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The exact reanalysis of a structure is time consuming and when repeated reanalyses are
needed, it is often preferable to use an approximate Ritz technique. This approximate
method consists in expressing the new frequency response function as a linear combination
of vectors in a truncated modal basis. One notices that even though the convergence to
the exact frequency response function is monotonic, it is generally irregular when the
number of vectors introduced in the modal sub-basis increases. A solution to this consists
of choosing the additional eigenvectors of the basis in such a way so as to give a best
representation of the new frequency response function. This choice is not an easy task,
particularly when the parametric modifications are very local and of large amplitudes. This
article describes an original approximate reanalysis technique for accurately evaluating
frequency response of a modified structure. It introduces new concepts for evaluating the
static contribution of the neglected eigenvectors resulting in a set of additional vectors
completing the original Ritz basis. This method will be appreciated by designers working
on the optimization of a prototype. It can also be used during the iterations of a model
updating procedure based on measured frequency response functions.

7 1997 Academic Press Limited

1. INTRODUCTION

The ever increasing demand for faster engineering analysis in the design process has
resulted in substantial research and development on faster and more accurate approximate
reanalysis methods. Indeed, the design engineer knows well how much time it takes to
arrive at a final prototype: many potential prototypes and their respective models are
developed before a choice is made. Too much time is devoted to analyze and compare each
of their respective behaviours. Meanwhile, following a parametric modification of the
prototype or the model, the structure is often very much like the initial one; its form and
characteristics have simply been updated. It is therefore necessary to look for efficient and
fast methods that speed up the design procedure. More attention has been devoted to
looking for reanalysis techniques that use existing data as a basis to estimate the behaviour
of design variants [1–10]. The difficulty of each of these procedures lies in how to complete
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the representation basis in order to reduce truncation effects. The latter may affect the
accuracy of the predicted dynamic behaviour of the modified structure.

The purpose of the work described in this paper was to develop a method for
constructing additional vectors by using the dynamic behaviour of the structure before
modification. These vectors will complete the representation basis in order to obtain a
better approximation of the frequency response for the structure after modification.

After presenting the details of the method, an application will be shown that illustrates
its accuracy.

2. DESCRIPTION OF THE METHOD

The equation representing the behaviour of an N-degrees-of-freedom (d.o.f.) structure
in its initial state, under a harmonic excitation, is expressed in matrix form as

Z(vi )y(vi )= f(vi ), (1)

where Z(vi ),[K+jviB−v2
i M]$CN,1 is the dynamic stiffness matrix of the structure, M,

K, B$RN,N are respectively the symmetric mass, stiffness and damping matrices of the
structure, M and K being positive definite and B positive semi-definite and f(vi ), y(vi )$CN,1

represent the external force and response vectors, respectively. (A list of notation is given
in the Appendix.)

The associated autonomous conservative system is given by

[K−v2
n M]yn =0, n=1, 2, . . . , N, (2)

the solution of which gives the spectral matrix L=Diag {ln =v2
n }$RN,N and the modal

matrix Y=[· · · yn · · ·]$RN,N, which satisfy the orthonormality equations:

YTKY=L, YTMY= IN . (3)

In order to express the approximate frequency response functions of the modified
structure, the matrices Y and L are partitioned as

L=$L1

0

0

L2%, Y=[Y1 = Y2], (4)

where L1 =Diag{ln , n=1–n}, L2 =Diag{ln , n=(n+1)–N}, Y1$RN,n, and Y2$RN,N− n.
The matrices Y1$RN,n and L1$Rn,n are assumed to be known. The frequency response
y(vi )$CN,1 is known for M discrete frequencies vi , i=1, 2, . . . , M, 0Evi Evmax and has
been obtained either by direct resolution of the linear system (1) of order N, or by a
representation of y(vi ) in a large enough modal sub-basis Y'1$RN,n', n'q n: i.e., containing
all the eigenvectors corresponding to the eigenvalues included in the frequency band
[0; 3–4vmax] and regrouped in the spectral sub-matrix L'1$Rn',n'. More generally, this
frequency band is chosen to include all eigenmodes that have an appreciable dynamic effect
on the analysed frequency band: i.e., [0, vmax]. The approximate solution of equation (1)
is then written as a linear combination of the n' normal modes Y'1: i.e.,

y(vi )3Y'1d(vi ), (5)

where

d(vi )= [L'1 + jvib'1 −v2
i In ]−1Y'T1 f(vi )$Cn',1

in which
b'1 =Y'T1 BY'1$Rn',n'. (6)
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One now can obtain a new structure (s) by introducing into the model of the initial
structure some known parametric modifications that do not change the order of the system,
represented by the dynamic stiffness matrix

DZ(vi )=DK+jviDB−v2
i DM, (7)

where DM, DK, DB$RN,N are the symmetric mass, stiffness and damping matrices of the
structural modification, respectively.

The equations of motion for this new structure are

Z(s)(vi )y(s)(vi )= [Z(vi )+DZ(vi )]y(s)(vi )= f(vi ). (8)

One would like to estimate the frequency responses y(s)(vi ) of this new structure by an
accurate method without recourse to an exact but costly reanalysis.

In the following section, the classical Ritz frequency response reanalysis method that
uses a truncated modal basis of the initial structure is reviewed. Then, a new method is
proposed that consists in enlarging the Ritz basis with the addition of judiciously selected
static residual vectors.

2.1.        - 

The classical Rayleigh-Ritz technique consists in expressing the new frequency responses
on the modal sub-basis Y1$RN,n formed from eigenvectors contained in the frequency band
[0; 1·5–2vmax]:

y(s)(vi )3Y1ĉ1(vi ). (9)

Substituting expression (9) into equation (8), premultiplying by YT
1 and taking into account

the orthonormality expressions, one obtains

[L1 + jviY
T
1 BY1 −v2

i In +YT
1 DZ(vi )Y1]ĉ1(vi )=YT

1 f(vi ). (10)

In practice, convergence to the exact response is monotonic but generally slow when n
increases. The accuracy of the frequency response functions y(s)(vi ) is uncertain, especially
in the frequency regions where the contribution of Y2 type modes is predominant (example:
antiresonant frequencies corresponding to a given d.o.f.). To improve the accuracy of
y(s)(vi ), two solutions can be examined as follows.

(a) Enlarge the modal basis: how to select the most efficient additional eigenvectors of
the modal basis in order to improve the representation of y(s)(vi )? This choice is not
obvious in the case where parametric modifications are very local and of large amplitude.

(b) Enlarge the Ritz basis with additional vectors representing the static contribution
of the N− n neglected eigenvectors: how to construct a minimal number of additional
vectors when the introduced structural modifications affect a great number of d.o.f.?

In the following, the second solution is deliberately chosen and a new method of
constructing a static residual basis is developed.

2.2.          

This approach consists of completing the sub-basis Y1$RN,n with a set of static
displacement vectors regrouped in matrix RG$RN,c. The latter are formed by a linear
combination of the N− n eigenvectors of the unknown complementary sub-basis
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Y2$RN,N− n. The column space of Y2 is represented by the static flexibility matrix R$RN,N,
of rank N−m:

R=K−1 −Y1L
−1
1 YT

1 . (11)

In expression (11), the stiffness matrix K is assumed to be regular; in the contrary case
a preliminary reduction is necessary.

The matrix R=Y2L
−1
2 YT

2 represents the static flexibility matrix associated with the
N− n modes not included in Y1. One thus can take as a Ritz basis the matrix P
 $RN,n+ c:

P
 =[Y1 =RG]. (12)

Here c is the number of degrees of freedom affected by the structural modifications. The
c static displacements vectors are constructed by successively applying unit forces vectors
gi , i=1–c, (i.e. along the c-d.o.f. concerned by the modifications) upon the flexibility
matrix R.

With G=[· · · gi · · ·]$RN,c, the new expression for the frequency response y(s)(vi ) is

y(s)(vi )= [Y1 =RG]w(vi ). (13)

The adjunction of static residual matrix RG generally yields a better approximation for
the frequency responses with lower calculation times than with a modal basis of dimension
n+ c (the static responses are less costly than the dynamic ones). However, many
difficulties are hidden in this formulation. The first is from a practical point of view in that
in parametric identification procedures, structural modifications may affect a significant
percentage of the model d.o.f. The number c of affected d.o.f. may be of order 102–103.
The second problem is from a theoretical point of view: the residual matrix RG is not
necessarily of maximum rank and this procedure may lead to completely erroneous results.

In the following, an original method is proposed which allows one to construct a static
residual basis of relatively reduced dimension from a certain number of combinations of
the columns of the initial matrix R. In this method, a new procedure has been developed
for selecting a reduced set among the d.o.f. affected by the modifications (i.e. the gi ).

2.3.     

Expanding equation (8) in the form

Z(s)(vi )y(s)(vi )= [Z(vi )+DZ(vi )](y(vi )+ ŷ(vi ))= f(vi )

one obtains DZ(vi )y(s)(vi )+Z(vi )ŷ(vi )=0: that is,

gex(vi ),−DZ(vi )y(s)(vi )=Zŷ(vi ), i=1, 2, . . . , M. (14)

The vector ŷ(vi ) represents the particular solution of the model due to the unknown force
vector gex(vi ). This latter represents the unknown exact linking forces vector on the c-active
d.o.f. between the structural modification and the initial structure.

The objective is to replace the basis G$RN,c of unit forces applied on the c-modified d.o.f.
by an average real basis, independent of vi , formed of a minimum number of orthogonal
vectors and enabling accurate representation of the linking forces gex(vi ).

In the expression for the exact linking force gex(vi ), the unknown frequency response
vector y(s)(vi ) is replaced by the ‘‘neighbouring’’ vector y(vi ). This approximation is
reasonable and well justified by the fact that one is not looking for an exact force vector
but rather wants only to construct a reasonable column space to represent them.
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With these linking forces and the exterior force f(vi ) applied on the structure, one can
form the matrix F$RN,q, given by

F=[· · · > real (g(vi ))> imag (g(vi ))> · · · = · · · > real (fj (vi ))> imag (fj (vi ))> · · ·], (15)

where

g(vi )=DZ(vi )y(vi ), fj (vi )= ej (f(vi )Tej )$CN,1, j=1–s, (16)

represents the non-zero components of the exterior force f(vi ) applied on the structure,
and vi , i=1–h are the frequencies.

In expression (15), the forces g(vi ) and f(vi ) are calculated for h discrete frequencies
vi chosen among the M ones of the frequency band (e.g., two frequencies inside and two
others outside the six dB band of each of the resonances included in the frequency band).
This procedure leads to a total of q vectors in the matrix F.

The columns of the matrix F are not necessarily linearly independent and in order to
condense this basis one retains only the r principal vectors, using the SVD of the matrix
F, given by

F=USVT 3UrSrV
T
r , (17)

where Ur $RN,r, in which r=rank (F) corresponds to the r singular values si satisfying the
inequality smax/si E t, with t designating a given tolerance.

2.4.          

One is finally led to the following basis of representation:

y(s)(vi )= [Y1 =Rr ]c(vi )=Pc(vi ). (18)

Here

P$RN,n+ r, Rr =RUr , c(vi )= [c1(vi )/c2(vi )].

Premultiplying equation (8) by [Y1 =Rr ]T and using equation (18) one obtains

$YT
1

RT
r%[K−v2

i M+jviB+DZ(vi )][Y1 =Rr ]$c1(v)
c2(vi )%=$YT

1

RT
r%f(vi ).

Expanding this expression yields

$L1 −v2
i In +jvib1 +YT

1 DZ(vi )Y1

RT
r DZ(vi )Y1

YT
1 DZ(vi )Rr

RT
r [Z(vi )+DZ(vi )]Rr%$c1(vi )

c2(vi )%=$YT
1 f(vi )

RT
r f(vi )%.

(19)

Solving this equation leads to the linear combination vector c(vi ). The approximate
frequency response y(s)(vi ) of the modified system is then obtained by using equation (18).

2.5. 

(1) A normalization (reconditioning) of the columns of the matrix F before applying
the SVD helps to take into account the different frequency contributions in a balanced
way.

(2) The frequency responses y(s)(vi ) may be obtained more accurately by subdividing
the frequency band [0; vmax] into p sub-bands and by evaluating successively the p matrices
U(k)

r , k=1–p, of principal vectors.
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Figure 1. Stiffness and mass modifications of the initial model. <, Modified stiffness; <, modified mass.

(3) It is possible to evaluate the influence of the elementary sub-domains DZ( j)(vi ) in
the modification matrix DZ(vi ), given by

DZ(vi )= s
s

j

DZ( j)(vi ). (20)

Following the same principle as previously applied to the total structural modification, one
proceeds successively with each modification of a sub-domain j to evaluate the
corresponding residual forces

g( j)
i (vi )=DZ( j)(vi )y(vi ), i=1, 2, . . . , M, (21)

which are regrouped in the matrix

F( j) = [· · · g( j)
i (vi ) · · ·]. (22)

T 1

Model characteristics
Position

ZxxxxxxxCxxxxxxV
Damper number Node number Direction Value (kg/s)

1 3 1 50
2 8 1 90
3 10 1 70
4 11 2 80
5 15 1 50
6 16 2 20
7 20 1 20
8 17 1 110
9 5 2 40

10 22 2 40

Young’s modulus E=0·21×1012 N/m2; beam section S=0·50×10−3 m2;
density r=7800 kg/m3; moment of inertia I=0·417×10−8 m4
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T 2

Stiffness and mass modification

Element no. Initial value
Final value (r modification) Initial value

Final value (E modification)

1 1 0·5
2 1 0·5
6 2 0·5
7 2 0·5
8 1 0·5

12 1 2·0
13 1 2·0
14 0·5 1
18 0·5 1
19 1 2·0
20 1 2·0

T 3

First five natural frequencies (Hz) for the initial structure

Mode number Natural frequency

1 17·96
2 59·71
3 97·57
4 131·16
5 191·54

to which one applies the SVD in order to obtain the sub-basis U( j)
r . One then forms the

matrix

U	 =[U( j)
r · · · U(s)

r ], (23)

where U( j)
r contains a few principal vectors for each sub-domain. If the sub-domains are

spatially uncoupled, U	 must be of maximum rank since it has a block diagonal form. By

Figure 2. Damping modifications of the initial model. 0Q--, Modified damper.
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T 4

Damping modification

Position Initial value
ZxxxxCxxxxV ZxxCxxV

Damper number Node Direction Final value

1 3 1 1·800
2 8 1 0·444
3 10 1 1·571
5 15 1 1·400
6 16 2 2·000
7 20 1 3·500

10 22 2 1·500

replacing Ur by U	 , the precision of reanalysis is again improved. In addition to this,
applying QR decomposition with pivoting to the matrix U	 , one can obtain an insight
concerning the respective contribution of each elementary sub-domain j.

Figure 3. Acceleration amplitude v2
i =y81(vi ) =; n=7 vectors in Y1 and (a) case 1, m=0 static residual vectors;

(b) case 2, m=3; (c) case 3, m=9. · · · , exact (initial structure); – –, exact (modified structure); —, approximate
(modified structure).
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Figure 4. Phase 881 (vi ); n=7 vectors in Y1 and (a) case 1, m=0 static residual vectors; (b) case 2, m=3;
(c) case 3, m=9. · · · exact (initial structure); – –, exact (modified structure); —, approximate (modified structure).

3. ACADEMIC EXAMPLE

3.1.  

An illustration of this procedure is provided by the 2D frame represented in Figure 1,
discretized into 22 finite beam elements. The beam characteristics are reported in Table 1.
The energy dissipation is modelled by 10 discrete viscous dampers (see Table 1) and by
Rayleigh damping (aiMi + biKi , ai =49·3, bi =0, i=1, . . . , 22) for the 22 beam elements.
With this damping, the first three modal damping ratios are respectively equal to 0·3974,
0·1155 and 0·0622.

3.2.  

3.2.1. Modification of the conservative part
One can modify separately, or simultaneously, the stiffness (variation of Young’s

modulus) and the mass (variation of mass density) of a set of finite beam elements.
These stiffness and mass modifications are indicated in Figure 1. The characteristics of
the modified finite beam elements are reported in Table 2, in columns 2 and 3
respectively.

The first seven frequencies of the initial model and the structure are reported in Table 3.
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Figure 5. Relative amplitude representation error d(vi ), for various numbers m of static residual vectors. Key
as Figure 4.

3.2.2. Modification of the dissipative part
The damping modifications concern only seven of the discrete dampers. These

are represented in Figure 2. The damping modifications are reported in Table 4, in
column 3.

3.3.    

The frequency band analyzed (0 to 110 Hz) contains the first three eigenmodes. The
external excitation is independent of frequency and is applied at node 15, direction 1.

3.4.  

The accuracy of the frequency responses estimated by this new method is reported in
Figures 3–9. The calculated frequency response converges more rapidly towards the exact
frequency response than that calculated by using the classical Ritz method. The
improvement in the frequency response of the structure is measured by the reduction of

Figure 6. Relative amplitude representation error d(vi ) for two cases of combinations n+m=12.
· · · , n=7, m=5; —, n=5, m=7.
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Figure 7. Relative amplitude representation error d(vi ) for four cases of combinations n+m=12.
(a) n=9, · · · , m=0; —, m=3; (b) n=8, · · · , m=0; —, m=4; (c) n=7, · · · , m=0; —, m=5;
(d) n=6, · · · , m=0; —, m=6.

the relative representation errors d(vi ) for the amplitudes and u(vi ) for the phases defined
respectively by

d(vi )=
>y(s)

approx (vi )− y(s)
exact (vi )>

>y(s)
exact (vi )>

100, (24)

u(vi )=01−
>y(s)

exact (vi )Ty(s)
approx (vi )>

>y(s)
exact (vi )>>y(s)

approx (vi )>1100. (25)

Figure 8. Relative phase representation error u(vi ) for four cases of combinations n+m=12.
(a) n=9, · · · , m=0; —, m=3; (b) n=8, · · · , m=0; —, m=4; (c) n=7, · · · , m=0; —, m=5;
(d) n=6, · · · , m=0; —, m=6.
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In the following, n and m are respectively the number of vectors in the sub-basis Y1 and
the reduced basis Rr forming the representation basis. n is greater or equal to the number
n0 =3 of eigenvectors included in the frequency band [0, vmax =110 Hz].

In Figure 3 are shown the amplitude of the exact frequency responses (for a sensor on
node 8, direction 1) before and after modification and the approximate one when using
a representation basis constituted of a truncated modal basis Y1$RN,7 and case (1) without
any additional residual vector, case (2) three static residual vectors and case (3) nine static
residual vectors. The corresponding results for the phase are shown in Figure 4. The
convergence of the approximate frequency response towards the exact response is clearly
improved when the number of static residual vectors in the representation basis is
increased. In Figure 5 are shown the relative errors with respect to frequency, for n=7
vectors in Y1 and respectively m=0, 3, 9 static residual vectors in Rr . The error diminishes
as m increases.

In Figure 6, the representation errors are compared for two cases with n=7, m=5 and
n=5, m=7. For mq n, the error is clearly smaller. This observation is again confirmed
in Figure 7 and Figure 8 where the relative amplitude and phase representation errors are
shown for four cases of combinations (n, m), with n+m=12. The resulting accuracy for
the frequency response is always better when nQm. This justifies the utility of this method.

Illustration of the method is completed by an analysis of cases with and without the
external applied force when constructing the matrix F. In each case, a selection of a number
m of vectors of F is undertaken, with use of the QR decomposition with pivoting. Then
the additional basis Rr is formed and the corresponding representation basis is constructed.
In Figure 9, the accuracies of the resulting frequency responses as obtained by using each
of the representation bases are shown. For m greater or equal to eight, the accuracy is
better when the force is taken into account when constructing the representation basis. For
example, for vi =110 Hz, the relative error was previously of the order 10–15% and it
decreases to 4% when the force is taken into account when constructing Rr .

The frame structure analyzed has no local modes. In a case where the initial structure
has local modes inside the frequency band of the analysis, the modified structure may or

Figure 9. Effect of external applied force on relative amplitude representation error d(vi ). (a) n=5, m=6;
(b) n=5, m=7; (c) n=5, m=8; (d) n=5, m=9. · · ·, without force vector; —, with force vector.
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may not have such local modes, depending on the modification. In the latter case, the
previous analysis still applies while in the first case some care should be taken when
carrying out the analysis. The only solution of this problem is to include more vectors of
the modal sub-basis as well as residual vectors in the representation basis.

4. DISCUSSION-CONCLUSION

This technique provides an interesting alternative for calculating the new frequency
responses of modified structures. An illustrative numerical example validates the utility of
the proposed method.

In order to obtain a better precision on the frequency responses of the structure after
modification, this reanalysis procedure allows different combinations of the vectors in the
sub-basis Y1 and the static residual matrix Rr to construct an average representation basis.
The results suggest that, for a given number t of vectors in the representation basis,
t= n+m, it is better to increase the number of static residual vectors than the number
of vectors in the truncated modal sub-basis Y1. Obviously, the maximum accuracy is
attained with the maximum number of eigenvectors in Y1 and the maximum number
(r=rank F) of static residual vectors. In practice, the appropriate number n of
eigenvectors in Y1 is between one and about twice the number n0 of vectors contained in
the frequency band [0, vmax].

The test case has shown that the proposed method satisfies the three requirements for
the development of reanalysis methods for structures: namely, a method allowing the
determination of the modal characteristics of a mechanical structure after modification on
the basis of known data; an efficient method from the point of view of CPU times, a
method allowing the most accurate results to be obtained. It can significantly contribute
to reducing time and cost when developing a prototype and when updating models with
measured frequency response data.

REFERENCES
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APPENDIX: NOTATION

N number of degrees of free-
dom of the discrete struc-
tural model

K; M; B$RN,N respectively stiffness, mass
and damping matrices of
the discrete model of the
initial structure; K and M
are symmetric and positive
definite while B is symmetric
and positive semi-definite

Z$CN,N symmetric dynamic stiffness
matrix of the initial struc-
ture

Y; L$RN,N modal and spectral matrices
of the autonomous conser-
vative system associated to
the initial structure

vn $R nth eigenvalue of the auton-
omous system associated
with the initial structure

yn $RN,1 nth eigenvector of the initial
structure

Y1$RN,nL1$Rn,n known modal sub-basis and
spectral sub-matrix;
Y1 constitutes the
classical Ritz representation
basis

Y2$RN,N− n unknown modal sub-basis
L2$RN− n,N− n unknown spectral subma-

trix
Rr $RN,m matrix of additional vectors

completing the represen-
tation basis

DK, DM, DB$RN,N respectively symmetric stiff-
ness, mass and damping
modifications matrices

DZ$CN,N symmetric dynamic stiffness
modification matrix

c number of modified degrees
of freedom

vi , i=1, . . . , M subdivisions of the fre-
quency band

vmax right hand limit of the
frequency band

f(vi )$CN,1 external applied force
y(vi )$CN,1 frequency responses of the

initial structure
y(s)(vi )$CN,1 frequency responses of the

modified structure
n0 number of modes included

in the frequency band
n number of modes in the

truncated modal basis
m number of additional vec-

tors in the representation
basis

t total number of vectors in
the representation basis

R static flexibility matrix
Rr reduced static flexibility

matrix
P improved Ritz basis,

P=[Y1 =Rr ]
c(vi ) linear combination vector,

y(s)(vi )=Pc(vi )
, ‘‘is defined as’’
real() real part of ()
imag() imaginary part of ()
()T transpose of ()
() complex conjugate of ()
>j> >j>,(j�T · j)1/2


