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On the basis of theoretical developments, this study proposes procedures for a modified
unified balancing method for unsymmetrical rotor–bearing systems. A formulation of
modal influence coefficient matrices is derived from the motion equations for
unsymmetrical rotors, using a complex co-ordinate representation and the finite element
method. Due to unequal properties in two principal directions, two sets of modal influence
coefficients are presented. This formulation indicates that two trial masses in different
directions are required in the two trial operations for each balancing plane. Also, the modal
influence coefficients are found to be correlated with forward precession and unbalanced
forces when asymmetry of bearings is considered. Therefore, forward precessions instead
of measured displacements are required to calculate the unbalance distribution. Several
examples are presented to verify the validity of the present work.

7 1997 Academic Press Limited

1. INTRODUCTION

Several successful methods for balancing flexible rotor–bearing systems have been
developed. These methods can be differentiated into two groups which are concisely
classified as the influence coefficient and modal methods.

The influence coefficient balancing method uses known trial masses to experimentally
determine the sensitivity of a rotor–bearing system and subsequently calculates a set of
discrete correction masses that will minimize whirl responses. In conventional procedures
a trial mass is first applied to one of the balancing planes and the rotor responses are
measured. This process is repeated for all of the other balancing planes, and then influence
coefficient matrix is obtained from this data.

The early research in rotor balance was conducted by Thearle [1] and then Baker [2].
Their method was essentially a two-plane, two-sensor, single-speed, exact-point influence
coefficient balancing procedure. Goodman [3] extended the influence coefficient procedure
to include the least-squares method for balancing flexible rotor–bearing systems. Although
the method had been known and published, it was more an art than a science. It is
important, however, to evaluate the method because it is widely used and gives satisfactory
results. Lund and Tonneson [4] examined the validity and accuracy of the influence
coefficient method and investigated the influence of various instruments on the accuracy
of the experiments. Tessarzik et al. experimentally evaluated the balancing precision of the
influence coefficient method by the exact-point speed procedure [5] and the least squares
procedure [6]. Linear programming techniques were employed by Pilkey and Bailey [7]
for regulating the balance weight magnitudes and by Pilkey et al. [8] for locating optimal
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balancing planes through constraint equations. The influence coefficient method has
become a practical balancing approach due to the advent of newer types of sensors, signal
processing equipment and computers.

The modal balancing method uses graduated procedures in which the unbalance in each
mode is corrected in turn, beginning with the first mode. At each stage the residual modal
unbalance—that is, the initial unbalance in the mode plus the modal effect of any
corrections made to the lower modes— is determined by a modal interpretation of the shaft
vibration for a speed approximating the corresponding critical speed. In brief, the modal
procedure consists of balancing successive modes of the rotor–bearing systems,
individually, with a set of masses specifically selected so as not to disturb the previously
corrected lower modes. By contrast, the influence coefficient procedure consists of
determining correction masses in a predetermined set of planes, which will minimize
measured vibrations at a series of sensors and speeds as predicted by influence coefficients
relating vibration readings to mass additions; whereas the modal balancing method places
more emphasis on physical insight into and understanding of the modal characteristics of
the rotor–bearing systems.

The modal balancing methods are based on the mathematical models and modal
analysis; and unbalance responses, intrinsic unbalance distribution and correction masses
are expressed by the modal expansion at each critical speed of operation. Bishop and
Gladwell [9] and Bishop and Parkinson [10] utilized planar modes which do not include
the gyroscopic effect of a rotating disk, as well as cross-coupling and the asymmetric
characteristics of support bearings. Thus, these assumed modes do not satisfy the
rotor–bearing systems which have large disks, strongly asymmetric supports and/or other
asymmetric effects. However, these assumed planar modes are still quite accurate,
particularly for lightly damped systems supported by rolling bearings (Parkinson et al.
[11, 12]).

The modal balancing method modified by Saito and Azuma [13] involves the theoretical
introduction of a complex modal method. Meacham et al. [14] extended the complex
modal method to include the contributions of residual bow effects. This procedure requires
an accurate mathematical model of the rotor–bearing system in order to be balanced. As
a result, this method may not be suited to many balancing situations.

Parkinson et al. [15] presented the similarities between the two balancing methods by
examining both techniques in detail, thus providing the first exposition of the unified
approach. Subsequently, Darlow et al. [16] proposed and implemented a demonstration
of a unified balancing method. This method is designed to incorporate the best features
of the influence coefficient and modal methods and also to reduce the disadvantages.
The procedure essentially utilizes modal trial mass sets and modal correction mass
sets, which are calculated on the basis of the modal influence coefficient obtained by
taking data from trial operations. These mass sets will not contribute unbalance to the
lower modes which have already been balanced. The process is continued by balancing
successive modes by observations made with the rotor rotating at speeds which
approximate the associated critical speeds. This method depends less on the physical
insight provided by the modal interpretation of the rotor–bearing system. Essentially, the
unified method is not restricted to planar modes and it is suitable for an automatic
balancing process.

Darlow [17] described and discussed the three balancing methods in detail, including the
analytical basis and specific implementation procedures. He indicated the relative
superiority of the unified balancing approach.

Other important reports on analytical and experimental investigations involving
influence coefficient, modal and unified balancing methods were surveyed by Darlow [18].
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In general, the components of a rotor–bearing system, such as shafts, disks and bearings,
are not axisymmetrical. Because of the non-axisymmetry, shafts and disks will have
different stiffnesses and moments of inertia, in two principal directions. For example, a
two-pole generator, a fluted cutter or drill bits, a lead screw, a flat shaft, a shaft with a
key-way or coupling, a shaft with transversal cracks, and a large turbogenerator with
marked mis-attachment all have variable stiffnesses in different directions due to their
non-axisymmetrical area cross-section. A two-blade propeller, a fan or pump impeller, a
teetered wind turbine, a cam shaft, and a rotary plow all have unequal rotary inertia about
two principal axes of the non-axisymmetrical disk. However, studies of balance in
unsymmetrical rotor–bearing systems have been very rare.

In the conventional unified methods, a single trial mass applied to each balancing plane
with measured displacements is employed to calculate modal influence coefficients and
modal unbalance distribution. Since the conventional method disregards the unequal
properties of rotating parts and asymmetry of bearings, it cannot provide an equivalent
unbalance distribution. In a previous study, a formulation of influence coefficients of
unsymmetrical rotor–bearing systems was derived by Kang et al. [19], using a complex
co-ordinate representation. On the basis of this new formulation, a modified influence
coefficient method was also developed. In this method, two trial masses are applied on
every balancing plane. Then, the forward precession calculated from the measurement of
unbalanced responses is used to determine influence coefficients and unbalance
distribution. The theoretical introduction for the influence coefficient method is also valid
for the unified method. Thus this study formulates a modified unified approach from the
finite element equations of unsymmetrical rotor–bearing systems. This approach is
developed and verified as follows.

2. MODAL INFLUENCE COEFFICIENT MATRICES
VIA FINITE ELEMENT EQUATIONS

The finite element method is well-developed and widely used in rotordynamics. Two
different formulations of the complex-form equations were presented by Nelson [20] and
Genta [21]. They defined the sign convention for angular co-ordinates with different
choices. The latter one has the advantage of leading to real matrices in the case of a
symmetrical system. Genta also presented finite element formulations for modelling
unsymmetrical rotor–bearing systems. The motion equation considered the presence of
deviatoric characteristics of non-axisymmetrical parts.

The displacement vector {p}=(v, uw , w, uv)T of a typical rotor station for a finite
element model is shown in Figure 1. It consists of two translations (v, w) and two rotations
(uv , uw) in the transverse directions V and W of the rotating frame of reference. The
directions V and W are defined relative to the inertial frame of reference by a constant
rotating speed V about the U-axis and are attached to the cross-section of the shaft.

For rotating frame co-ordinates the motion equation of a non-axisymmetrical rotor and
axisymmetrical bearings system can be expressed in the form:

[M]{p̈}+([C]+V[G]){ṗ}+[K]{p}= {Fr}+({Fc} cos Vt+{Fs} sin Vt), (1)

where [M], [C], [G] and [K] are system coefficient matrices. The two force terms in equation
(1) are the rotating force {Fr} due to an unbalance distribution and the non-rotating forces
{Fc} and {Fs} due to stationary forces. The rotating force {Fr} is a constant vector and
is proportional to V2. The formulation and assembling of this equation were presented by
Kang et al. [19].
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The solution to the unbalance response is then determined by

[Ks]{p}= {Fr}. (2)

In this case only stiffness matrices are considered for determining unbalance distribution
and whirl responses.

In the rotating reference frame, the complex co-ordinates and their complex conjugates
are defined by

{r}= {g}+i{g}, (3a)

and

{s}= {g}−i{g}, (3b)

where {g} and {g} denote the column vectors (v, uw)T and (w, −uv)T, respectively. Then,
equation (2) can be expressed in a complex form as

[R]{r}+[S]{s}= {P}, (4)

where {R}= {R1}+{R2}i is assembled by the mean matrices, {S}= {S1}+{S2}i is
assembled by the deviatoric matrices, and {P}= {Pv}+{Pw}i is the complex form of the
unbalance force {Fr}.

Rearranging and expanding equation (4) gives

([AR]+[AI]i)({Pv}+{Pw}i)+([BR]+[BI]i)({Pv}−{Pw}i)= [A]{P}+[B]{Q}= {r}, (5)

where {Q} is the complex conjugate of {P}, and details of [A] and [B] are shown in the
report by Kang et al. [19]. The mathematical process from equation (4) to equation (5)
gives two influence coefficient matrices for the unsymmetrical systems with axisymmetrical
bearings. Correspondingly, influence coefficient matrices are obtained from the finite
element equation which is expressed in the rotating frame of reference.

Not all degrees of freedom (DOF) of a finite element model can be measured, and only
a few of the unbalanced forces belong to balancing planes. Both the number of balancing
planes and measuring sensors are always smaller than the number of nodes. Retaining the
DOF of the measured responses and balancing forces, and expanding equation (5), one
obtains.

s
J

j=1

(AkjPj +BkjQj)= rk , k=1, . . . , K, (6)

Figure 1. The displacement of a typical rotor station.
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where J is the number of balancing planes and K is the number of measured points. When
a trial mass is applied on the jth balancing plane, the kth measured response rk is related
to the balancing forces Pj and Qj by the influence coefficients Akj and Bkj respectively.

The unified approach uses the critical speed as a balancing speed to balance the rth
mode. At this critical speed the unbalance whirl is inherently a modal shape. Only a few
measurement points which are not located at the nodal point (including all points have
a resonant response near zero) are needed to determine the relationship between resonant
whirl and unbalance, since the resonant whirl has a fixed feature of the modal shape
associated with this critical speed.

At the critical speed of the nth mode, equation (5) may be expressed by

[An ]{P}+[Bn ]{Q}= {rn}, (7)

where [An ] and [Bn ] are modal influence coefficient matrices. The elements of these matrices
are determined by a sensitivity analysis between the resonant response and the trial masses.

When the systems have non-axisymmetrical bearings, the assembled equations of the
rotor–bearing system have the form

[Ms]{p̈}+([Cs]+[Cc ] cos 2Vt+[Cs ] sin 2Vt){ṗ}

+([Ks]+[Kc ] cos 2Vt+[Ks ] sin 2Vt){p}= {Fr}+{Fc} cos Vt+ {Fs} sin Vt (8)

in the rotating frame. This time-varying equation has periodic coefficients with a frequency
of 2V. The deviatoric stiffness and deviatoric damping of non-axisymmetrical bearings
induce, in turn, [Kc ], [Ks ], [Cc ], and [Cs ].

For non-axisymmetrical bearings the synchronous whirl follows an elliptical orbit which
includes forward precession and backward precession. The synchronous whirl can be
expressed as

ysy(t)= yc cos Vt+ ys sin Vt,

zsy(t)= zc cos Vt+ zs sin Vt. (9)

A complex form can then be defined as

q= ysy +izsy = feiVt + be−iVt, (10)

where f and b are the forward and backward components of the synchronous whirl
respectively.

Kang et al. [19] have verified that the influence coefficient matrices of unsymmetrical
rotors with non-axisymmetrical bearings are correlated by the forward precession of the
synchronous whirl and the unbalance force. At the critical speed of the nth mode, the
relationship between forward components and unbalance is

[An ]{P}+[Bn ]{Q}= { fn}, (11)

where { fn} is a vector of forward components at measurement points.

3. THE DETERMINATION OF MODAL TRIAL MASS SETS

The unified approach uses a modal balancing method for adding correction masses in
modal sets. Compared to the modal method, the unified method has the advantage that
prior knowledge of the dynamic characteristics of the rotor–bearing system is not required.
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Essentially, the unified method derives the modal correction mass sets by the determination
of modal influence coefficients. This technique involves the calculation of modal trial mass
sets, as outlined by Parkinson et al. [15]. Both modal trial mass sets and modal correction
mass sets are determined in such a way as to affect the mode of interest while not affecting
the lower modes which have already been balanced.

The n correction masses of m1c1, m2c2, . . . , mncn are needed for balancing the nth mode,
which can be expressed by

mjcj = ljm1c1 ( j=2, 3, . . . , n), (12)

where l2,l3, . . . , are complex multipliers. These multipliers fix the relative magnitudes of
modal correction masses. The associated trial masses must be scaled in accordance with
the trial mass set, thus having a form of

{P}n =(P1, P2, . . . Pn)T = (1, l2, . . .ln)TP1n = {l}nP1n (13a)

for the nth mode. The complex conjugate of this trial mass set can be expressed by

{Q}n =(Q1, Q2, . . . Qn)T = (1, l�2, . . .l�n)TQ1n = {l�}nQ1n, (13b)

where l� is the complex conjugate of l. The symbols {l}n and {l�}n designate trial mass
multiplier sets for the nth mode.

At the stage required for balancing the rth mode, the first (n−1) modes will have been
balanced, so that the relative magnitudes of correction masses in sets are satisfied, so that
no fresh unbalance is produced in the lower (n−1) modes. Thus the nth modal trial mass
set does not deduce the first n−1 resonant whirl. For only one measurement point, it
satisfies

6A1
1× n

7{ P
n×1

}n + 6B1
l× n

7{ Q
n×1

}n =0,

6A2
1× n

7{ P
n×1

}n + 6B2
l× n

7{ Q
n×1

}n =0,

.

.

.

6An−1
1× n

7{ P
n×1

}n + 6Bn−1
l× n

7{ Q
n×1

}n =0. (14)

These above (n−1) equations can be assembled into

[ A
(n−1)×n

]{ P
n×1

}n +[ B
(n−1)×n

]{ Q
n×1

}n = { 0
(n−1)×1

} (15a)

or

[A]{l}nP1n + [B]{l�}nQ1n = {0}. (15b)

The n trial masses can be scaled in accordance with equation (15b) by the multiplier set
{l}n , which remains the determination of their absolute magnitudes.

When mode shapes are planar, the total deflection shape may approximately resemble
a mode shape, if the rotating speed approximates the corresponding critical speed. For this
reason there is no need to calculate the principal modes before balancing, and there is no
need to measure the deflections along the shaft length. From observation of the resonant
whirl, one needs merely to measure the unbalance response of one typical point with a large
deflection. This unbalance response is used to determine a trial mass set which has no
influence on lower modes.

If the damping is more complex and heavy, then the damped modes are likely to be
non-planar; and the deflection shape of the unbalance whirl may not be a plane curve and
it not a mode shape. A large number of measurement points along the shaft length are
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needed to observe the deflection shape of this shaft. The total deflection shape due to
unbalance is not a mode shape, even if the speed is equal to the corresponding critical
speed. One may, however, use a trial mass set to insure that this set does not deduce the
first n−1 resonant whirls. For N measurement point, it satisfies

[ A1
N× n

]{ P
n×1

}n +[ B1
N× n

]{ Q
n×1

}n = { 0
N×1

},

[ A2
N× n

]{ P
n×1

}n +[ B2
N× n

]{ Q
n×1

}n = { 0
N×1

},
.
.
.

[An−1
N× n

]{ P
n×1

}n+[Bn−1
N× n

]{ Q
n×1

}n = { O
N×1

}. (16)

Equation (16) can be assembled into the following form:

2A3{P}n +2B3{Q}n =2A3{l}nP1n +2B3{l�}nQ1n = {0}, (17)

where

[A1] [B1]

[A2] [B2]
2A3=G

G

G

G

k

.

.

.
G
G

G

G

l

, 2B3=G
G

G

G

k

.

.

.
G
G

G

G

l[Bn−1][An−1]

and their dimension is N(n−1) rows and n columns. Only when n=2 and N=2 are
2A3 and 2B3 square matrices. In other cases the trial mass multiplier set cannot be
exactly determined from equation (17). One may define an error function as

{e}=2A3{l}nP1n +2B3{l�}nQ1n, (18)

where {l}n and {l�}n can be obtained by determining the minimization of {e}T{e}. If all the
n−1 mode shapes are planar, this minimum value is zero.

In this calculation, the scales of the trial masses can be obtained. The desired correction
mass sets have the same scales as these trial mass sets, and their absolute magnitudes can
then be determined by the trial operations.

4. BALANCING PROCESS OF THE MODIFIED UNIFIED METHOD

The unified balancing method is a progressive, graduated approach. The rotor is first
operated at a speed of V1, approaching the first critical speed v1, which is such that the
whirl is clear, showing a resonance in the first mode. The addition of a correction mass
to balance the first mode of unbalance thus not only results in a first mode unbalance which
is zero, but it also affects many of the unbalance components in the higher modes. Once
the first mode has been balanced it will normally be possible to run the rotor up to a speed
V2 approximating the second critical speed v2, at which stage a resonant whirl in the second
mode is likely. This can be corrected by using two correction masses located at two planes
along the rotor. These masses cancel the resultant unbalance component in the second
mode, which contains the initial unbalance component together with the effect of the first
mode correction, while these correction masses will not contribute unbalance to the
first mode. This process is continued by balancing successive moves with the shaft rotating
at speeds V3, V4, , . . approximating the associated critical speed v3, v4, . . . using, at each
stage, enough correction masses to ensure that the lower modes do not again become
unbalanced.
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Figure 2. A scheme of a typical element. (a) The kth measurement point; (b) the jth balancing plane.

In balancing operations the whirl response, the rotating force of the trial mass and the
rotating force of the unbalance can all be described by vectors which are rotating at a
constant spin speed. With an angular position as a reference (such as a keyway or notch),
rotating vectors and influence coefficients with respect to the rotating frame of reference
can be expressed by complex variables. Two typical points, one located at a measurement
position and another located at a balancing plane, are shown in Figure 2. The geometric
center Ok of the element at the kth measurement point is displaced from the bearing center
B by rk . The rotating reference is denoted by the V-axis. The unknown angular position
of unbalance of an appointed plane is denoted by the S-axis. In the rotating reference
frame phases of the original unbalance distribution, trial masses, and measured responses
may be defined relative to the S-axis as a0

j , a'j and 8k respectively. Beforehand, these angles
and the S-axis are unknown. However, the angle u measured from the V-axis to the S-axis
can be determined as described below. In addition, one may define phases of these rotating
vectors relative to the V-axis by nj and ck respectively. These angles can be obtained by
measurements. Any one balancing plane may be used to locate the S-axis. For example,
if j=1, then a1 =0 and u= n1; and other relative phases of unbalance, such as that of
the jth plane aj , are determined by

aj = u− nj , (19a)

where nj is obtained by a measurement of the angle relative to the V-axis. Also, the angles
of the unbalance response can be related by

8k = u−ck , (19b)

where u and 8k are angles relative to the S-axis, and ck is the angle relative to the V-axis.
The phase ck can be measured with respect to the rotating reference.
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Figure 3. The flowchart of the unified balancing process.
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Figure 4. An experimental apparatus.

In the rotating frame the unbalance force at the jth plane can be expressed by

Pj =V2mjcje−iaj =(Pvj +iPwj) e−iu (20a)

at the balancing speed V, where Pvj +iPwj =V2mjcje−in. The measured response of the kth
point due to the unbalance force is

rk =Rke−i8k =Rke−i(u−ck) = (gk +igk) e−iu (20b)

where gk +igk =Rk eick.
Substituting equations (20a) and (20b) into (6) gives

rk = gk +igk = s
J

j=1

(AkjPj +BkjQj). (21)

The relationship between the whirl response and the original unbalance thus can be derived
from equation (21), i.e.,

s
J

j=1

(AkjPo
j +BkjQo

j )= go
k +igo

k . (22)

By considering the addition of the trial masses at J balancing planes, one can obtain

s
J

j=1

[Akj(Po
j +P'j )+Bkj(Qo

j +Q'j )]= g'k +ig'k (23)

due to the trial masses m'j c'j , j=1, 2, . . . , J, and

s
J

j=1

[Akj(Po
j +P0j )+Bkj(Qo

j +Q0j )]= g0k +ig0k (24)
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due to another trial mass set m0j c0j , j=1, 2, , . . . , J. Subtracting equation (23) from
equation (22), and equation (24) from equation (22), one obtains the following equations:

(AR
kj +BR

kj)(P'v )j +(−AI
kj +BI

kj)(P'w)j = g'k − go
k ,

(AI
kj +BI

kj)(P'v )j +(AR
kj −BR

kj)(P'w)j = g'k − go
k ,

(AR
kj +BR

kj)(P0v )j +(−AI
kj +BI

kj)(P0w )j = g0k − go
k ,

(AI
kj +BI

kj)(P0v )j +(AR
kj −BR

kj)(P0w )j = g0k − go
k . (25)

These non-homogeneous equations (25) can be solved to determine the modal influence
coefficients which relate the unbalance forces of J balancing planes to the responses of K
measured points at the nth critical speed.

Figure 5. The whirl responses of the experiment. Measurement at (a) point 4, (b) point 6 and (c) point 8.
—+—, before balancing; –––W–––, after balancing the first mode; –-–q–-–, after balancing the second mode.



.   .360

Figure 6. The rotor–bearing system of the numerical examples. (a) The rotor kit; (b) the finite element model.

When a bearing is non-axisymmetrical, the measuring or balancing positions are chosen
points not located on the bearing. The first trial mass is related to the forward component
by influence coefficients as follows:

AkjP'j +BkjQ'j = f 'k − f o
k . (26a)

Similarly, the second trial operation gives

AkjP0j +BkjQ0j = f 0k − f o
k , (26b)

where f o, f ' and f 0 are the forward components due to the original unbalance, the first
trial operation and the second trial operation respectively. Equations (26a) and (26b) were
verified and demonstrated in detail by Kang et al. [19].

One may define {A
 n} and {B
 n} to be obtained by post-multiplying [An ] and [Bn ] by {l}n

and {l�}n respectively. Equation (22) can be alternatively expressed by

{A
 n}Po
1n + {B
 n}Qo

1n = {ro
n} (27a)

for systems having isotropic bearings, and

{A
 n}Po
1n + {B
 n}Qo

1n = { f o
n } (27b)

for systems having non-axisymmetrical bearings, where Po
1n and Qo

1n are original unbalance
components of the nth mode and themselves complex conjugates in the reference plane,
{ro

n} is the measurement of the synchronous whirl at the nth mode, and { f o
n } is a vector

of forward components.
If measurements of whirl response are made at only one location, the modal influence

coefficient vectors {A
 n} and {B
 n} include one element. It appears that the correction masses
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of Po
1n and Qo

1n can be obtained by one calculation. In practice, unbalance response is
measured at more planes than this, and a process is used to determine the optimum
correction. This optimization is to minimize the error of

{e}= {A
 n}Po
1n + {B
 n}Qo

1n − {ro
n} (28a)

or

{e}= {A
 n}Po
1n + {B
 n}Qo

1n − { f o
n }. (28b)

The flowchart for this modified unified method is shown in Figure 3. This figure is
constructed by the modification of those obtained by Parkinson et al. [15], Darlow et al.
[16] and Darlow [17, 18]. Consequently, with an unsymmetrical rotor–bearing system
which has several critical speeds, within its operating speed range, this modified unified
method is applied in a graduated process in which each mode of unbalance is corrected
in turn by means of whirl measurements made at balancing speeds approximating the
corresponding critical speeds, so that simultaneous calculations can be made through
equations (15b), (25) and (28). Once the Po

1n of the nth mode is determined, the correction
mass set is thus obtained by

{P}n = {l}nPo
1n . (29)

T 1

Details of the numerical examples

Symmetric shaft:
Cv =Cw =4·049×10−10 m4, d=9·53 mm, r=7850 kg/m3, E=2×1011 N/m2,
A=7·133×10−5 m2, L2 =L4 =L10 =L12 =0·015 m,
L1 =0·03 m, L3 =0·135 m, L11 =0·092 m

Asymmetric shaft:
Cv =6·642×10−10 m4, Cw =2·546×10−10 m4, r=7850 kg/m3, E=2×1011 N/m2,
A=2·2470×10−4 m2, L5 =L6 =L7 =L8 =L9 =0·024 m

Disk at node 4, 10:
Id

v = Id
w =1·61×10−4 kg m2, Jd =3·02×10−4 kg m2, md =0·4127 kg

Cylinders at node 5, 11:
Id

v=7·91×10−6 kg m2, Id
w =7·79×10−6 kg m2, md =0·0806 kg, Jd =7·32×10−6 kg m2

Bearing at node 2, 13:
Kyy =Kzz =107 N/m, Kyz =Kzy =0, Cyy =Czz =1000 N s/m, Cyz =Czy =0,

Spring coupling at node 1:
Kyy =Kzz =103 N/m, Kyz =Kzy =Cyy =Czz =Cyz =Czy =0

Unbalance distribution (g mm) at nodes mj =mjcj :
m3 =1·6{−16°, m4 =1·4{−14°, m5 =1·3{−13°, m6 =1·8{−18°,
m7 =2·0{−20°, m8 =22{−61·5°, m9 =4·6{−46°, m10 =3·6{−36°,
m11 =3·4{−34°, m12 =3·5{−35°, m13 =2·3{−23°, m14 =24{−18·6°,
m15 =3·8{−38°, m16 =1·8{−18°, m17 =1·5{−15°, m18 =1·2{−12°,

Residual permanent deflections at nodes (mm):
r1 =−41{0°, r3 =15{0°, r4 =48{0°, r5 =62{0°, r6 =78{0°,
r7 =90{0°, r8 =94{0°, r9 =98{0°, r10 =100{0°, r11 =99{0°,
r12 =97{0°, r13 =94{0°, r14 =90{0°, r15 =80{0°, r16 =65{0°,
r17 =38{0°, r18 =18{0°, r19 =0{0°,
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Figure 7. The steady state responses of the numerical model without residual permanent deflection. (a)
Peak-to-peak amplitudes; (b) synchronous responses; (c) double-frequency responses. ——, Before balancing;
- - - -, after balancing the first mode; – -–, after balancing the second mode.

5. EXPERIMENTAL AND NUMERICAL EXAMPLES

The experimental apparatus is shown in Figure 4. An axisymmetrical shaft 490 mm in
length and 9·53 mm in diameter, made of medium-carbon steel, was supported by two ball
bearings at both ends. Two non-axisymmetrical disks and two axisymmetrical cylinders
were mounted on the shaft as shown. The disks had a mass of md =0·5464 kg, a polar
moment of inertia of Jd =3·37×10−4 kg m2 and diametrical moments of inertia of
Id

v =2·58×10−4 kg m2 and Id
w =1·42×10−4 kg m2 about the two principal axes of the disk.

The cylinders had corresponding measurements of md =0·0806 kg, Jd =7·32×10−6 kg m2

and Id
v = Id

w =7·85×10−6 kg m2.
The rotating reference was a notch on a thin disk mounted at point 0 and recorded by a

keyphasor at each rotation, and deflections at points 4, 6 and 8 were measured by
proximity probes in mutually perpendicular directions. Since this shaft was made by
cutting both sides of a steel bar having a circular cross-section, an initial bend in the shape
was likely to occur. This assembly was experimentally balanced by correction masses on
three balancing planes at points 3, 5 and 7.

Two modifications were made: (a) two trial masses were applied at two different
positions for the same balancing plane; and (b) the forward components were utilized to
determine the influence coefficients and the unbalance distribution. The experimental
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results of balancing this apparatus using only one modification are shown by Kang et al.
[19]. They show that the approaches with either the (a) or the (b) modification cannot
provide an equivalent unbalance distribution for correction. Thus, neutralization/
cancellation of the vibrations cannot be attained through these improper corrections.
Furthermore, the vibrations become more severe when approaching speeds in the vicinity
of the second mode.

With the use of both modifications, the modal influence coefficients and the correction
masses of the first and the second modes are determined. According to the computational
results, the correction mass was applied to the second disk for balancing the first mode,
and the correction masses were applied to the first and the third disks, respectively, for
balancing the second mode, respectively. The plots of the peak-to-peak response due to
the experimental results are shown in Figure 5. After balancing the first mode, the
unbalance responses cannot be reduced within the speed regions in the vicinity of the
second mode. However, after the completion of the second mode balancing, the vibration
at all speed ranges was reduced to a reasonable level. During measurement, the secondary
resonant peaks are not present at point 6. The reason is that the point is located at a node
of the second mode.

The numerical example is as shown in Figure 6. A partially non-axisymmetrical shaft
is supported by rolling bearings at both ends. Two axisymmetrical disks and two cylinders
are mounted on the shaft as shown. It is assumed that the unbalance is distributed
discretely at each node. The physical parameters of this system are listed in Table 1. There
are two balancing planes at points b1 and b2 and two measuring points at points m1 and
m2. In the first case this system is considered without residual permanent deflection.

Figure 8. The peak-to-peak responses of the numerical model with residual permanent deflection. (a) Balance
of the response caused by unbalance; (b) balance of the total shaft deflection to zero. Key as Figure 7.
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For balancing the first mode plane b1, the critical speed 3132 rpm of the first mode is
utilized. One may determine modal influence coefficients by two trial operations without
determining the trial mass multiplier set. The modal influence coefficients listed in
Appendix B relate the measured response at point m1 and one mass at point b1. By
substituting the simulated unbalance response of point m1 into equation (27),
P1 =6·37×10−5 kg m, {−99° of the correction mass are obtained.

For balancing the second mode, modal influence coefficients of the first mode are used
to determine the modal trial mass multiplier set. This set is obtained from equation (15b)
and shown as l1 =1, and l2 =1·259, {−179·73°.

Using the modal trial mass set, the modal influence coefficients of the second mode are
determined by equation (27a) and also listed in Appendix A. By substituting the simulated
unbalance responses of points m1 and m2 into equation (27a), P1 =2·9670×10−5 kg m,
{−23·14° and P2 =3·6836×10−5 kg m, {156·98° of the correction masses at planes b1

and b2 are obtained.
This system is balanced by the modified unified method, and in Figure 7 are shown

steady state responses within the range of angular velocity 0–15 000 rpm of nodes 9 and
15. In this figure solid lines show the whirl responses before balancing, dashed lines show
the responses after balancing the first mode and chain lines show the responses after
balancing the second mode. At the top of this figure, Sn and 2Sn denotes the synchronous
resonance and the 2×subcritical resonance of the nth mode for resonant peaks.

In Figure 7(a) are shown the peak-to-peak amplitudes of the vibrations, which contain
synchronous and double-frequency whirls as shown in Figures 7(b) and 7(c), respectively.
The synchronous whirl due to the residual unbalance or residual permanent deflection has

Figure 9. The synchronous and double-frequency responses after balancing the second mode in the case of
Figure 8. (a) To balance the response caused by unbalance; (b) to balance the total shaft deflection to zero. 1×,
Synchronous whirl; 2×, double-frequency whirl. —, Node 9; - - - -, node 15.
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a frequency equal to the angular speed and its amplitude depends on the residual unbalance
and the residual permanent deflection. Resonances due to this excitation appear for an
angular speed equal to one of the natural frequencies of the rotor vn =V. This response
can be attenuated by means of the correction masses attached in the balancing planes. The
superharmonic whirl due to gravity forces (which exist only for horizontal rotors) has a
frequency equal to twice the angular speed and its amplitude depends on the coefficient
of the parametric excitation (not on the residual unbalance). Resonances due to this
excitation appear for an angular speed equal to half of the natural frequency of the rotor
vn =2V. This response cannot be attenuated by means of the correction masses.

As shown in Figure 7(b), the amplitude of the synchronous whirl after balancing the
second mode is almost cancelled within range of angular velocity of 0–15 000 rpm,
excluding the vicinities of two main modes. As shown in Figure 7(c), two resonant peaks
at half the first and second critical speeds are caused by the corresponding subcritical
resonances. These peaks are decreased by removing the correction mass, and increased by
adding the correction masses. However, it is not possible completely to eliminate these
peaks by a balancing operation.

The same model, however, with the residual permanent deflection, also shown in Table
1, is considered. Two balancing approaches based on the work of Nicholas et al. [22] are
utilized for this case: both approaches use the critical speeds as balancing speeds. These
are (a) only balancing the unbalance response to zero and (b) balancing the total shaft
deflection to zero, and the balancing results presented as peak-to-peak amplitudes are
shown in Figures 8(a) and 8(b), respectively. The amplitudes of synchronous and double-
frequency responses after balancing the second mode are shown in Figure 9. The residual
responses of both approaches are mainly induced by the residual permanent deflection and
the double speed whirl. Consequently, the responses due to residual unbalance are
attenuated approximately to zero at speeds other than the critical speeds.

6. CONCLUSIONS

This study has shown how the modal influence coefficient matrices of unsymmetrical
rotor–bearing systems can be derived by the finite element formulation. During the
formulation it was also found that two trial operations and forward precessions calculated
from the measurement of unbalanced responses are requisite steps for the determination
of the unbalance.

On the basis of a theoretical introduction, a modified unified method was developed for
balancing unsymmetrical rotor–bearing systems. By the use of this method, the modes can
be balanced individually, without affecting the balance in lower modes which have already
been balanced. The experimental and simulated results of the numerical examples
demonstrate the superiority of this modification of the unified balancing approach.
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APPENDIX A

The modal influence coefficients are listed as follows:

A9,8 =11·4131 kg−1{0·1334°

B
 9,8 =5·7714 kg−1{−0·0106°
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for the first mode, and

A
 9,8 =11·4130 kg−1{0·1334°, A
 9,14 =9·1267 kg−1{0·1374°,

A
 15,8 =8·5463 kg−1{0·1393°, A
 15,14 =7·0568 kg−1{0·1395°,

B
 9,8 =5·5771 kg−1{−0·0011°, B
 9,14 =4·5801 kg−1{−0·0016°,

B
 15,8 =4·2489 kg−1{0·0236°, B
 15,14 =3·4930 kg−1{0·0018°,

for the second mode.

APPENDIX B: NOTATION

Akj , Bkj element in the kth row and the jth column of matrices [A] and [B]
[A], [B] influence coefficient matrices
c, m eccentricity, mass
{e} error function
f, b relative components of forward precession and a backward precession to a rotating

reference, respectively
{F} nodal force vector relative to (UVW)
g, g real, imaginary part of r
i z−1
J, K number of balancing planes, measuring points
[K], [C] stiffness, damping matrix
[M], [G] mass, gyroscopic matrix
{p} displacement vector relative to (UVW)
{P}, {Q} complex form and conjugate of {F}
q synchronous whirl
r translations in a complex form
R amplitude of r
Sn , 2Sn synchronous and 2×resonance of the nth mode
{r} complex form of {p}
(UVW) the rotating reference frame fixed on the principal axes of the shaft, with U as the spin

axis
v, w translations in V and W directions
(XYZ) the inertial frame of reference with X being fixed on U
y, z translations in Y and Z directions
a, n the angular position of an unbalance relative to the specific original unbalance, relative

to the rotating referenced location, respectively
uv , uw rotations about the V- and W-axes
8 phase lag of response relative to unbalance
u the relative angle of appointed unbalanced measured from a rotating reference
V rotating speed or balancing speed
vn critical speed of the nth mode
l, {l} complex multiplier of trial masses or correction masses, the vector of the multiplier set
c the phase of the response measured from a rotating reference

Superscripts

o original unbalance
R, I real part and imaginary part of a complex variable
' trial mass, the first time
0 trial mass, the second time
¯ complex conjugate
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Subscripts

c, s cosine term, sine term
j, k the jth measurement point, the kth balancing plane
r rotating
v, w components in the V and W directions
n the order of resonant modes


