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In this paper are presented the computer simulation and the approximate theoretical
analysis of the behaviour of the van der Pol–Duffing forced oscillator at the passage
through principal resonance, at increasing and decreasing driving frequency. Almost-
periodic oscillations, frequency locking, transition to chaotic motion and the jump from
the non-resonant to the resonant state are observed and interpreted in the light of
approximate analytical theory and by the use of topological concepts.
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1. INTRODUCTION

The classic van der Pol forced system governed by the equation

ẍ− m(1− x2)ẋ+V2
0x+ f(x, t)=0, (1)

which serves as a basic model of self-excited oscillations in physics, mechanics, biology,
electronics, chemistry and many other disciplines, has been studied intensively since 1927
[1–9]. Recent analysis has been focused on the generation of chaotic motion in the system
provided with cubic non-linearity and driven by a harmonic force [10–16]:

ẍ− m(1− x2)ẋ+V2
0x+ ax3 −F cos nt=0, T=2p/n. (2)

The system (2) was considered by the authors in reference [17], but the study was confined
to the region of driving frequency which is close to and below the principal resonance
(principal resonance occurs when n is close to the frequency of the limit cycle of the system
(2) for F=0). Transition from T-periodic resonant motion through a chaotic motion zone
to almost-periodic oscillations was observed and interpreted in terms of Neimark
bifurcations.

In this paper we continue the study of the system (2), but consider the phenomena which
occur at the passage through the principal resonance. As the frequency increases the system
reaches the saddle-node bifurcation point of the T-periodic solution and, after transients,
settles down into the non-resonant state. The non-resonant state, which coexists with the
resonant solution in a certain frequency interval, shows very rich behaviour. The
non-resonant almost-periodic oscillation, frequency locking, the passage through a chaotic
motion zone and the jump back on to the resonant solution at decreasing frequency are
the main points considered in this paper.
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First, in section 2 we overview the approximate theoretical analysis of the instability of
the T-periodic solution and focus on the result which applies to the ‘‘post-resonance’’
frequency region to be considered.

Then, in section 3, the system behaviour at the passage through the principal resonance
is illustrated by computer simulation analysis. Various bifurcations for increasing and
decreasing driving frequency are observed and interpreted in terms of frequency spectra
and Poincaré maps of the steady state responses. The transition from the discrete frequency
spectrum of the almost-periodic solution, via ‘‘periodic windows’’ (frequency locking), up
to the continuous type spectrum representing chaotic motion is studied in detail.

In section 4 some attempts are made towards theoretical approximate analysis of the
multi-frequency, almost-periodic response. It is found that, despite the fact that the
frequencies involved in the solution are very close to commensurable values, and even are
commensurable in frequency locking intervals, the harmonic balance method is capable
of capturing the essence of the complex, multi-frequency solution.

Finally, the hysteresis behaviour, the sudden destruction of the chaotic attractor and the
jump from non-resonant to resonant motion are discussed.

2. INSTABILITY AND BIFURCATIONS OF THE HARMONIC SOLUTION

It is known that the principal resonance, where the driving frequency is close to the
limit-cycle frequency, the steady state response of the system becomes T-periodic and is
close to being a harmonic function of time [3]:

x(t)=C cos (nt+8)0 x(t+T ), T=2p/n. (3)

The amplitude curves of the approximate solution can be obtained by any of the
commonly accepted approximate methods—averaging, harmonic balance, asymptotic or
multiple-scales method [17, 18]—with the result

C=F/z[V2(C)− n2]2 + m2n2[1−C2/4]2, (4a)

tan 8= mn(1− 1
4C

2)/[V2(C)− n2], V2(C)=V2
0 + 3

4aC2. (4b)

Analogously the limit-cycle oscillation in the autonomous system (2) for F=0 is also
assumed to be a harmonic function of time,

xF=0(t)= a cos v0t, (5)

and the approximate calculations yield

a=2, v0 =zV2
0 + 3

4aa2. (6a)

At V0 =0 and a=1 one obtains v0 =z32 1·73. The approximation seems to be
adequate, because the computer simulations give

a2 1·81, v0 2 1·625, m=0·2. (6b)

The local stability of the harmonic solution (3) is now examined by adding a small
disturbance,

x̄= x(t)+ dx, (7)

where x(t) represents the steady state solution with C=constant, 8=constant and
considering the linear variational equation for dx(t),

dẍ+ dxG(t)+ dẋR(t)=0, (8)
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where G(t) and R(t) are periodic functions of time [3, 17, 18]:

G(t)=G(t+T/2), R(t)=R(t+T/2).

On introducing a new variable h, by setting

dx(t)= h(t) exp$−g
t

0

1
2R(t) dt%0 h(t) e[−dt− p(t)], (9)

where p(t)= (mC2)/(8n) sin (2nt), the variational equation (8) is reduced to the Hill-type
equation

ḧ+ hG1(t)=0, G1(t)=G1(t+T/2), (10)

and this enables one to apply the Floquet theorem. Confining attention to the first order
instability one can apply the first approximate solution as [3, 18]

h(t)= eo1,2t cos (nt+ b), (11)

where o1,2, due to the Floquet theory, can be real or imaginary, but not complex. The
solution for h(t) is unstable if o1,2 are real, because they satisfy the conditions o1 q 0 and
o2 Q 0, and is stable if o1,2 are purely imaginary. The variation dx(t) may, however, exhibit
an additional form of instability because equation (9) yields

dx(t)= h(t) e(−dt− p(t)) 2 e(o1,2 − d)t cos (nt+ b), (12a)

and d can be positive or negative:

d=(m/2)[(C2/2)−1], dQ 0 if CQz2. (12b)

At negative values of the coefficient d and purely imaginary o1,2 the solution for dx(t)
becomes unstable.

The periodic function of time p(t) is ignored in the further analysis, because it does not
affect the stability question.

To sum up, the system may develop two forms of instability as follows.
I. The classic instability is characterized by real and positive values of the exponent

o, dq 0 and o2 q d2. The region is easily identified on the amplitude curve: the
unstable portions of C0C(n) are those which satisfy the condition that V2(C)− n2 and
dC/dn have opposite signs. The instability limits coincide with the points on the amplitude
curves which have vertical tangents. The unstable solution for the disturbance dx(t) in the
region can be written as (see equation 12(a))

dx(t)u =e(−d+ o1)t cos (nt+ d), (13)

where it is assumed that o1 q 0 and o2 Q 0, and therefore −d+ o1 q 0 and the amplitude
of the harmonic term grows exponentially.

II. The Neimark type instability is characterized by imaginary values of the exponent o

in equations (11): o1,2 =2iō, ō real, and negative values of the parameter d(C): d(C)Q 0;
that is CQz2. The two conditions result in solutions for the disturbance dx(t) which
develop almost-periodic oscillations with the amplitude growing in time:

dx(t)= e(−d2 iō)t cos (nt+ b),

dx(t)= e−dt{B1 cos [(n+ ō)t+ u1]+B2 cos [(n− ō)t+ u2]}, (14)

where −dq 0, and n+ ō and n− ō are incommensurate frequencies.
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The two unstable regions are depicted in Figure 1. It is clear that the portion of
amplitude curve between the points D1 and D2 is unstable in the sense of criterion I and
that point B is the Neimark bifurcation point, i.e., the branch AB is unstable in the sense
of criterion II.

In the region in which the two forms of unstable regions overlap (branch E–D2 in
Figure 1), both conditions of instability are satisfied: i.e., o1,2 are real and d(C) is negative.
Therefore, the solution for the disturbance dx(t) has the same form as that in the region
I (equation (13): that is, the instability of the harmonic solution manifests itself by the
exponential growth of the amplitude of the harmonic term. Note, however, that now the
amplitude grows ‘‘faster’’, because both components in the exponential term, −d and o1,
are positive.

It follows that in the region of the driving frequency considered in Figure 1 only the
upper, resonant branch B–D1 of the harmonic solution (3) is stable; the remaining branch
D1–E–D2–G is unstable. The fact that the branch D2–G is unstable in the Neimark sense
(equation (14)) gives strong indications that one may expect almost-periodic solutions to
occur in the region.

3. COMPUTER SIMULATION ANALYSIS

In this section an investigation of the almost-periodic non-resonant oscillations by
computer simulation (numerical experiment) is described. The computation was performed
in a quasi-static manner. For fixed values of the driving force and the damping term, the
driving frequency v was gradually changed by a small step Dv. The initial conditions for
the ‘‘next step’’ frequency vi+1 =vi +Dv corresponded to the steady state solution for
the previous frequency vi . In this way the duration of the transient motion was
considerably reduced. The frequency step Dv and the number of cycles ignored in the
computation to allow the transient to decay was adapted to the sensitivity of the response
to the change of parameters. The driving frequency v was either decreased or increased
to explore the hysteresis behaviour of the system. The possibility of existence of any other
attractors was ruled out by starting the computation with a set of various initial conditions.

In Figure 2 are depicted the theoretical amplitude curve C=C(n) and the amplitudes
of harmonic components obtained by computer simulations in the resonant and
non-resonant state.

Figure 1. Amplitude curves and unstable regions of the harmonic solution: F=1·0, m=0·2.
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Figure 2. Amplitude curves of the harmonic and almost-periodic solutions: theoretical and computer
simulation results: ––––, www, an , amplitude of the frequency n harmonic component; — — —, ××××, av ,
amplitude of the forced limit cycle with frequency v (for v, see Figure 6); ----, rrrr, a3, amplitude of the
harmonic component with the frequency 2v− n.

In Figures 3–5 are illustrated three different responses observed beyond the principal
resonance: almost-periodic (Figure 3), periodic (Figures 4(a) and 4(b)) and chaotic
(Figure 5). Non-resonant solutions exist at driving frequencies higher than n2 2·05. One
sees that in the frequency spectrum of the almost-periodic and periodic solutions there is
one dominating harmonic component with frequency denoted by v. The frequency varies
slightly with n but remains very close to the limit-cycle frequency of the autonomous system
(v0 2 1·625).

The two other harmonic components which have considerable amplitudes are av , with
the frequency of the driving force, and a3, with the combination frequency v3 =2v− n.
Variations of the ‘‘forced limit-cycle’’ frequency v, the ratio v/n and the combination
frequency 2v− n with frequency n are depicted in Figure 6.

Figure 3. The Poincaré map and frequency spectrum of the almost-periodic oscillations: m=0·2, F=1·0,
n=2·40.
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Figure 4. The Poincaré map and frequency spectrum of periodic solutions: F=1·0, m=0·2. (a) 3T-periodic
oscillations, n=2·45; (b) 4T-periodic oscillations, n=2·23.

Within the zone of the driving frequency 2·05 Q nQ 2·21 the resonant state coexists with
the T-periodic high amplitude resonant motion. While the higher frequency boundary of
the region n=2·21 is close to the classic saddle-node bifurcation point of the harmonic
solution (3), the lower frequency limit does not coincide with any bifurcation point of
periodic solution and differs considerably from the other point with vertical tangent on
the theoretical amplitude curve C(n). This is not a surprise, since point D2 in Figure 1 does

Figure 5. The Poincaré map (strange attractor) and frequency spectrum of chaotic motion: F=1·0, m=0·2.
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Figure 6. Variations of frequencies in the almost-periodic oscillations: computer simulation results.

not play here a role of stability limit: the whole branch of the amplitude curve D1–E–D2–G
is unstable.

The resonant motion characteristics, which are plotted in Figures 3–5 and are observed
at decreasing frequency, lead to the following observations.

As n decreases, the frequencies of the three dominating harmonic components approach
each other and the ratio v/n grows from the value v/n2 0·58 at n=2·7 to v/n2 0·78
at n=2·18.

In the frequency region considered there occur two frequency locking zones: in the
neighbourhood of n=2·45 the ratio is v/n= 2

3, so that the response is 3T-periodic (see
Figure 4(a)). In the vicinity of n=2·23 the ratio reaches the value v/n= 3

4 and the resulting
motion is 4T-periodic (see Figure 4(b)).

Below n=2·2 the discrete frequency spectrum condenses and gradually gains a
continuous type character. Thus the motion transforms continuously into a chaotic one
and the chaotic state is sustained within a narrow strip on the frequency axis (see Figures 2,
5 and 6).

The chaotic attractor disappears suddenly at n2 2·05 and the system response, after
some transient, jumps up to the resonant T-periodic solution. It follows that at frequencies
below n=2·05 the resonant motion is a unique attractor of the system (until the Neimark
instability at point B in Figure 1).

The motion illustrated in Figure 5 has been called ‘‘chaotic’’. One may have doubts
about it, because, at first glance, it does not differ much from almost-periodic oscillations.
To determine whether or not the response is chaotic, we calculated maximal Lyapunov
exponent, with the result smax =0·05q 0. Thus there is no doubt that the response falls
into the category of chaotic motion.

We can interpret and explain the metamorphoses of the non-resonant response with
variation of the frequency n from the point of view of the concept of frequency locking.
We deal here with two fundamental frequencies: the ‘‘forced limit cycle frequency’’ v and
the driving frequency n. The former remains almost constant while the latter is decreasing,
so that the ratio v/n varies. The two types of frequency locking observed, v/n= 2

3 and
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v/n= 3
4 (see Figure 6) are reached in a smooth, continuous way, and the corresponding

amplitudes av and an do not undergo sudden jumps.
At a further decrease of the driving frequency n the ratio v/n further increases and at

v/n2 1·55 the response undergoes dramatic changes: first the motion becomes chaotic (see
Figure 6) and then a sudden destruction of the chaotic attractor and a jump to the
T-periodic motion, i.e., to the response with the frequency locking v/n=1, is observed.

The sudden destruction of the chaotic attractor can be also explained in terms of the
concept of ‘‘boundary crisis’’ [19]. As n decreases, the saddle point of the T-periodic
resonant solution approaches the non-resonant attractor and finally collides with it. From
the topological point of view this corresponds to the critical situation when the stable and
unstable manifolds of the saddle point become tangent, and then intersect with each other
[20]. In this way the domain of attraction of the non-resonant motion ceases to exist, and
the T-periodic resonant attractor becomes globally stable.

4. THEORETICAL NON-RESONANT ALMOST-PERIODIC SOLUTION

It is known that in the literature on non-linear oscillations and on approximate
analytical methods one can hardly find a clear indication as to how to determine an
almost-periodic solution in the van der Pol–Duffing system, the solution of which would
give satisfactory agreement with the computer simulation [3, 16].

First, we tried several perturbation techniques, seeking for a method which leads to
reasonable, satisfactory results within a low order approximation. Finally, we concluded
that perturbation methods are not adequate for our problem. The trouble begins at an
early stage of application of the procedure. To obtain satisfactory results in the first or
second approximation, one has to find an approximate zero order solution to be perturbed.
The question is how to find it. The assumption that the zero order approximate solution
is a superposition of the limit cycle of autonomous system and forced oscillations of the
linear system does not lead to satisfactory results.

Therefore we turned to another category of approximate analytical method, the category
which does not make use of the idea of a ‘‘small parameter’’, but requires some
assumptions about the form of the solution as a function of time. If periodic solutions are
considered, the methods are reduced to the Ritz or Galerkin methods [16, 18]. The
procedure is often called ‘‘harmonic balance’’ and it can be extended to the almost-periodic
solution. Here we apply the generalized harmonic balance principle for the solution, which
is assumed to consist of three harmonic components,

x(t)= an cos (nt+8)+ a cos u+ a3 cos c, (15a)

where u=vt and c=(2v− n)t+f. The solution involves six unknown coefficients to
be determined:

an , a, a3, 8, v, f. (15b)

Following the harmonic balance rule we insert the approximate solution (15a) into
equation of motion (2). The residual thus obtained is denoted as o(t). Then we apply the
generalized orthogonality condition of the Galerkin method [16, 18]:

lim
T:a

1
T g

T

0

o(t) cos (bit) dt=0, lim
T:a

1
T g

T

0

o(t) sin (bit) dt=0, i=1, 2, 3,

b1 0 n, b2 0v, b3 0 2v− n. (16)
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The condition (16) can be interpreted as the ‘‘harmonic balance principle’’, because, in fact,
they impose the following procedure: expand the residual o(t) into a generalized Fourier
series; then equate to zero separately coefficients of the three harmonic components
involved in the assumed solution (15a) and ignore all other remaining harmonics.

The procedure defined by equation (16) leads to the desired six equations for the
unknown amplitude, frequency and phase angles (15b). To derive the equation correctly
one has to consider the problem of ‘‘combination tones’’, which are involved in the
generalized Fourier series of the residual o(t).

Note, that due to the almost-periodic nature of the solution (15a), the residual involves
combination harmonics with the frequencies r1v+ r2n, where r1 and r2 are integers. In the
procedure applied here, one assumes that none of the combination tones involved in the
residual o(t) produces additional terms into the harmonic balance equation (16): i.e.,

r1v+ r2n$ n and r1v+ r2n$v. (17)

One may have doubts about the assumption, because in fact the two frequencies become
rational within the range of driving frequency under consideration. We know that we are
supposed to take into account the relations v/n= 2

3 and v/n= 3
4. Therefore we have to

answer the question of whether the harmonic balance equations apply to both types of
response, i.e., almost-periodic and periodic, at the ratios v/n= 2

3 and v/n= 3
4. If not,

different equations should be derived for calculations of the amplitude curves at the
frequency locking intervals.

We checked the problem carefully, considering the combination tones involved in the
residual. Our conclusion is that at the frequency locking v/n= 3

4 all of the combination
type harmonics satisfy relations (17). At the ratio v/n= 2

3, however, the harmonic
components of the type

sin 3c0 sin [(6v−3n)t+f] (18)

appear to bring new coefficients into two of the six harmonic balance equations (16): that
is, produce additional coefficients of harmonic components cos nt and sin nt:

lim
T:a

1
T g

T

0

o(t) cos nt dt=0, lim
T:a

1
T g

T

0

o(t) sin nt dt=0. (19)

We find the additional terms immediately when we eliminate v in the equation (18) by
setting v= 2

3n:

sin 3c0 sin [(6v−3n)t+f]= sin (nt+f)= sin nt cos f+cos nt sin f. (20)

We also find that the amplitude of this harmonic component in the residual is small, of
order a3

3, and that the additional terms in the harmonic balance equation do not bring
observable effects into the solution for a, an and a3.

Therefore, we apply the harmonic balance method under the assumption that the
frequencies involved are incommensurate. The equations (16) are reduced to the form

(1) −v2 + 3
4a

2 + 3
2a

2
n + 3

2a
2
3 + 1

2ana3[3 cos f+ m(v− n) sin f]=0,

(2) mv(1− 1
4a

2 − 1
2a

2
n − 1

2a
2
3)− 1

2ana3[3 sin f+ m(v− n) cos f]=0,

(3) −n2an + 3
4a

3
n + 3

2ana2 + 3
2ana2

3 + 1
4a

2a3[3 cos f+ mn sin f]−F cos 8=0,

(4) mann(1− 1
4a

2
n − 1

2a
2 − 1

2a
2
3)+ 1

4a
2a3[3 sin f− mn cos f]−F sin 8=0,
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(5) −a3(2v− n)2 + 3
2a3(1

2a
2
3 + a2 + a2

n )+ 1
4a

2an [3 cos f+ m(2v− n) sin f]=0,

(6) ma3(2v− n)(1− 1
2a

2 − 1
2a

2
n − 1

4a
2
3)+ 1

4a
2an [3 sin f− m(2v− n) cos f]=0. (21)

Equations (21) form a set of six algebraic–trigonometric non-linear equations for six
unknowns: an , a, a3, 8, v and f. On solving them one obtains the amplitude curves sought:
that is, the unknown parameters are functions of the driving frequency n. The results are
plotted in Figure 2 together with the amplitudes an , a and a3 determined by computer
simulation analysis. A comparison of the theoretical and computer simulation results
reveals that the theoretical calculations give a reasonable approximation. One may even
argue that the simple approximate method fails. In any case, we observed a good
qualitative coincidence and satisfactory estimates of the amplitude curves. This signals that
the simple approximate three-harmonic solution captures the essence of the complex,
multi-frequency response of the non-resonant response.

5. CONCLUSIONS

The computer simulations and the theoretical approximate analysis of the van der
Pol–Duffing forced oscillator in the close neighbourhood of the principal resonance can
be summed up as follows.

The Neimark type instability of harmonic solution obtained by first order approximate
analysis is a strong indicator for almost-periodic solutions to occur.

The non-resonant response in the neighbourhood of the principal resonance reveals very
complex behaviour: almost-periodic, periodic and chaotic motion appears as the driving
frequency varies.

The two steady states, resonant and non-resonant, coexist within a range of frequencies,
but the range is much smaller than that in the dissipative Duffing system.

The jump from non-resonant to resonant oscillations is preceded by a chaotic motion
region; thus one may interpret chaotic motion as a transition state between
multi-frequency, almost-periodic non-resonant motion and the T-periodic, nearly
harmonic resonant oscillations.

The jump from the non-resonant to the resonant state is not related to any local
bifurcation of the periodic solution; one can interpret the sudden destruction of the chaotic
attractor by the use of the concepts of topological methods. Our observations and
experience give strong indicators that this is the scenario of the boundary crisis (collision
of the chaotic attractor with the saddle associated with the harmonic T-periodic solution)
that occurs at the lower frequency boundary of the chaotic region.
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