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EFFECTS OF GEOMETRICAL ASYMMETRIES OF
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CHARACTERISTICS OF TWO COUPLED
CONTROL SURFACES
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The dynamical characteristics of two coupled control surfaces with structural
asymmetries are studied. The results show that a first order and a second order perturbation
method can be applied to predict free vibration frequencies and modal shapes accurately.
If the stiffness value of the operational system (or asymmetrical degree) is large enough,
a small asymmetrical parameter can lead to the vibration isolation of one control surface,
which means that the vibrating amplitudes of one control surface are large, but those of
the other control surface are close to zero. In order to avoid such vibration isolation of
control surfaces, the operation stiffness (or the asymmetrical degree) must be decreased as
far as possible in the structural designs of two coupled control surfaces.
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1. INTRODUCTION

In general, the structures of all-moving tails of an aircraft or rudders of a missile are
considered to be geometrically symmetrical. In engineering structures, the symmetry is
often broke down by the presence of irregularity so the structures become asymmetrical.
An asymmetrical structure may localize the modes of free vibration and inhibit the
propagation of energy within the structure, a direct result of which is fatigue of the
structure. The mode localization phenomena in the field of structural dynamics have been
investigated in many research studies. In references [1–3] chains of coupled pendulums
were studied, in references [4–7] multispan structures and in references [8–10] periodic
structures. A common point of the models used in references [1–10] was that the models
consisted of relatively simple substructures, each of which was almost identical. Recently,
Natsiavas [11] studied mode localization and frequency loci veering of a new dynamical
model, which was different from those used before, and its components were not similar.
The above references represent only a small sample and other contributions are not listed
here.

In this paper, the dynamical characteristics of two coupled control surfaces with
structural asymmetries are studied by employing the first order perturbation method and
the second order perturbation method, respectively. In the case of an unperturbed system
with simple eigenvalues, the first order perturbation method is used to analyze the
perturbed system. In the case of an unperturbed system with multiple (or dense)
eigenvalues, the second order perturbation method is applied to analyze the perturbed
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system. The approximate expressions for the perturbed system are used to explain roughly
the reason for vibration isolation and frequency loci veering of two coupled control
surfaces.

2. MODEL OF CONTROL SURFACES AND ITS VIBRATION EQUATIONS

The mechanical model of two coupled control surfaces with structural asymmetries is
shown in Figure 1; this model was used as a flutter model in reference [12], but the values
of parameters were a little different. In order to simplify the problem, each control surface
is considered as an exactly two-degrees-of-freedom subsystem, in which h1 (or h2) represents
the bending deformation, and a1 (or a2) the torsional deformation, as shown in Figure 1.
The two control surfaces are coupled together by a spring with stiffness k3, which
represents the operation stiffness coefficient. So, the undamped free vibration equation of
the control surfaces are

Mj� +Kj=0, (1)

where

m1 (1− x0)m1 0 0 0

(1− x0)m1 I1 + (1− x0)2b2
r m1 0 0 0

M=G
G

G

G

G

K

k

0 0 I0/r2
1 0 0 G

G

G

G

G

L

l

,

0 0 0 I2 + (1− x0)2b2
r m2 (1− x0)brm2

0 0 0 (1− x0)brm2 m2

Figure 1. Sketch of mechanical model of two coupled control surfaces. h1 and h2 denote bending deformations
of the two control surfaces separately, a1 and a2 represent torsion deformations of two control surfaces separately,
x is the deformation of the operation system, k1A , k2A , m1 and I1 are the bending stiffness coefficient, the torsional
stiffness coefficient, the mass and the inertial moment of control surface A respectively, k1c , k2c , m2 and I2 are
the bending stiffness coefficient, the torsional stiffness coefficient, the mass and the inertial moment of control
surface C respectively, and k3 is the stiffness coefficient of the operation system.
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k1A 0 0 0 0

0 k2A −k2A /r1 0 0

K=G
G

G
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k

0 −k2A /r1 k3 + (k2A + k2C )/r2
1 −k2C /r1 0 G

G

G

G

G

L

l

,

0 0 −k2C /r1 k2C 0

0 0 0 0 k1C

j= {h1 a1 x a2 h2}, j� =d2j/dt2, t is time.

Generally speaking, the parameter I0 is small and k3 large in equation (1). In order to
introduce a small parameter, Guyan’s method [13] is used to reduce equation (1) and the
corresponding non-dimensional equation can be expressed in the form

M1 d2z/dt2 + (K0 + cK1)z=0 (2)

where

z= {h	 1 a1 a2 h	 2}.

1 (1− x0) 0 0

(1− x0) I 0 0
M1 =G

G

G

K

k
0 0 mI m(1− x0)

G
G

G

L

l

,

0 0 m(1− x0) m

1 0 0 0

0 v2
A 0 0
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0 0 mr2

2v
2
A 0

G
G

G

L

l

,

0 0 0 mr2
1

0 0 0 0

0 −(v2
Abr /r1)2 −m(r2v

2
Abr /r1)2 0

K1 =G
G

G
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k

0 −m(r2v
2
Abr /r1)2 −(mr2

2v
2
Abr /r1)2 0

G
G

G

G

G

L

l

, c=
k1A

k3 + (k2A + k2C )/r1
,

0 0 0 0

(3)
t=zk1A /m1, I=(L/br )2 + (1− x0)2, L2 = I1/m1 = I2/m2,

m=m2/m1, h	 1 = h1/br , h	 2 = h2/br , r2
1 = k1Cm1/k1Am2,

r2
2 = k2Cm1/k2Am2, v2

A = k2A /k1Ab2
r .

In a practical structure, k3�k1A , so the value of c (see equation (3)) is small and can be
considered as a small parameter. Obviously, when m= r2

1 = r2
2 =1, the two coupled

control surfaces become symmetrical. Generally speaking, among the three parameters,
only m$ 1 means that the mass of the structure is asymmetrical; only r2

1 $ 1 means that
the bending stiffness of structure is asymmetrical; only r2

2 $ 1 means that the torsional
stiffness of the structure is asymmetrical.

3. SIMPLE DESCRIPTION OF THE SMALL PARAMETER EXPANSION METHOD

Here, two cases are considered. The first case is that the unperturbed system has simple
eigenvalues and each eigenvalue is not close to any other one. The first order perturbation



.-. 302

method is used to analyze the perturbed system in this case. The second case is that the
unperturbed system has multiple eigenvalues or highly dense eigenvalues. The second order
perturbation method must be used to analyze the perturbed system in this case.

3.1.     

The eigenproblem corresponding to equation (2) is

((K0 + cK1)− lM1)y=0, (4)

where l=v2, v is the frequency and y is the eigenvector.
The power series expansions of eigenvalues and eigenvectors are

l= l =c=0 + l'c+O(c2), y= yc=0 =+ y'c+O(c2). (5, 6)

The determinant corresponding to equation (4) is

>(K0 + cK1)− lM1>=0. (7)

When c=0, the eigenvalues of equation (7) are

l1,3 = 1
2(br /L)2[I+v2

A 2z(I+v2
A )2 −4(LvA /br )2], (8, 9)

l2,4 = 1
2(br /L)2[r2

1I+ r2
2v

2
A 2z(r2

1I+ r2
2I)2 −4(Lr1r2vA /br )2]. (10, 11)

That is, l =c=0 = li , i=1, 2, 3, 4. The normalized eigenvectors corresponding to li ,
(i=1, 2, 3, 4), are

ci =(1/zei ){(1− x0)li (1− li ) 0 0}, i=1, 3, (12)

cj =(1/zej ){0 0 (r1 − lj ) (1− x0)lj}, j=2, 4, (13)

where

ei =(L(1− li )/br )2 + (1− x0)2, ej = m0L(r1 − lj )
br 1

2

+ mr4
1 (1− x0)2:

that is, y =c=0 =ck , k=1, 2, 3, 4.
According to reference [14], the eigenvalues and eigenvectors of the first-order

perturbation expansions have the expressions

l(i)
app = li + l'i c, y(i)

app =ci + y'i c, i=1, 2, 3, 4, (14, 15)

where

l'i =cT
i K1ci , y'i = s

4

j=1

hjicj , hji =
cT

j K1ci

li − lj
, j$ i, hii =0. (16–19)

3.2.     ( ) 

In the model used here, when m= r1 = r2 =1, the unperturbed system has two double
eigenvalues; when the value of m, r1 and r2 are in the vicinity of 1, the eigenvalues of the
unperturbed system have the following properties: the first eigenvalue is close to the second
one; the third one is close to the fourth one. So, the second order terms must be considered.

The technique of the small parameter method for multiple eigenvalues is different from
that for simple eigenvalues [15]. Here, the method described in reference [16] is used to
solve for the eigenvalues and the eigenvectors. Let

yi =f1qi , i=1, 2, yj =f2qj , j=3, 4, (20, 21)
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where f1 = [c1 c2], f2 = [c3 c4], ci is expressed in equations (12) and (13) and qi and qj

are constant vectors.
Substituting equations (20, 21) into equation (4) and pre-multiplying it by fT

1 or fT
2

respectively, one can obtain the expressions

fT
1 (K0 + cK1)f1qi = mif

T
1 M1f1qi , j=1, 2, (22)

fT
2 (K0 + cK1)f2qj = mjf

T
2 M1f2qj , j=3, 4. (23)

According to Rayleigh’s principle, if f1qi differs from the eigenvector of the perturbed
system by a small quantity of first order in c, mi differs from the eigenvalue of the perturbed
system by a small quantity of second order in c. mi , qi , mj and qj can be solved using
equations (22) and (23) respectively.

So, for the first two eigenvalues and eigenvectors, one may assume

l(i)
app = mi + li2c2 +O(c3), y(i)

app =f1qi + yi1c+ yi2c2 +O(c3), i=1, 2, (24, 25)

where yim _ fiqi (or f1), m=1, 2. One can now substitute equations (24) and (25) into
equation (4). If the concept of a progressive approach is used, one can obtain expressions

(K0 − miM1)f1qi + c[K1f1qi +(K0 − miM1)yi1]=0, (26)

c2[(K0 − miM1)yi2 +K1yi1 − li2M1f1qi ]=0. (27)

Because of the conditions of normalization, yim _ f1 (m=1, 2), the expression yim can be
assumed in the form

yim = h3mc3 + h4mc4, m=1, 2. (28)

Substituting equation (28) into equation (26) pre-multiplying it by cT
m , m=3, 4,

respectively, one can conclude

yi1 = s
4

m=3

cT
mK1f1qi

mi − lm
cm , i=1, 2. (29)

Pre-multiplying equation (27) by cT
m , m=3, 4 and qT

i f
T
i respectively, one can conclude

yi2 = s
4

m=3

cT
mK1yi1

mi − lm
cm , li2 =

qT
i f

T
1 K1yi1

qT
i qi

, i=1, 2. (30, 31)

Using the above-mentioned steps for the last two eigenvalues and eigenvectors, one can
obtain the similar expressions

l( j)
app = mj + lj2c2 +O(c3), y( j)

app =f2qj + yj1c+ yj2c2 +O(c3), j=3, 4, (32, 33)

where

yj1 = s
2

m=1

cT
mK1f2qj

mj − lm
cm , yj2 = s

4

m=3

cT
mK1yj1

mj − lm
cm , lj2 =

qT
j f

T
2 K1yj1

qT
j qj

, j=3, 4. (34)

4. FREE VIBRATION ANALYSIS

The values of the parameters in Figure 1 are taken to be m1 =m2 =4·545 kg,
I0 =0·0549 kg m2, I1 = I2 =0.2984 kg m2, r1 =0·0762 m, br = s=0·254 m, x=0·2,
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Figure 2. The curves of the first frequency and the second frequency versus r2
2 . r2

1 =1, c=0·00146. The solid
line represents the exact solutions, dots the values given by the first order perturbation, ‘w’ the values given by
the second order perturbation.

k1A =70·04 kN/m, k2A =7·23 kN m/rad, k3 =45·45 MN/m. So, the values of normalized
parameters are m=1, I=1·6576, v2

A =1·6 and c=0·00146.

4.1.      

When r2
1 =1, the changes of natural frequency v with the parameter r2

2 are shown in
Figure 2 and Table 1. In Figure 2, the real lines represent the exact solutions, the dots
the computational values from equation (14) and ‘o’ the values from equation (24). When
r2

2 =1 (symmetrical parameters), two double-eigenvalues can be obtained if one uses
equations (14). The exact solutions show that no double-eigenvalue appears, but the first
frequency is close to the second one and the third one close to the fourth one, as shown
in Table 1. The calculated values from equations (24) and (32) can simulate the tendency
of the exact solutions. This is to say, with the first order perturbation method, the veering
of the eigenvalue loci can be mistaken for a crossing; whereas the second order
perturbation method can obtain the curve veering of the eigenvalue loci.

T 1

The changes of frequencies versus r2
2 , for =1− r2

2 =E 0·05
v1 v2 v3 v4

ZXXXCXXXV ZXXXCXXXV ZXXCXXV ZXXCXXV
r2

2 A* B* C* A B C A B C A B C

0·95 0·745 0·760 0·760 0·745 0·776 0·775 1·59 1·58 1·58 1·61 1·61 1·60
0·96 0·747 0·762 0·762 0·747 0·776 0·776 1·59 1·58 1·58 1·61 1·61 1·61
0·97 0·749 0·764 0·764 0·749 0·777 0·776 1·60 1·58 1·58 1·61 1·61 1·61
0·98 0·751 0·765 0·765 0·751 0·778 0·777 1·60 1·59 1·59 1·61 1·61 1·61
0·99 0·753 0·766 0·766 0·753 0·778 0·777 1·61 1·59 1·59 1·61 1·61 1·61
1·00 0·755 0·767 0·768 0·755 0·779 0·778 1·61 1·59 1·59 1·61 1·61 1·61
1·01 0·755 0·768 0·768 0·757 0·780 0·779 1·61 1·59 1·59 1·61 1·61 1·61
1·02 0·755 0·769 0·769 0·759 0·782 0·781 1·61 1·59 1·59 1·62 1·62 1·62
1·03 0·755 0·769 0·770 0·761 0·783 0·782 1·61 1·59 1·59 1·62 1·62 1·62
1·04 0·755 0·770 0·770 0·763 0·784 0·783 1·61 1·60 1·60 1·62 1·62 1·62
1·05 0·755 0·770 0·770 0·764 0·786 0·785 1·61 1·60 1·60 1·63 1·62 1·62

*A is the results of the first order perturbation method; B is the results of the second order perturbation
method; C is the exact solution.
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Figure 3. The curves of the first frequency and the second frequency versus r2
1 or r2

2 . r2
1 = r2

2 , c=0·00146.
Key as Figure 2.

When r2
2 =1, the changes of v with the parameter r2

1 are almost the same as those shown
in Figure 2. Now, however, another special case is analyzed, that when r2

1 = r2
2 . The

changes of v with r2
1 or r2

2 are shown in Figure 3, in which the symbols are the same as
those in Figure 2. It is obvious that the tendencies of the variation shown in Figure 2 and
Figure 3 are similar.

From Figure 2 and Table 1, it is obvious that there are no differences in principle
between the values of the first order perturbation and those of the second order
perturbation when =1− r2

2 =q 0·05.

4.2.       

Here, only the case of r2
1 =1 is considered. A number of calculated results show that

the other cases are similar to this case.
When =1− r2

2 =q 0·05, the curves of the ratio h	 1/h	 2 versus r2
2 are shown in Figure 4, in

which the solid lines represent the exact solutions, the dots the approximate solutions of
equation (15) and ‘o’ the values from equation (25). Only the ratios of the first mode and
the second mode are depicted in Figure 4. The calculated results show that the tendency

Figure 4. The curves of h	 1/h	 2 versus r2
2 for the first mode and second mode. r2

1 =1, c=0·00146, =1− r2
2 =q 0·05.

Key as Figure 2.
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Figure 5. The curves of h	 1/h	 2 versus r2
2 for the first mode and second mode. r2

1 =1, c=0·00146, =1− r2
2 =Q 0·05.

Key as Figure 2.

of the variation of the third mode is similar to that of the first mode, and that of the
fourth mode is similar to that of the second mode. On the other hand, the tendency of
the variation of the ratio a1/a2 is similar to that of the ratio h	 1/h	 2 for the values of the
parameters given above. So, the basic tendency of the variation of each mode of the
structure may be represented by Figure 4, which shows that strong vibration isolation
happens for much wider values of the parameter. The concept of vibration isolation means
that certain modes may become highly localized, and associated with the bending (or the
torsion) displacements of control surface A (see Figure 1) or with those of control surface
C. In Figure 4, it is obvious that the degree of vibration isolation depends on the value
of the difference =1− r2

2 =: the larger the absolute value, the higher is the degree of vibration
isolation.

When =1− r2
2 =Q 0·05, the curves of the ratio h	 1/h	 2 versus r2

2 are shown in Figure 5, in
which the symbols are the same as those in Figure 4. This condition belongs to the case
of the unperturbed system with multiple (or dense) eigenvalues (see Table 1). From
Figure 5, one can see that the values of the second order perturbation agree with those
of the exact solutions, but the first order perturbation method is invalid.

4.3.    c ( k3)   

First, the case of c:0 (or k3:a) is discussed. In this case, because the second part and
the third part of the right sides of equations (25) and (33) are equal to zero, the
approximate solutions are equal to the exact solutions. From the point of view of a
practical structure, the control surfaces A and C become decoupled. From equations
(12, 13, 25, 33), the vibration isolation is typical. That is the ratio h	 1/h	 2 (or a1/a2) of each
mode equals either infinity or zero.

Secondly, the case of cq 0 is examined. When c is very small, the first part of the right
sides of equations (25) and (33) plays a dominant role in the approximate expression for
the modal shapes, which means that the properties of the modal shapes of the perturbed
system are similar to those of the unperturbed system. Figure 4 shows a set of typical
results. But when c is not very small, the first part of the right sides does not play a
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Figure 6. The curves of h	 1/h	 2 versus k3 for the first mode and second mode. r2
1 =1. Solid line denotes the values

when k3 =200 MN/m, dashed line the values when k3 =45·45 MN/m, — · — the values when k3 =4·545 MN/m.

dominant role in equations (25) and (33) and the roles of the second part and the third
part of the right sides increase. So, there is the possibility that no mode becomes localized.
Figure 6 shows the curves of changes of the first mode, the second mode with parameter
c, which shows that no vibration isolation is observed when k3 =4·545 MN/m, unless the
value of r2

2 is very large. One can conclude that the parameter c plays an important role
in the vibration isolation of the control surfaces with structural asymmetries. A similar
conclusion for the mode localization of multispan beams can be found in reference [6].
Equations (25) and (33) show that if one of the modes is localized, the others will be
localized.

5. CONCLUSIONS

One asymmetrical parameter contained in the two coupled control surfaces may induce
vibration isolation of the structure; so do many parameters.

The degree of vibration isolation of the coupled control surfaces depends on the coupling
parameter c and the values of =1− r2

i =, i=1, 2. The larger the values of k3 (=1/c) and
=1− r2

i =, i=1, 2, the higher is the degree of vibration isolation. If the stiffness value of
the operational system is large enough, a small asymmetrical parameter can lead to
vibration isolation. In order to avoid the vibration isolation of two coupled control
surfaces, the operation stiffness (or the asymmetrical degree) must be decreased as far as
possible in the structural design of two coupled control surfaces.

From the preliminary analysis, if one of the modes of the control surfaces with structural
asymmetries is localized, all the modes are localized. The second order perturbation
method can be used to calculate approximately the strong vibration isolation of the
examined structure to good accuracy.
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