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A smeared laminate model is presented for the dynamic analysis of laminated beams.
An iterative process is used to refine successively the shape of the assumed displacement
field in the beam, resulting in a self-consistent stress/strain distribution. The model includes
the effects of transverse shear and rotatory inertia. The iterative model is used to predict
the modal frequencies and damping of simply supported beams with integral viscoelastic
layers. The solutions for a three layer beam are compared to a three layer approximate
model. A nine layer solution is also presented, illustrating the applicability of the model
to multi-layer configurations, situations that would normally require a more complex,
discrete layer analysis.
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1. INTRODUCTION

Accurate modeling of the stress distribution in general composite beams, plates and shells
typically requires the inclusion of such non-classical effects as transverse shear deformation
and transverse normal strain. Accurate estimates of the stress field are particularly
important in damping and delamination studies. Displacement models which go beyond
the assumptions of Classical Lamination Theory (CLT) are generally classified as either
Smeared Laminate Models (SLMs) or Discrete Layer Models (DLMs).

In a SLM, a form of the displacement field is assumed through the entire thickness of
the laminate. This specification of the displacement field allows the calculation of a set of
equivalent laminate properties (such as the [A], [B] and [D] matrices in CLT) which can
be used to determine the gross behavior of the laminate (such as the deflection and natural
frequency). Examples of SLM’s are: First Order Shear Deformation Theory (FSDT) as
presented by Yang, Norris and Stavsky [1]; quadratic shear strain models as presented by
Krishna Murty [2], Levinson [3, 4] and Reddy [5]; and the more recent ““zig-zag” models
as presented by Di Sciuva [6] and Bhaskar and Varadan [7]. The limitation of smeared
laminate models, when applied to general laminate configurations, is the implicit
assumption of the shape of the stress distribution which follows from the assumption of
the displacement field. If the assumed stress distribution is not representative of the actual
stress field, then the predictions of a smeared laminate model can be significantly in error.
Accurate determination of the stress and displacement fields is particularly important for
“stress critical” calculations such as damping and delamination.
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In a DLM, a form of the displacement field is assumed at the ply level only. DLMs retain
the individuality of the ply throughout the analysis and are readily adaptable to general
laminate configurations. DLMs are also distinguished by their requirement for large
numbers of degrees of freedom, usually proportional to the number of plies in the laminate.
DLMs were presented by Ross et al. [8], Sun and Whitney [9], Alam and Asnani [10] and
Reddy [11].

SLMs are generally preferable to DLMs because they use fewer degrees of freedom.
However, because SLMs contain an implicit assumption of the shape of the stress
distribution, often there is no choice but to use a more numerically intensive DLM for
accurate stress predictions.

Although the stress field obtained using a SLM is related to the assumed displacement
field, the local stress solution can be refined somewhat by using the equations of elemental
stress equilibrium. Noor and Burton [12] presented a ““predictor-corrector’” approach for
the analysis of composite plates. The authors used a plate model based on FSDT, coupled
with integration of the equilibrium equations, to refine the estimate of the local stress field
through the thickness of the laminate. The refined stress field was also used to generate
improved estimates of the shear correction factors in the FSDT model, leading to improved
estimates of the plate displacements and natural frequencies. While the approach presented
by Noor and Burton does lead to improved estimates of the stress distribution, the
accuracy of the local stress solution is ultimately limited by the initial FSDT displacement
assumption.

Vijayakumar and Krishna Murty [13] developed a SLM for the static analysis of
laminated plates that could, in fact, accurately predict the stress distribution in general
laminates. The authors used an iterative process to successively refine the stress/strain field
in the laminate. Vijayakumar and Krishna Murty’s results for composite cross-ply plates
exhibited excellent agreement with exact solutions.

Zapfe and Lesieutre [14] presented a variation of Vijayakumar and Krishna Murty’s
static method for laminated beams. Zapfe and Lesieutre used an assumed displacement
approach which produced differential equations of equilibrium and boundary conditions
similar to other SLMs, and used iteration to successively improve the estimate of the
assumed displacement field.

The present research extends the iterative SLM (ISLM) developed by Zapfe and
Lesieutre to the dynamic analysis of laminated beams. The current model is developed for
the specific case of simply supported beams with uniform properties along the length. The
model is used to analyze the dynamics of two sample beams with integral viscoelastic
layers.

2. THEORY

Figure 1 depicts the beam configuration for the ISLM. The material properties may vary
in the thickness direction, but are assumed to be constant along the length of the beam.
The form of the displacement field over the domain of the beam is

u(x, z, t) = uy(x, t) — z ow(x, t)/ox + f(z)g(x, 1), w(x, z, t) = w(x, 1). (1)

The first two terms in the in-plane displacement expression define the CLT displacement
field for a beam. The last term, f{(z)g(x, ¢), can be thought of as a correction to account
for transverse shear effects. The function f{(z) represents the shape of the correction
through the thickness of the beam, while g(x, t) determines its distribution along the
length. The transverse displacement field, w(x, ¢), is not a function of z, which means the
transverse
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normal strain is identically zero. The solution of a given problem requires the
determination of the unknown functions, uy(x, t), w(x, 1), g(x, t) and f(z).

In the present model, f(z) does not generally have a simple form. However, some familiar
smeared laminated models can be expressed by the displacement field given in equation (1):

CLT: f(z) =0, FSDT: f(z) = z,
Levinson/Reddy: f(z) = —6hh,z + 3(h + h,)z* — 2Z°. 2)

The strain field in the beam provides some insight into the nature of the function f(z).
Applying the linear strain/displacement relations to equation (1) yields the strain field

e(x, z, 1) = 0u/0x = Ouy/0x — z 0*w/0x* + f(z) 0g/0x,
&(x,z, 1) =0w/0z =0, Ve (X, z, t) = Ou/0z + Ow/ox = 0f/0z g(x, t). 3)

From equation (3), it can be seen that the gradient df/0z represents the shape of the
transverse shear strain field through the thickness of the laminate, at a given x-location.
Therefore, if the shape of the shear strain distribution is known, f(z) can be estimated by
integrating the strain through the thickness. In general there will be no closed form solution
for f(z). In the present analysis, f(z) is stored as a tabular function, with an assigned
numerical value at a set of pre-defined z-locations.

2.1. DIFFERENTIAL EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

While the assumed form of the shear correction, f(z), will change from one iteration to
the next, at any given iteration it can be treated as a known function. This allows the
development of differential equations and boundary conditions like any other SLM. The
strain energy stored in the beam has components associated with both extension and shear
and is given by

L (*h,
U= IZ)J J E(2)ed(x, z, 1) + G(z)yL(x, z, t) dx dz. (4)
0 h

1

The kinetic energy, which includes components associated with transverse, in-plane and
rotary inertia, is given by

T— g£ L’“p(z)[<6u(xétz, t)) + <5WS;, l)>':| dx dz, )

E(z), G(2), p(2), n(2)

7h1

Figure 1. Beam configuration for the Iterative Smeared Laminate Model; b = width.
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where the in-plane velocity, du/0t, is given by
du(x, z, 1)/0t = duy(x, t)/0t — z O*w(x, t)/0x Ot + f(z) Og(x, t)/0t. (6)

The differential equations of motion and boundary conditions are derived using
Hamilton’s principle. The equations of motion for the three unknown functions u,, w and
g are

— Miiiy + MW — M;§ = — Kiug + Kow” — Kig”,
—Mzu(; + M4WU — M1W — M5g/ = —KQM(I)N =+ K4Wir — ngm,
—Mﬂ;l.o + Msw/ — M(,g = —Kﬂ/{(y =+ K5W’W — K(,g” + K7g (7)

K, and M, are section stiffness and mass coefficients, given by

Kiassso = b J B 2. /@), 2, @), £z, Ko=) J G(z>[a§(f)}2 d,

1 1

h

Missisq = b f PO 2. /(). 22 2 (). f2(2)] dz. ®)

Iy

In general, the section integrals will not have closed form solutions. In the present
implementation, the integrals are evaluated numerically using a trapezoidal method.

The kinematic and natural boundary conditions, specified at x =0 and x = L, are
given by

KINEMATIC NATURAL

Specify: u or Kiug — Kw” + Ksg’ =0,

Specify: w or Mty — MW" + Msg — Koug + Kaw” — Ksg” =0,

Specify: w’ or — Koug + Kiw"” — Ksg’ = 0,

Specify: g or Ksug — Ksw” + Keg” = 0. 9)

For the special case of a simply supported beam, the first, third and fourth natural
boundary conditions are combined with the kinematic boundary condition, w = 0.

2.2. SOLUTION FOR A SIMPLY SUPPORTED BEAM

The special case of a simply supported beam leads to simple harmonic solution
functions. Functions which satisfy the boundary conditions and the differential equations
of motion are:

uy(x, 1) = Uy e cos (k,x), w(x, t) = W, et sin (k,x),
g(x, t) = Gy e cos (k,x). (10)

The functions are solutions provided the wave number, k, = nn/L corresponds to an
integer number of 1/2 waves along the length of the beam. The values of the complex
frequency and the unknown coefficients U,, W, and G, are found by substitution of
equations (10) into the differential equations of motion, equations (7). The substitution
leads to the following eigenvalue problem:

[—olM] + [KI{U} = {0}, {U} = {Us, Wo, Goj
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M, — Mk, M; Kk} —Kk Kik?
M] = | =Mk, (M + M) —Msk, |, [K]l=|—-Kk Kk, — Kk,
M; — Mk, M Kk,  —Ksk, (Ksk; + K7)

(11)

The eigensolution yields three frequencies and mode shapes for each wave number. The
eigenvalue with the lowest frequency typically corresponds to the transverse mode.

2.3. DISSIPATION MODEL

The complex modulus method is used to model energy dissipation. The Young’s and
shear modulus of the constituent materials are represented by the complex quantities

E*(z) = EQ +in(2)],  G*(2) = G + in(2)]. (12)

The ISLM can readily accomodate different loss factors for shear and dilation.

The complex modulus formulation leads to complex section stiffness coefficients in
equation (8) and complex eigenvalues and eigenvectors in equation (11). The complex
eigenvalue yields both frequency and damping information. The complex eigenvector
contains magnitude and phase information for the mode shape. The modal loss factor for
the nth mode is given by

7, = Im(w?)/Re(w?). (13)

2.4. IMPROVED ESTIMATE FOR SHEAR CORRECTION FUNCTION f(z)

An improved estimate for the shear correction function, f{(z), is derived from the
transverse shear stress distribution as determined from the equation of elemental stress
equilibrium. Stress equilibrium imposes a relationship between the transverse shear stress
gradient, the in-plane normal stress gradient and the in-plane inertial stress gradient:

0t,./0z = pii — 0o, /0x. (14)

The terms on the right hand side of equation (14) are known from the eigensolution to
equation (11). The inertial stress gradient is given by

pti = —p(2)wi[Us — kaz Wy + f(2)Go) €% cos (k,x), (15)
and the in-plane normal stress gradient is given by
00./0x = —E(2)k,[Us — kuzWy + f(2)Go] €% cos (k,x). (16)

The transverse shear stress gradient is obtained by substitution of equations (15) and
(16) into equation (14):

010z = [—p(2)wi + EQ@)k2[Uo — kazWo + f(2)Go] €' cos (k,x). (17)
The shear stress gradient is a separable function of x, z and ¢. The shape of the shear stress
gradient through the thickness is the same at every x-location along the beam, with

magnitude varying spatially by cos (k,x) and harmonically in time. The shape of the shear
stress distribution can be found by integrating equation (17) through the thickness.

T(z) = JZ [—p@)w} + E)K[Us — k,zWo + f(2)Go] dz. (18)

1

The shear stress is influenced by both elastic and inertial effects, the relative importance
of each depending on the mode. The elastic component typically predominates, except at
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very high frequency. In general, the shear stress distribution has no closed form solution.
In the present implementation, the integration is performed numerically using a
trapezoidal method.

The shape of the shear strain distribution is calculated using equation (18) and the
constitutive relation

7::(2) = 1:(2)/G(2). (19)

The shear strain can be a complex quantity, with the implication that all parts of the beam
do not necessarily move in phase with each other.

The new estimate for the shear correction function, f{(z), obtained by integrating
equation (19) through the thickness, is given by

fz) = j : Ye(z) dz + F, (20)

i

where the constant, Fy, is required to ensure that f(z) = 0 at the reference axis. The integral
in equation (20) is evaluated numerically and f(z) can be a complex quantity. This new
estimate of f(z) is used as the shear correction function for the next iteration. The solution
steps for subsequent iterations are identical.

2.5. CONVERGENCE TO A SOLUTION

As with any smeared laminate model, there are two distinct ways to calculate the shear
stress distribution: from the material constitutive relations; or by elemental stress
equilibrium. For the simply supported beam, these two shear distributions are given by

Constitutive: t,. = G(z)9f(2)/0zG,,

Equilibrium: 7. = J [—p(@)wl + E)K[Us — kuzWs + f(2)Go] dz. 20
h,

1

The ultimate goal of the iterative analysis is the determination of the function, f(z), that
causes the two stress distributions to be equal. This defines the convergence point for the
iterative function f{(z), the point at which the stresses and strains are self-consistent. In the
present development, the transverse shear resultants, given by

Iy,

hy,
VConslilulivc = J\ [sz]Constilutivc dZy VEquilibrium = J\ [T.\'z]Equilibrium dZ, (22)
h, h,

1 1

are used as the measure of convergence. When the magnitude of the error between the two
resultants reaches a given tolerance (typically 1% of the equilibrium resultant) then the
solution is considered to have converged. Although the shear resultant is an integral
quantity which does not necessarily reflect local errors in the stress field, the authors have
found it to be a reliable measure. While other error measures can be devised, the shear
resultant has a physical significance which is particularly useful in static problems.

2.6. CHOICE OF f(z) FOR FIRST ITERATION

Since f(z) is determined from the previous iteration, the question arises as to what to
use for the first iteration. Almost any reasonable displacement assumption is acceptable.
FSDT [ f(z) = z] is simple to implement, however experience has shown that a quadratic
stress distribution is a better starting point. This is likely due to the fact that the parabolic
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Ey, Gy, oy 3 mm
G2’ Pa; MNa 5 mm
Es, Gs, p3 8 mm

«——0016m<L<0.16m—»|

Figure 2. Beam configuration for three layer example. The material properties are E; = E; = 2-068E11 Pa,
G = G3 = 8272 E10 Pa, p, = ps = 7850 kg/m?;, G> = 9-8 E9 Pa, p, = 2600 kg/m’, n, = 0-1. The beam is simply
supported at both ends.

stress field produces a continuous shear stress distribution which places shear stress in all
of the layers. With the FSDT starting point, the shear stress is very small in layers having
a low shear modulus.

3. RESULTS AND DISCUSSION

Rao [15] assembled a series of design curves for the dynamic characterization of three
layer sandwich beams with various boundary conditions. Rao uses the differential
equations of motion for a sandwich beam that were presented by Mead and Markus [16].
The beam model assumes that all transverse shear deformation and energy dissipation
occurs in the core material. The dissipation is modeled using a complex modulus
formulation. The imposition of boundary conditions leads to a sixth order characteristic
determinant which Rao solves numerically. The ISLM was compared to Rao’s design
curves for the first examples presented in Rao’s paper, with simply supported boundary
conditions. To illustrate its capabilities, the ISLM was also used to analyze a nine layer
version of Rao’s beam.

3.1. THREE LAYER EXAMPLE

The beam configuration for Rao’s first example appears in Figure 2. The beam geometry
and material properties are summarized in the figure. The length of the beam was varied
by a factor of ten in order to obtain a range of frequencies for the first transverse mode.

1E6 0.1

1E5

0.01

1E4

Damped natural frequency (Hz)
Modal loss factor (1)

1E3

0.001
1 10

Beam length to thickness ratio (S)

Figure 3. Modal data for mode 1 of three layer example using ISLM and Rao’s design curves: O, Rao
frequency; [, Rao loss factor; @, ISLM frequency; W, ISLM loss factor.
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TABLE 1

Iterative improvement of modal data for a three layer beam

Quadratic shear FSDT
A A
r A r N

Iteration Frequency Loss Factor Frequency Loss Factor
Number Error (%) Error (%) Error (%) Error (%)

1 0-22 —1-42 9-6 —-97-9

2 0-0 0-0 0-01 —0-22

3 0-0 0-0 0-0 —0-0002

Figure 3 shows the predicted modal frequency and loss factor for the three layer beam
using Rao’s design curves and the ISLM. The ISLM frequency predictions are generally
consistent with Rao’s results. The slight discrepancy at high frequency is due to facesheet
shear and rotary inertia, effects which Rao’s model does not consider. With rotatory inertia
and facesheet shear removed, the ISLM replicates Rao’s results. The modal loss factors
predicted by the ISLM are also in good agreement with Rao’s results. Again the slight
discrepancy is due to facesheet shear and rotary inertia.

Table 1 shows the improvement in the prediction of the modal data for the three layer
example using two different starting points for the first iteration: a quadratic shear stress;
and a constant shear strain (FSDT displacement field). The data corresponds to a beam
length-to-thickness ratio, S = 5. In this particular example, for the first iteration, the
quadratic shear stress assumption is adequate in itself: the frequency prediction is within
0-22% of the converged value and the loss factor is within 1-42%. The second iteration
corrects both errors. The FSDT starting point is less accurate: after the first iteration, the
frequency error is 9:6% while the loss factor is 97-9% too low. However, even with the
FSDT starting point, after three iterations the error is effectively eliminated.

Figure 4 shows the transverse shear stress distribution for length to thickness ratios of
S =10 and S = 2. In the figure, z is non-dimensionalized by the beam half thickness and
the shear stress is normalized by the maximum stress. For S = 10, the location of the
damping layer can be identified as the region of constant shear stress. The shear stress is

-1 \ |
0 0.4 0.8 1.2

Normalized shear stress

Figure 4. Transverse shear stress distribution for three layer example: [, length to thickness ratio, S = 10,
@, S=2.
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~ [ ] ] =}
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k= ° - [ I
S 1E4 — 3
3 y S
2, °
®
1E3 0.001
1 10

Beam length to thickness ratio (S)
Figure 5. Modal data for nine layer example: @, ISLM frequency; B, ISLM loss factor.

constant in the damping layer because the shear gradient, from equation (14), is effectively
zero. The in-plane gradient is zero because E... = 0 and the inertial term is small because
the modal frequency is low. For S = 2, because of the higher modal frequency, the inertial
term in equation (14) is large enough to produce a small shear gradient in the core which
is evident in the figure.

3.2. NINE LAYER EXAMPLE

The ISLM is readily adaptable to multiple layer configurations; all that is required is
the specification of the material property distribution through the thickness. In order to
demonstrate a multi-ply example, Rao’s beam was modified such that the shear core was
split into four equal thickness (1-25 mm) layers. The core layers were interspersed among
five equal thickness (2-2 mm) layers of the facesheet material. The total thickness of core
and facesheet material was 5.0 mm and 11-0 mm, respectively, the same as the original
beam.

-1 \ |
0 0.4 0.8 1.2

Normalized shear stress

Figure 6. Transverse shear stress distribution for nine layer example: [, length to thickness ratio, S = 10; @,
S=2.
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The modal data for the nine layer beam appears in Figure 5. For S = 10, the modal
frequency for the nine layer beam is approximately 10% lower than the three layer beam,
however, the loss factor is double. For shorter wavelengths, there is very little frequency
difference, however, the nine layer loss factors are approximately 20% lower than the three
layer beam. The improved damping performance at low frequency occurs because the
beam is ‘“‘softened” in shear, placing more strain energy in the dissipative core material.
At high frequency, the damping material is more effectively located near the beam’s neutral
axis where the shear stress is maximum.

Figure 6 shows the shear stress distributions for the nine layer beam with
length-to-thickness ratios of S = 10 and S = 2. Unlike the 3 layer beam, the shear stress
distributions were similar for both beam lengths. The location of the four damping layers
can be seen in the figure as regions of constant shear stress.

4. CONCLUSIONS

A smeared laminate beam model has been presented that can accurately determine the
dynamic stress distribution in general laminated beams. This represents an advance over
previous smeared laminate models, in which accurate estimates of the stress field were only
possible if the assumed displacement field was a reasonable approximation of the actual
displacement field.
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