
an eigenvalue problem can be obtained, the solution of which gives the frequency
parameter £; and the corresponding functions X (&) and @(&). This procedure is described
in detail in the Appendix.

By using X(¢) and @(¢) obtained in the previous step as the deflection shapes along the £
direction, and through a similar mathematical operation, the frequency parameter
Q¥ = /a*lw*/Dy; and the corresponding functions Y (1) and ©(x) in the 5 direction can
be obtained by the same way as Q;, X(¢) in the ¢ direction.

This iteration process is continued until the condition |Q; — Q7| < ¢ is satisfied, where
¢ 1s the prescribed relative error convergence criterion.

Consequently, the plate characteristic functions consisting of the above resulting
functions in both the ¢ and the # directions are obtainable in accordance with equations

).
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4. THE RAYLEIGH-RITZ ANALYSIS

In the Rayleigh—Ritz analysis, trial functions for W(¢,n), Y:(¢,n) and ¥,(&, n) in
equations (8) are assumed as follows [4, 5]:

WE =3 Y AnXa(©Y.(),

m=1n=1

=3 Y Bub @Y. Em=3 Y CuXu @6, (17)

m=1n=1 m=1n=1

In this paper, three different sets of trial functions X,,(¢) and @,,(¢) in the ¢ direction
(and Y,(n) and @,(n) in the 5 direction) in equations (18) are considered: the newly derived
plate characteristic functions, Timoshenko beam functions and characteristic polynomials,
all of which are consistent with the boundary conditions of the plate. For a uniform
Timoshenko beam with ends elastically restrained against rotation, the corresponding
beam functions and polynomials were derived in reference [6].

The Rayleigh quotient is defined by

R(Wa llléa qlﬂ) = I/mu‘(/T*, (18)

where V., and T* are the maximum strain energy and the reference kinetic energy of the
system respectively, which can be easily obtained by introducing the expressions of
harmonic motion (8) into the energy expressions of the system (2) and (3).

The Rayleigh quotient, R, has the minimum value of A when the following conditions
are satisfied:

8I/max aT* _ aI/nm.\' aT* _ aI/max aT* _
0A; 4 0A; 0, 0B, 4 o0B; 0, oc; 4 oC;

0. (19)

Equations (19) lead to the eigenvalue problem of matrix form, the solution of which gives
the approximate natural frequencies and mode shapes of the system.

5. NUMERICAL AND EXPERIMENTAL APPLICATIONS AND DISCUSSION

For the verification of the validity of the presented methods for free vibration analysis
of symmetrically laminated composite rectangular plates, some numerical and
experimental investigations were carried out.

5.1. NUMERICAL APPLICATIONS

Two square plate models are taken as numerical examples. The first plate model is a
five-layer orthotropic cross-ply laminate (0°/90°/0°/90°/0°) of side length a, with thickness
ratio i1/a = 0-1. The material properties for all of the plies are identical and correspond
to a typical high modulus fiber composite with E\/E, =30, Gn/E, = G;/E, = 06,
Gy /E> = 05 and vy, = 0-25, where the subscripts 1, 2 and 3 denote the directions parallel
to the fibers, transverse to the fibers and parallel to the plate thickness respectively. The
thickness of the 0° ply is two-thirds of that of the 90° ply. The shear correction factors
calculated by equation (6) are ki = 0-59139 and k2 = 0-87323.

The second plate model is the single layer plate of orthotropic material, but the principal
material axes are oriented at an angle of 30° to the geometric axis of the plate. The ratio
of thickness to side length is //a=0-1 and material properties are E/E, = 10,
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Gn/E, = Gu/E, = Gi3/E, = 0-25 and v, = 0-3. The shear correction factors calculated by
equation (6) are ki = k? = 5/6.

In Table 1 are shown the calculated natural frequency parameters Q = w./pa*/E; of the
first plate model by the iterative Kantorovich method. Two kinds of boundary conditions
are considered for the comparisons of the available Rayleigh—Ritz solutions: all edges
simply supported (SSSS), i.e., Kx = 0, and clamped (CCCC), Kz = 0. In the iteration the
relative error convergence criterion is 1 x 107° As shown in Table 1, the results of the
iterative Kantorovich method after the second iteration are in good agreement with the
Rayleigh—Ritz solutions obtained by using Timoshenko beam functions [4] and by using
characteristic polynomials [5].

In general, nodal line patterns of anisotropic angle-ply laminates such as those of the
second plate model are skew with respect to the plate co-ordinates, while those of
orthotropic cross-ply laminates such as those of the first plate model are usually parallel
to the plate co-ordinates (see Figure 3). Since the nodal lines of the plate in the application
of the iterative Kantorovich method should be parallel to the plate co-ordinates, it is
impractical to apply the iterative Kantorovich method to the vibration analysis of
anisotropic angle-ply laminates directly. In these cases, the Rayleigh—Ritz method using
the derived plate characteristic functions is applicable to the analysis instead of the iterative
Kantorovich method.

For the second plate model with all edges clamped, the Rayleigh—Ritz solutions of the
frequency parameter Q = w./pd’/E, by using plate characteristic functions and
Timoshenko beam functions with p = ¢ = 8 in equations (17) are shown in Table 2. For
comparison, results obtained by the Rayleigh—Ritz solutions with characteristic
polynomials [5] with p = ¢ = 5 in equations (18), by the spline Rayleigh—Ritz method

TABLE 1

The frequency parameters, w\/ pa*|E,, of a five-layer orthotropic cross-ply laminated square
plate (0°/90°/0°/90°/0°): hja = 0-1

(a) SSSS
Mode
r A Al
Method 1 2 3 4 5
Iterative Number of 1 1-4218  2:7960 34843 42561 46179
Kantorovich iterationst 2 1-4202 27954 34830 42555 46163
method
Rayleigh—Ritz ~ Using beam functions [4] 1-4204 27954 34832 42560 46166
methodf Using polynomials [5] 1-4207  2-8039  3-4956 42713  4-6409
(b) CCCC
Mode
~ A Rl
Method 1 2 3 4 5
Iterative Number of 1 2-2442  3-3820 3-9395 47016 49765
Kantorovich iterationst 2 22217 3-3818 39294 47012  4-9761
method
Rayleigh—Ritz ~ Using beam functions [4] 22216 3-3823 39297 47021 49764
methodf Using polynomials [5] 22226 3:3923 39416 47202 49943

T The relative error convergence criterion is 1 x 107¢.
1 Using beam functions and polynomials up to the fifth order in each direction.
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Figure 3. The nodal line patterns of an anisotropic single layer plate: CCCC, h/a = 0-1. For the patterns
marked with an asterisk, refer to Figure 4.

with the B;, spline functions [8] and by the spline finite strip method with eight spline
sections [9] are shown together in this table. In Table 2 good agreement is shown between
the results obtained by each method, but the results based on the class of Timoshenko

TABLE 2
The frequency parameters, w./pa*/E,, of an anisotropic single layer square plate: CCCC,
hla =0-1

Rayleigh—Ritz method
A

;
Using plate

characteristic =~ Using beam Using Using spline  Spline finite strip
Mode functionst functionst polynomials [5]f  functions [8]§ method [9]9
1 1-2836 12935 1-3094 1-2774 1-2774
2-0080 1-9823 2:0057 1-9688 1-9679
3 2-4302 2:4579 2-4417 24026 2-4026
4 2-8357 2-8274 2-8286 2-8070 2-8051
5 3-1930 3-1867 — — —
6 3-6960 3-6937 — — —
Using plate functions and beam functions up to the eighth order in each direction.
Using polynomials up to the fifth order in each direction.

T
i
§ Six spline sections within a plate in each of the x and y directions.
4] Eight spline sections within a plate.
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Figure 4. The frequency parameters, w./pa’/E,, versus the lamina orientation angle of an anisotropic single
layer plate: CCCC, h/a = 0-1.

beam functions (in columns 2, 3 and 4 of Table 2) are somewhat higher than those based
on the spline functions due to overconstraint at the edges of the anisotropic plate.

In Figure 3 are also shown variations of nodal line patterns with respect to
variations of the lamina orientation angle, 0. As shown in Figure 3, nodal line patterns
of anisotropic angle-ply laminates are very complicated, but are systematic with
respect to variations of the lamina orientation angle. It is also shown that nodal line
patterns of the sixth and the seventh modes are interchanged at about § = 32° because the
frequency parameters of these modes have very close values for 8 = 30-35°, as shown in
Figure 4.

In Figure 5 are shown the calculated frequency parameters of two plate models with
all edges equally restrained against rotation. As shown in Figure 5, the frequency
parameters of higher modes are less dependent on the rotational restraint condition than
those of lower modes. It is also shown that variations of the calculated frequencies due
to changes in the restraint parameter are relatively larger in the orthotropic plate than in
the anisotropic plate for the lower values of the restraint parameter. Also, edges having
rotational restraint parameter values of over 1000 for the orthotropic plate and over
100 000 for the anisotropic plate can be regarded as clamped.

5.2. EXPERIMENTAL APPLICATIONS

Two marine woven roving laminated rectangular plates used in real structures of FRP
ships, such as minesweepers, are adopted in experimental applications. The plates are made
of 22 and 54 plies of E-glass woven roving with a weight density of 860 g/m? in isophthalic
polyester resin by hand lay-up. The side lengths of two specimens are 1:8 m x 1:2 m. The
thickness of the first specimen (specimen 1) is 24 mm, and that of the second specimen
(specimen 2) is 51 mm. The warp and fill directions of woven roving of all plies are
coincident with the plate co-ordinates. Two specimens have the same material properties
given as follows: E, = 13-72kN/mm? E;= 13-03kN/mm’ G,,= 343 kN/mm’ and
v,y = 0-13, where the subscripts w and f denote the warp and fill directions of woven roving.
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Figure 5. The frequency parameters, w./pa?/E>, versus the degree of elastic restraint against rotation along
the boundary: /1/a = 0-1. (a) An orthotropic cross-ply plate; (b) an anisotropic single layer plate.

Experiments are performed for the boundary conditions of all edges clamped. Natural
frequencies are determined by using an impact hammer test and a zoom-FFT analyzer,
and modal damping values are identified by the half-power bandwidth method [16].

TABLE 3

Comparisons of the calculated natural frequencies and experimental values (in Hz) for the
marine woven roving laminated plates: CCCC

Specimen 1 (1800 mm x 1200 mm x 24 mm) Specimen 2 (1800 mm x 1200 mm x 51 mm)
A A

s A} s A}
Calculation Calculation
r A A} r A A}
Iterative Rayleigh—Ritz Iterative Rayleigh—Ritz
Kantorovich by using Kantorovich by using
Mode  methodf polynomials{  Experiment method¥ polynomials{  Experiment
1 59-5 59-5 54-8 (2-00)§ 124-7 124-6 122-8 (4:37)
2 90-9 90-9 88-4 (1-09) 189-5 189-4 194-4 (1-35)
3 146-5 146-5 140-6 (1-33) 301-5 301-6 —
4 146-7 146-8 145-2 (0-91) 303-0 303-2 309-6 (0-87)
5 171-5 171-5 166-0 (0-74) 352-1 3522 3484 (1-62)
6 2186 2186 212-8 (0-81) 446-2 446-3 453-2 (0-75)

+ The relative error convergence criterion is 1 x 107°.
i Using polynomials up to the eighth order in each direction.
§ The values in parentheses are modal damping ratio (%).
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In Table 3 are shown experimental results of two specimens. For comparison, numerical
results obtained by the iterative Kantorovich method and the Rayleigh—Ritz method using
characteristic polynomials with p = ¢ = 8 in equations (17) are shown together in the table.
It is shown in Table 3 that the numerical results are in good agreement with each other
as well as with the experimental ones.

6. CONCLUSIONS

Free vibration analysis of symmetrically laminated composite rectangular plates with all
edges elastically restrained against rotation was carried out based on the YNS theory. The
iterative Kantorovich method and the Rayleigh—Ritz method were applied to the vibration
analysis. Three different sets of trial function, the newly derived plate characteristic
functions, Timoshenko beam functions and characteristic polynomials, were used to obtain
the Rayleigh—Ritz solution. The numerical results obtained by each method are compared
with each other and with the experimental ones, and they showed good agreement. It is
shown that the application of the iterative Kantorovich method to the vibration analysis
of orthotropic cross-ply laminates is more effective in accuracy and efficiency than
Rayleigh—Ritz analysis by using the aforementioned sets of trial functions, but is
impractical to apply the iterative Kantorovich method to the vibration analysis of
anisotropic angle-ply laminates directly because of skew nodal line patterns of anisotropic
angle-ply laminates. In these cases, the Rayleigh—Ritz method using the derived plate
characteristic functions is applicable to the analysis.
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APPENDIX

In this appendix, an exact method to obtain the solution of the boundary value problem
as given in equations (11), (12) and (13) is presented.

The coupled differential equations (11) can be expressed in terms of the differential
operator D (=d/d¢) as follows:

A A A 1
(D2 + ﬁnD + ﬁlz)‘p + (VllDz + V12D + “/13) ZX =0,

" " ~ A 1
(yuD?* 4+ YD + y53)® + (D* + faD + Bn) P X=0. (A1)

Eliminating @ from equations (A1), the single differential equation with respect to X can
be obtained as follows:

u%+Aﬁ+Bﬁ+cﬁ+E%X=Q (A2)
where
A= (uyz+ yoyn — fu — B)uyn — D7
B = (yuys + yyn + yiya — B — Bufu — Po)(yuya — 1) 7
C = (yuyn + 7y — Pufa — Bufa)yuyn — )7,
E = (yisy5 — Bufr)uyn — 17" (A3)
Let m;, i =1,2, 3,4, be the solutions of the following auxiliary equation of (A2):
(D* 4+ AD* + BD* + CD + E) = 0. (A4)

Then, equation (A2) turns out to be
(D—mm&mmm—mmﬁ—m%X=m (AS)
and the general solution of equation (A2) is as follows:
éX = €M 4 ¢ €™M + 3 €™ + ¢y e (A6)

Similarly, @ can be obtained as follows:

& =d e + dy et + d; et + dy e (A7)
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In equations (A6) and (A7), c;and d; (i = 1, . . ., 4) are arbitrary constants. By substituting
equations (A6) and (A7) into equations (A1), the relations between ¢; and d; are given, as
follows:

_ _Vl]l/l/lfz + Y+ i3 ‘.
m?+ Bumi + B 7

From the general solutions (A6) and (A7), and the boundary conditions (12) and (13),
an eigenvalue problem can be formulated in the following matrix form:

[ﬁii]{ci} = {O}’ l’] = 19 2’ 37 4’ (A9)

i=1,2,3,4. (A8)

i

where

2 .
D, = a&/hmi n aZ&Az _ (an’l”l,- + yiom; + /13><mi + OC%AG _ KR.v1>a

1 Dy, m12+ﬁl]mi+ﬂ]2 Dy,
5. _ Da A Ass
Dz,‘ =m; + <OC D(,G B7 ab Dﬁ() Bt) + ab D66 Bg)

yum? 4+ yony + yis\[ 1 Dis , Ass
— - —By+ B,— b*=—=B, |,
< m? + fum; + P ><0€ Des s+ 5s Dqs ?

R D6 D, Vnn’l-2 + Vi + Vi3 D6 )
D‘: 714 i 27147— ! i 714 KY m,’
Y |:aD1| i+ Dy, <Wl,~2+,311mf+ﬁ|2 it o 1 o Rro ] 1€

oY D26 A45 A45
Dy=|m+ (0SB —ab=2By+ ab =2 B
Y [’” <°‘ D T D T Y Deg 8)

yum; + yom; + yis\[ 1 Dig 5 Ass ) .
— -—B B,— b*—B e, =1,...,4.
< mlz + Bum; + P ><O€ Dqs o B D ? /

(A10)

The solution of equation (A9) gives the frequency parameter 2; and the corresponding
functions X(&) and ®(¢).



