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In this paper a dynamic formulation is presented for the coupled textile–rotor system.
Both the partial differential equation for the textile thread and the ordinary differential
equation for the rotor whirling vibration are derived by Hamilton’s principle. When the
textile is wound either on or off the rotor, the mass, inertia and unbalance magnitude of
the rotor change with time, and also the length of the textile is time-dependent. The
Galerkin method is used with a time-dependent basis function to determine approximate
solutions. Finally, numerical examples are presented to show the effects of the angular
rotational speed, the shaft stiffness and the non-linear terms on the transient amplitudes
of the coupled system.
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1. INTRODUCTION

Usually, mechanical designers consider the textile and rotor independently in two distinct
design processes. For example, much work has been done on the dynamic response of a
textile under specified conditions, while a number of studies have been devoted to the
steady state response and stability of the rotor. However, the dynamic behavior of these
two systems is interrelated when the textile is wound on or off by the rotor.

Much research on the vibration behavior of string-like problems has been performed
previously [1–3]. These studies consider a string system of fixed length with no axial
motion. Some work [4, 5] has recently appeared in the literature concerning the vibration
and dynamic stability of an axially moving beam. Although the string-like systems exhibit
movement, the interest of such studies is still in the fixed length condition. Wang [6] studied
the global dynamic behavior of a non-linear model of axially moving bands with finite end
curvatures under high speed operating conditions. Wang [7] also studied an integrated
chain drive system which coupled the sprocket motion with the transverse and longitudinal
vibrations of the axially moving chain spans.

For the problem of string vibration with time-varying length, Kotera and Kawai [8]
analyzed the free vibrations by Laplace transformation. Fung and Cheng [9] studied the
free vibration of a string–slider system with non-linear coupling. It should be noted that
the concepts of natural modes and frequencies become meaningless, because as the length
of the string varies the natural frequencies become time-dependent, and the independence
of the natural modes of oscillation is lost. While in theory the motion of a string of variable
length can be described to any desired degree of approximation by an infinite system of
differential equations, the mathematical difficulty usually becomes prohibitive for all but
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the first few orders of approximation. As far as string vibration is concerned, little work
has appeared on coupled oscillation, both from the point of view of the theoretical
formulation of the problem and the analysis of the structural behavior.

A related problem involving the oscillations and the influence of the reactive force on
the motion of a textile machine rotor on which the textile is wound up was presented in
a series of papers by Cventicanin [10–13]. The dynamics of a rotor with variable mass are
given by Bessonov [14]. Usually, the rotor consists of a disk which is symmetrically
mounted at the middle of the shaft, and the elastic force in the shaft is assumed to be
non-linear. The mass of the shaft is negligible in comparison to that of the disk. The mass
of the rotor is varying due to winding on of the band. Cventicanin [15] studied the textile
machine rotor, in which the angular velocity was constant. The function of the rotor was
to wind on a band of textile material. The free vibration in the non-resonant case was
analyzed and the solution was found by use of the analytical method of multiple scaling.
With a new procedure based on the Krylov–Bogoliubov method, Cventicanin [16] observed
the dynamic behavior of a rotor with variable parameters and small non-linearity.

The purpose of this paper is to investigate the qualitative features of the non-linear
equations of the whole system, which consists of an axially moving textile and a whirling
rotor. The coupled dynamic equations for the textile–rotor system are derived from
Hamilton’s principle. We adopt the concept of Cventicanin [10] and consider the Jeffcott
rotor with variable mass, inertia and unbalance magnitude. The organization of the paper
is as follows. In section 2, the coupled model for the textile–rotor system, including both
the motion of the textile and vibration of the rotor, is described and formulated. In
section 3, we define the non-dimensional variables and use Galerkin’s method, with a
time-dependent basis function, to determine the approximate solution. In section 4, the
numerical results are presented to show the effect of the non-dimensional parameters on
the physical characteristics of the coupled system.

2. EQUATION OF MOTION

2.1. 

The coupled textile–rotor system is shown in Figure 1. Two fixed co-ordinate systems,
xoy and XOY are used to describe the dynamic configuration. The Jeffcott rotor model
investigated here is similar to that used by Vance and Lee [16]. It consists of a single,
centrally located, unbalanced disk and an orthotropically elastic shaft, running in two rigid
bearings. The shaft is assumed to be massless as compared with the large massive disk.
The bearing supports are assumed to be rigid, with the shaft providing all the flexibility.
The generalized co-ordinate r is chosen to describe the whirling oscillation of the rotor
system which has constant angular velocity v. Since the rotor is whirling, the textile length
is time-dependent. The transverse vibration of the textile is in the interval 0 E xE l(t). The
textile is subject to an initial tension T and has simple supports as the boundary conditions
at x=0 and l(t).

Since the connection point x= l(t) is common to the disk and textile, this point on the
textile has the same velocity and acceleration as that on the disk in the tangential direction.
When the textile is wound on, the disk rotates in a clockwise direction and the shaft angular
velocity v is negative.

2.2.   

The function of the rotor is to wind the textile on or off, so the rotor mass is variable.
In Figure 1, R(t) is the radius of the disk, and f is the rotary angle. The textile is subject
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Figure 1. The physical configuration.

to an initial tension T, so this force acts along the tangent line of the disk in the
undeformed configuration. The point x= l(t) is one connection point between the textile
and the rotor, and RA (t) and R(t) are perpendicular to each other at point A. Since the
disk has a whirling motion, the length is time-dependent. From the geometry of Figure 1,
the time-varying length of the textile is given by

l(t)=zl20 + r2 +2l0r cos f−R2(t). (1)

2.3.  

The rotor is modelled as a rigid disk mounted on a massless shaft, which is supported
by two perfect rotating bearings. During winding of the textile on or off the disk, the
effective mass and radius of the disk vary. The mass m(t) and radius R(t) are assumed
to be as given in the paper by Bessonov [14] and Cventianin [10]:

m(t)=m0 −R1rvt, R(t)=0R2
0 −

R1hvt
p 1

1/2

, (2, 3)

where m0 and R0 are, respectively, the mass and radius of the disk without textile, v is
the angular velocity of the rotor and has a negative value for the textile to be wound up,
t is time, R1 =R0 + h/2, and h is the average thickness of the textile. The magnitude of
the imbalance is given by the distance e=CM, where C is the geometric center of the disk
and M is its mass center, as given by Bessonov [14]:

e(t)=−
2
m0

R2
1r sin

vt
2

. (4)
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The co-ordinate r gives the magnitude of shaft deflection, and the time derivative f� gives
the whirling speed. The instantaneous angular location of the imbalance with respect to
the plane of shaft bending is given by b, which remains constant when the rotor is in
synchronous vibration. The amplitudes of synchronous vibration usually indicate a rotor
imbalance problem.

For the case that the whirl speed equals the shaft speed, f� =v, and the governing
equation can be written as (the derivations are detailed in Appendix A)

wtt +2ẋwxt + ẍwx −c� 2w−0Tr − ẋ21vxx − 3
2

EA
r

w2
xwxx =−3ẋc� , 0Q xQ l(t), (5a)

r̈+$ kx

m(t)
cos2 b+

k
m(t)

sin2 b−v2%r= ev2 cos b+ ėv sin b− g sin b

−
T

m(t)
[cos c cos f−sin c sin f]

−
(r+ l0 cos f)

2m(t)l(t)
[rẋ2 + rẋ2w2

x (l(t), t]

−Tw2
x (l(t), t)− 1

4EAw4
x (l(t), t), (5b)

and the boundary conditions are

w(0, t)=0, w(l(t), t)=0, (6a, b)

where

ẋ=−R(t)f� , 0Q xQ l(t) (7a)

ẍ=−R� (t)f� −R(t)f� , 0Q xQ l(t). (7b)

From the governing equations (5a) and (5b) and the velocity and acceleration (7a) and
(7b) of the textile, the following observations are made.

(i) The mass, inertia and imbalance magnitude of the rotor are time-varying when the
textile is wound on or off. Therefore the non-linear governing equations (5a) and (5b)
include the time-dependent mass m(t), the inertia I(t) and the eccentricity e(t).

(ii) In this paper, the longitudinal elastic deformation of the textile is neglected, so every
point along the textile has the same axial travelling velocity ẋ and acceleration ẋ, which
are given by equations (7a) and (7b).

(iii) The axial travelling velocity ẋ is a positive value and the textile moves along the
positive x-axis direction. In the case of constant angular velocity, the radius R(t) of the
disk and the axial velocity ẋ of the textile are non-linear functions of time. Then R� (t) is
not equal to zero, and the axial travelling acceleration ẋ also exists.

(iv) The non-homogeneous terms, −3ẋc� − xc� , in equation (5a) are the whirling effects
of the rotor on textile vibration. The terms including wx (l(t), t) in equation (5b) are the
end effects at x= l(t) of the textile vibration on the rotor whirling.

(v) The terms containing EA in equations (5a) and (5b) are due to the geometric
non-linearity of the textile. If they are neglected for small amplitude transverse vibration
of the textile, the governing equation (5a) becomes linear. However, equation (5b) is still
non-linear, due to the boundary at x= l(t).

(vi) The emphasis is placed on the moving boundary condition of the coupled
textile–rotor system. The connection point x= l(t) is not specified and its position moves
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with time. The boundary position x= l(t) will be solved simultaneously with equations
(5a) and (5b).

3. METHOD OF SOLUTION

3.1.     

For convenience in determining the influence of the coupled system parameters, we
define the following non-dimensional variables:

W=w/l0, j= x/l0, t= c2t/l0, l̄= l(t)/l0, ḡ= gl0/c2
2 , h= c/c2,

b1 = c1/c2, M= rl0/m(t), r̄= r/l0, ē= e/l0, R�=R(t)/l0,

I�= I(t)/m(t)l20 , V= l0/c2v, V2
x = kxl0/m(t)c2

2, V2
y = kyl0/m(t)c2

2 ,

where

c1 =zEA/r , c2 =zT/r .

The latter are the wave velocities of the textile in the longitudinal and transverse directions
respectively. Then the equations of motion in non-dimensional form are

Wtt +2hWjt + jttWj −c2
tW+(h2 −1)Wjj − 3

2b
2
1W2

jWjj =−3hct − jctt , 0Q jQ l̄,

(8a)

r̄tt +[V2
x cos2 b+V2

y sin2 b+V2]r̄

=ēV2 cos b− ḡ sin f−MWj (l̄, t)ct −
M
2

(r̄+cos f)c2
t

−
r̄+cos f

2l̄ $Mj2
t +Mj2

tW2
j(l̄, t)−

M
2

W2
j (l̄, t)

+
M
4

b2
1W4

j (l̄, t)%−M(cos c cos f−sin c sin f−C�rR�) (8b)

and the non-dimensional boundary conditions are

W(0, t)=0, W(l̄, t)=0. (9a, b)

3.2.      

Initially, the spatial dependence must be eliminated from the equations of the coupled
system to yield a set of ordinary differential equations in time, which can be solved for
the system response. In view of the non-linear nature of the equations in the previous
section, Galerkin’s method is used here to separate the spatial co-ordinates from the
temporal variable.

The approximate solution derived in this section is based on a Galerkin approximation
with a time-dependent basis function. This was also used by Wang and Wei [17] to analyze
vibrations in a moving flexible robot arm, by Yuh and Young [18] to study the dynamic
modeling of an axially moving beam in rotation, and by Fung and Cheng to investigate
the free vibration of a non-linear coupled string–slider system with a moving boundary.
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Based on this method, the forms of the displacements are assumed to satisfy the geometric
boundary conditions of the textile; that is,

W(j, t)= s
a

n=1

8n (j, t)qn (t), 0Q jQ l̄, (10)

where qn (t) are the generalized co-ordinates and the co-ordinate functions of the space
variable are

8n (j, t)= an (t) sin [Vn (t)j], n=1, 2, 3, . . . , (11)

in which

Vn (t)= np/l̄, an (t)=z2/l̄ , n=1, 2, 3, . . . , (12, 13)

Since the spatial domain is time-dependent, both the eigenfunction 8n (j, t) and its
corresponding eigenvalue Vn (t) are time-dependent.

Substituting equations (10) and (11) into (8a) and (8b), taking inner products and
making use of the orthogonality property, we have a system comprised of an infinite
number of non-linear time-varying ordinary differential equations:

q̈m + s
a

n=1

[amn (l̄, l� q̇m + bmn (l̄, l� , l� )qm ]− s
a

i=1

s
a

j=1

s
a

k=1

cmijk (l̄)qiqjqk =−Gm −Hm , (14a)

r� +ar(l̄)ṙ=s
a

n=1

br
n (l̄)qn+s

a

n=1

s
a

i=1

[cr
ni (l̄)+ dr

ni (l̄)]qnqi + s
a

n=1

s
a

i=1

s
a

j=1

s
a

k=1

er
nijk (l̄)qnqiqjqk + f r(l̄), (14b)

where m, n, i, j, k=1, 2, . . . are the modes considered in the string system, q̇=dq/dt,
r� =(dr/dt) and

amn (l̄, l� )=2Amn (l̄, l� )+2hBmn (l̄),

bmn (l̄, l� , l� )=−c2
t dmn +Cmn (l̄)+Dmn (l̄, l� , l� )+2hEmn (l̄, l� )+ (h2 −1)Fmn (l̄),

cmijk (l̄)= 3
2b

2
1Nmijk (l̄), Gm =3hct

z2l̄
mp

[1− (−1)m], Hm =ctt

z2l̄ 3

mp
(−1)m.

The details of Amn (l̄, l� ), Bmn (l̄), Dmn (l̄, l� , l� ), Emn (l̄, l� ), Fmn (l̄), Nmijk (l̄, l� , l� ), ar(l̄), br
n (l̄), cr

m (l̄),
dr

m (l̄), er
nijk (l̄) and f r(l̄) are given in Appendix B.

4. NUMERICAL RESULTS AND DISCUSSION

Since the amplitudes of the textile–rotor system are governed by two non-linearly
coupled ordinary differential equations, (14a) and (14b), an exact solution is not possible.
The examples given here are chosen to study the coupling effect on the transient vibrations
of the textile–rotor system. The parameter values are T=100 N, r=1 kg/m, l0 =1 m,
m0 =4·95 kg, R0 =0·1 m and h=0·02 m, and the values of the rotor stiffness are chosen
as kx = ky = k, so that we have Vx =Vy .

In the initial configuration, t=0, m(0)=m0, R(0)=R0 and V(0)
r =z(k/m0)−v2l0/c2 is

the natural frequency of the rotor. v is its angular velocity and has a negative value when
the textile is being wound on, and V(0)

1 = p is the first mode frequency of the textile. We
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Figure 2. The influence of the angular speed of the rotor on the transient amplitudes for the case V(0)
r /V(0)

1 =10:
·–·–·–, V=−p; ——, V=−2p. (a) The non-dimensional amplitude of the textile. (b) The non-dimensional
amplitude of the rotor. (c) The time-dependent axial velocity j� of the textile. (d) The time-dependent length l̄
of the textile. (e) The time-dependent mass m(t) of the disk. (f) The time-dependent radius R�(t) of the disk.
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consider the textile and rotor with the following initial conditions of the dimensionless
variables:

qi (0)=0, q̇i (0)=0, i=1, 2, 3,

r̄(0)= r� (0)=0.

The Runge–Kutta numerical method has been used with these initial conditions and a
specified accuracy of 10−9 to integrate equations (8a) and (8b). The resulting transient
curves are shown in Figures 2–5. The influence of angular speed of the rotor on the
transient amplitudes is shown in Figure 2. In Figures 2(a) and (b) are shown the
non-dimensional amplitudes as functions of non-dimensional time. These curves were
obtained by setting the non-dimensional rotary angular velocity V of the shaft to −p and

Figure 3. The non-linear effects of the transient amplitudes for the case V(0)
r /V(0)

1 =10, V=−4
3p. (a) The

non-dimensional amplitude of the textile: ·–·–·– linear, b1 =0; ——, non-linear, b1=30. (b) The non-dimensional
amplitude of the rotor: ·–·–·–, linear, b1 =0; ——, non-linear, b1 =30.
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Figure 4. The influence of the shaft stiffness on the transient amplitudes for the case V=−4
3p: ·–·–·–,

V(0)
r /V(0)

1 =10; ——, V(0)
r /V(0)

1 =100. (a) The non-dimensional amplitude of the textile. (b) The non-dimensional
amplitude of the rotor.

−2p respectively, and hence to the first and second mode frequencies of the textile in the
initial configuration. It is found that the amplitudes at V=−2p (parametric resonance)
are larger than those at V=−p (harmonic resonance), and both increase with time.

In Figure 2(c) it is shown that the axial travelling velocity j� is not constant, and therefore
a travelling acceleration exists in the textile being wound on. The time-dependent length
of the textile is given by equation (1), which includes the whirling amplitude r(t) of the
rotor. Thus, the time-dependent length of textile has to be determined using equations
(14a) and (14b) simultaneously. In Figure 2(d) it is shown that the textile length l̄ decreases
with time. In Figures 2(e) and (f) it is shown that the mass m(t) and radius R�(t) of the
rotor both increase with time. These results give a reasonably good picture of the
qualitative features of the coupled system.
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In Figure 3 is shown the effect of the non-linear term b1 associated with the textile. It
is observed that the amplitude is larger and the period of oscillation is shorter when the
non-linearity is included. The curves were obtained by making the rotary angular velocity
of the shaft angle to −4

3p.
In Figure 4 is shown the influence of shaft stiffness on the transient amplitudes. It is

seen that increasing the shaft stiffness causes a decrease in both the transverse vibration
of the textile (Figure 4(a)) and the whirling amplitude of the rotor (Figure 4(b)). The
decrease in the whirling amplitude is much greater than that for the textile vibration.

In Figure 5 is shown the difference between the results for modes 1 and 2. It is observed
that as the textile vibration mode number is increased, the coupling effect increases and
the amplitudes are larger.

Figure 5. The influence of the shaft stiffness on the transient amplitudes for the case V(0)
r /V(0)

1 =10, V=−4
3p.

(a) The non-dimensional amplitude of the textile: ·–·–·–, q1 for the mode=1; ——, q1; – – –, q2 for mode=2.
(b) The non-dimensional amplitude of the rotor: ·–·–·–, mode=1; ——, mode=2.
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5. CONCLUSIONS

A model of a coupled textile–rotor system that includes transverse textile vibration and
rotor whirling has been formulated. In this paper, we assume that the instantaneous
angular location of the imbalance with respect to the direction of shaft bending is constant,
that the Jeffcott rotor exhibits synchronous whirling, and that the shaft angular speed
remains constant. Numerical results have been presented for both linear and non-linear
coupled systems. Our findings confirm that the amplitude is larger and the period of
oscillation is shorter when the non-linearity is considered. The time-dependent mass and
radius of the rotor, and the non-constant travelling velocity and time-dependent length of
the textile, are also included. It is found that as the textile is wound on, the textile length
decreases and its axial travelling velocity increases, and the mass and radius of the rotor
both increase. These results give a reasonably good interpretation of the qualitative
features of the coupled system. For future work, the non-synchronous vibration of the
rotor, parametric excitation, the steady state response and dynamic stability analysis would
be interesting problems to investigate.
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APPENDIX A

A.1.   

From Figure 1, the position vector of any point on the textile after deformation is

Rx (t)= x+w

=(x cos c−w sin c)i+(x sin c+w cos c)j, (A1)

where i and j are unit vectors that point in the directions of increasing X and Y respectively
w=w(x, t) is the deflection of the textile at location x, and c is the rotary angle of the
textile.

The Lagrangian function for the textile is the kinetic energy minus the potential energy.
Thus, we have

Ls = 1
2 g

l(t)

0

rV · V dx−g
l(t)

0

(ToE + 1
2EAo2

E ) dx

= 1
2 6r$c� 2x2 +2c� 2x

dw
dt

+0dw
dt1

2

+ ẋ2 −2c� ẋw+c� 2w2%−Tw2
x − 1

4EAw4
x7, (A2)

where oE = 1
2w

2
x is the engineering strain, EA denotes the rigidity of the textile, ToE and 1

2EAo2
E

are, respectively, the terms due to initial tension and deflection. The latter is measured from
the initially tensioned configuration.

A.2.  

The Lagrangian function for the rotor is

Lr = 1
2m(t){[ṙ− ef� sin b2]2 + [rf� + ef� cos b]2}+ 1

2I(t)f�
2 − 1

2kxr2 cos2 b− 1
2kyr2 sin2 b

−m(t)g[r sin (f+ b)+ e sin (f+ b)]. (A3)

In order to derive the virtual work done by the initial tension T on the rotor, the virtual
displacement at the connection point will be obtained first. The position vector of the
connection point can be written as

RA (t)= (l0 + r cos f−R(t) cos u)i+(r sin f+R(t) sin u)j. (A4)

The virtual displacement of the connection point is

dRA (t)= (dr cos f+R(t) sin udu)i+(dr sin f+R(t) cos udu)j. (A5)
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Since u is not the generalized co-ordinate chosen to describe the dynamic whirling, du

should be replaced with dr. From Figure 1 it is seen that u= p/2−c; hence we have
du=−dc. Consider the following geometrical relation:

sin c=sin (c1 +c2)

=
R(t)
a

cos c2 +
r sin f

a
cos c1

=
1
a2 [R(t)(l0 + r cos f)+ l(t)r sin f], (A6)

where

a=zl20 + r2 +2l0r cos f (A7)

is the auxiliary line. Taking the virtual angular displacement from equation (A6), we have

dc=Crdr, (A8)

where

Cr =
0R(t) cos f+

1
l(t)

(r+ l0 cos f)r sin f+ l(t) sin f1
[l(t)(l0 + r cos f)−R(t)r sin f]

−
2(r+ l0 cos f)[R(t)(r+ l0 cos f)+ l(t)r sin f]

a2[l(t)(l0 + r cos f)−R(t)r sin f]
. (A9)

Equation (A8) states the relationship between dc and dr.
The initial tension vector is

T=−T(cos ci+sin cj). (A10)

The virtual work done by the initial tension can be expressed as

dW=T · dl� (t)

=T[cos c cos f−sin c sin f+CrR(t)]dr. (A11)

A3.     – 

To obtain the equations for the coupled system, the calculus of variations and
Hamilton’s principle are applied. However, the application of the principle is not
straightforward, since there is a moving boundary involved at x= l(t), where the position
is not specified.

We consider the entire system including textile length 0 E xE l(t) and rotor Hamilton’s
principle can be written as

0=g
t2

t1
$d g

l(t)

0

Ls (x, t; w, wx , wt ) dx+ dLr (t; r, ṙ)+ dW% dt (A12)
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where t1 and t2 are two arbitrary end times. In the process of taking the variation expressed
by equation (A12), we apply the partial integration technique, using Leibnitz’s theorem,
and collect the like terms to obtain

0=g
t2

t1
6Ls [l(t), t; w(l(t), t)]dl(t)+g

l(t)

0 01Ls

1w
−

1

1x
1Ls

1wx
−

1

1t
1Ls

1wt1dw dx

+$01Ls

1wx
−

dx
dt

1Ls

1wt1dw%
x= l(t)

x=0

+01Lr

1r
−

1

1t
1Lr

1ṙ
+T[cos c cos f−sin c sin f

+CrR(t)]1dr7 dt+$g
l(t)

0

1Ls

1wt
dw dx+

1Ls

1ṙ
dr%

t2

t1

. (A13)

The varied path coincides with the true path at the two end points t1 and t2. It follows
that dw(t1)= dw(t2)=0 and dr(t1)= dr(t2)=0. In the variational process, dl(t) exists in
equation (A13) because the position x= l(t) is not specified. Taking the variation with
respect to equation (1), we have

dl(t)=
1

l(t)
(r+ l0 cos f)dr. (A14)

Substituting equation (A14) into the first term of equation (A13), and collecting with the

01Lr

1r
−

1

1t
1Lr

1ṙ 1dr

term, we can obtain Lagrange’s equations for the textile and rotor, respectively, as

1Ls

1w
−

1

1x
1Ls

1wx
−

1

1t
1Ls

1wt
=0, 0Q xQ l(t), (A15)

1Lr

1r
−

1

1t
1Lr

1ṙ
+T[cos c cos f−sin c sin f]+

1
l(t)

(r+ l0 cos f)Ls [l(t), t; w(l(t), t)]=0,

(A16)

where the boundary conditions are

w(0, t)=0, w(l(t), t)=0. (A17, A18)

Substituting the Lagrangian functions (A2) and (A3) for the textile and rotor,
respectively, into equations (A15) and (A16), and considering the rotor with angular
velocity f� =v=constant, we obtain the governing equations for the system as

wtt +2ẋwxt + ẍwx −c� 2w−0Tr − ẋ21wxx − 3
2

EA
r

w2
xwxx =−3ẋc� − xc� , 0Q xQ l(t),

(A19)
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r̈+$ kx

m(t)
cos2 b+

ky

m(t)
sin2 b−v2%r= ev2 cos b+ ėv sin b− g sin f

−
T

m(t)
[cos c cos f−sin c sin f]

−
(r+ l0 cos f)

2m(t)l(t)
[rẋ2 + rẋ2w2

x (l(t), t)

−Tw2
x (l(t), t)− 1

4EAw4
x (l(t), t). (A20)

APPENDIX B

The time-varying coefficients of equation (14a) are as follows:

Amn (l̄, l� )=g
l̄

0

8̇n8m dj, Bmn (l̄)=g
l̄

0

8'n8m dj,

Cmn (l̄)= jtt g
l̄

0

8'n8m dj, Dmn (l̄, l� , l� )=g
l̄

0

8̈n8m dj,

Emn (l̄, l� )=g
l̄

0

8̇'n8m dj, Fmn (l̄)=g
l̄

0

80n 8m dj,

Nmijk (l̄, l� , l� )=g
l̄

0

8'i 8'j 80k 8m dj.

The coefficients of equation (14b) are as follows:

ar(l̄)=V2
x cos2 b+V2

y sin2 b−V2 −
M
2

l̄c2 +
M
2l̄

j� 2 − cr
ni1(l̄)− dr

ni1(l̄)− er
nijk1(l̄),

br
ni (l̄)=−Mj� cos f

np

zl̄3
(−1)nc� , cr

ni (l̄)=−
Mj� 2 cos f

2l̄
2nip2

l̄3
(−1)(n+ i),

dr
ni =

M cos f

2l̄
2nip2

l̄3
(−1)(n+ i), er

nijk (l̄)=
M cos fb2

1

8l̄
4nijkp4

l̄6
(−1)(n+ i+ j+ k),

f r(l̄)= ēV2 cos b− ḡ sin f−
M cos f

2
l̄c� 2 −

M cos f

2l̄
j� 2

−M(cos c cos f−sin c sin f−C�rR�),

where

cr
ni1(l̄)=−

Mj� 2

2l̄
2nip2

l̄3
(−1)(n+ i), dr

ni1(l̄)=
M
2l̄

2nip2

l̄3
(−1)(n+ i),

er
nijk1(l̄)=

Mb2
1

8l̄
4nijkp4

l̄6
(−1)(n+ i+ j+ k).


