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In this study, a modified transfer matrix approach, valid for complex rotor–bearing
systems, was developed to analyze the instability in unsymmetrical rotor–bearing systems.
Specifically, the transfer matrices of non-axisymmetrical shaft segments were derived by
using a continuous-system sense to obtain an accurate formulation. The influences of
bearing characteristics and shaft asymmetry on the transition curves of T-type and 2T-type
solutions were evaluated by using Bolotin’s method.
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1. INTRODUCTION

Lateral disturbance in a non-axisymmetrical rotor–bearing system occurs in the resonant
modes, even in a perfectly balanced system. A single non-axisymmetrical disk mounted on
springs with unequal stiffness along its principal axes was used to study the instability of
unsymmetrical rotors in experiments conducted by Crandall and Brosens [1], Yamamoto
and Ota [2], Ardayfio and Frohrib [3], and so on. They evaluated the influence of stiffness
on instability. The effect of bearing damping was investigated by Rajalingham et al. [4]
by using a similar model. They demonstrated that the instability can be eliminated by an
appropriate choice of bearing parameters and brought a qualitative insight into the
relevant phenomena of rotor systems with few degrees of freedom.

Arnold and Haft [5] and Iwatsubo et al. [6] analyzed the instability in continuous
non-axisymmetrical shafts. Only bending deformation and transverse inertia were
considered in their equations, and approximate solutions were obtained in the fixed frame
of reference. Lee and Jei [7, 8] presented a modal method for an unsymmetrical
rotor–bearing system with general bearing conditions. They performed analyses on
continuous equations of shafts in a rotating frame of reference. Genta [9] formulated finite
element equations with complex co-ordinates to analyze the behavior of complex
unsymmetrical rotors. In particular, unstable regions are obtained from two loci of whirl
speeds repelled to each other as the eigenvalue curves of two modes are approaching each
other. When the dependence of unstable regions on a system parameter is plotted, a family
of eigenvalues must be calculated with various values of this specified parameter.

In addition to the finite element method, the transfer matrix method (TMM) is also an
effective implementation for complex rotor–bearing systems. The application of TMM for
a stability threshold and damped critical speeds of a flexible rotor was done by Lund [10].
Both the critical speeds and its stability are determined by solving eigenvalues of a damped
system. The Newton–Raphson method was used to extract complex eigenvalues. Bansal
and Kirk [11] applied the transfer matrix polynomial method to find the instability
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threshold and the damped critical speed of a rotor–bearing system. Muller’s quadratic
interpolation technique was employed to extract the complex roots of the characteristic
polynomial equation. Murphy and Vance [12] solved the characteristic polynomial by
using Bairstow’s method, which can avoid missing some eigenvalues. Kang et al. [13]
formulated governing equations for a continuous non-axisymmetrical shaft and presented
a modified transfer matrix method for the steady state analysis of unsymmetrical
rotor–bearing systems.

In this paper a modified transfer matrix method is presented, incorporating Bolotin’s
method [14], to determine the transition curves of instability in the T- and 2T-type
solutions. The governing equations for non-axisymmetrical Rayleigh shafts, non-axisym-
metrical disks and non-axisymmetrical bearings are expressed in a rotating frame of
reference. Using modal decoupling, the shaft shape functions of all the resonant modes
are derived to formulate the transfer matrix of each shaft. The transition curves of
instability are obtained by solving the determinant of the global transfer matrix which
satisfies the boundary conditions of both ends of a rotor–bearing system. With one of the
system parameters changing and the other parameters remaining constant, the influence
of this parameter on instability is calculated in numerical examples. The dependence of
bearing characteristics and shaft asymmetry on instability is thus obtained.

2. EQUATIONS OF MOTION

Consider an unsymmetrical rotor–bearing system consisting of flexible non-
axisymmetrical Rayleigh shafts, non-axisymmetrical rigid disks and non-axisymmetrical
bearings. When the governing equations of the shaft and the disk are expressed in
stationary co-ordinates, varying coefficients with double speed frequencies appear in the
equations. The problem may be overcome by expressing the governing equations in the
rotating co-ordinates instead of the stationary co-ordinates. However, an asymmetry in
the boundary condition due to non-axisymmetrical bearings is permitted; i.e., the
periodically varying coefficients appear in the governing equations for the bearings
expressed in the rotating frame of reference.

2.1. 

A non-axisymmetrical and rigid disk, having principal axes m and n at an angle h apart
from the principal axes U and V of the shaft is shown in Figure 1. The equilibrium of
moment and shear force of a rigid disk are shown in Figure 2. In the rotating frame of

Figure 1. A model of a non-axisymmetrical shaft and disk.
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Figure 2. The force and moment equilibrium of a disk.

reference, the equilibrium equations of moments at the disk point can be expressed by (a
list of notation is given in Appendix C)

Mr =Ml +(Id −Dd cos 2h)ä−Ddb� sin 2h

+V(Jd −2Id)b� +V2(Jd + Id)a−DdV2(b sin 2h+ a cos 2h),

Nr =Nl +(Id +Dd cos 2h)b� −Ddä sin 2h

−V(Jd −2Id)ȧ+V2(Jd + Id)b−DdV2(−a sin 2h+ b cos 2h), (1)

where a= 1U/1Z and b= 1V/1Z are components of the deflected angle about the V- and
U-axes, Id =(Id

m + Id
n )/2 and Dd =(Id

m − Id
n )/2, and the equilibrium equations of the shear

forces can be expressed by

Pr =Pl −md(U� −2VV� −V2U), Qr =Ql −md(V� +2VU� −V2V), (2)

where U and V are components of the lateral displacement along the U- and V-axes. The
details of the derivation of equations (1) and (2) are shown in Kang et al. [13].

By introducing the non-dimensional quantities, u=U/L, v=V/L, z=Z/L,
V0 = p2zEC/(rA)/L2, M=ML/EC, N=NL/EC, P=PL2/EC, Q=QL2/EC,
S1 =LIdV2

0/(EC), S2 = (Dd/Id) cos 2h, S3 = (Dd/Id) sin 2h, C1 =S1(1−S2), C2 =−S1S3,
C3 = g2S1(3−S2), C4 =−g2S1S3, C5 =S1(1+S2), C6 = g2S1(3+S2) and C7 =−L3mdV2

0

/(EC), equations (1) and (2) become

Mr =Ml +C1
13u

1z 1t2 +C2
13v

1z 1t2 +C3
1u
1z

+C4
1v
1z

,

Nr =Nl +C5
13v

1z 1t2 +C2
13u

1z 1t2 +C4
1u
1z

+C6
1v
1z

,

Pr =Pl +C7$12u
1t2 −2g

1v
1t

− g2u%, Qr =Ql +C7$12v
1t2 +2g

1u
1t

− g2v%. (3)

In the rotating frame of reference, continuity equations of displacements and slopes at
the disk point can be expressed by

ur = ul , vr = vl , ar = al , br = bl . (4)
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2.2. 

Consider a flexible non-axisymmetrical Rayleigh shaft including the effects of the
gyroscopic moment and rotary inertia. In a rotating frame of reference, the equations of
motion, as also shown in Kang et al. [13], are expressed by

Cv
14U
1Z4 −

rCv

E
14U

1Z2 1t2 −
rCvV

2

E
12U
1Z2 +

rA
E 012U

1t2 −2V
1V
1t

−V2U1=0 (5a)

in the U–Z plane, and

Cu
14V
1Z4 −

rCu

E
14V

1Z2 1t2 −
rCuV

2

E
12V
1Z2 +

rA
E 012V

1t2 +2V
1U
1t

−V2V1=0 (5b)

in the V–Z plane. Using non-dimensional quantities, equations (5a) and (5b) become

ov014u
1z4 − a

14u
1z2 1t21− g2ova

12u
1z2 + ab012u

1t2 −2g
1v
1t

− g2u1=0 (6a)

and

ou014v
1z4 − a

14v
1z2 1t21− g2oua

12v
1z2 + ab012v

1t2 +2g
1u
1t

− g2v1=0, (6b)

where ov =Cv/C, ou =Cu/C, 2C=(Cu +Cv), a= rV2
0L2/E and b=AL2/C.

2.3. 

A linear bearing which is considered to be decoupled between the translational and
rotational displacements can be modelled by eight coefficients, i.e., two direct stiffness
coefficients Kxx and Kyy , two cross-stiffness coefficients Kxy and Kyx , two direct damping
coefficients Cxx and Cyy , and two cross-damping coefficients Cxy and Cyx . In the fixed frame
of reference, the equilibrium equations at the bearing point, as shown in Figure 3, are

P'r =P'l −KxxXl −KxyYl −CxxX� l −CxyY� l

in the X–Z plane, and

Q'r =Q'l −KyyYl −KyxXl −CyyY� l −CyxX� l (7)

Figure 3. The force components of a bearing model.
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in the Y–Z plane. Using co-ordinate transformation, the equilibrium equations in the
rotating frame of reference can be expressed by non-dimensional quantities, as follows:

Pr =Pl −((kxx + gzxy)(1+cos 2gt)/2+ (kxy + kyx + gzyy − gzxx)(sin 2gt/2)

+ (kyy − gzyx)(1−cos 2gt)/2)ul +((−kxy + gzxx)(1+cos 2gt)/2+ (−kyy + kxx

+ gzxy + gzyx)(sin 2gt/2)+ (kyx + gzyy)(1−cos 2gt)/2)vl −(zxx(1+cos 2gt)/2

+ (zxy + zyx)(sin 2gt/2)+ zyy(1−cos 2gt)/2)u̇l −(zxy(1+cos 2gt)/2

+ (zyy − zxx)(sin 2gt/2)− zyx(1−cos 2gt)/2)v̇l ,

Qr =Ql −((kxy + gzyy)(1+cos 2gt)/2− (kxx − kyy + gzxy + gzyx)(sin 2gt/2)

− (kxy − gzxx)(1−cos 2gt)/2)ul +((−kyy + gzyx)(1+cos 2gt)/2+ (kxy + kyx

+ gzyy − gzxx)(sin 2gt/2)− (kxx + gzxy)(1−cos 2gt)/2)vl −(zyx(1+cos 2gt)/2

+ (zyy − zxx)(sin 2gt/2)− zxy(1−cos 2gt)/2)u̇l −(zyy(1+cos 2gt)/2

− (zyx + zxy)(sin 2gt/2)+ zxx(1−cos 2gt)/2)v̇l , (8a)

where kij =KijL3/(EC) and zij =CijV0L3/(EC). Periodically varying coefficients appear in
the above equations. Additionally, the compatibility and moment equilibrium equations
at a bearing are

ur = ul , ar = al , Mr =Ml , vr = vl , br = bl , Nr =Nl . (8b)

3. TRANSITION CURVES OF INSTABILITY

The governing equations of a non-axisymmetrical shaft and a non-axisymmetrical disk
in a rotating frame of reference have constant coefficients. When the bearings are
axisymmetrical, the exact solutions in free vibration can be obtained by solving
simultaneous equations with constant coefficients. However, if a bearing is non-
axisymmetrical, periodically varying coefficients appear in the governing equations in the
rotating frame. Only approximate solutions instead of closed form solutions can be
obtained.

Bolotin [4] demonstrated that, according to the Floquet theory, the problem of finding
the unstable regions is reduced to the determination of the transition curves under which
the free motion has a periodic solution with periods T and 2T (T=2p/v). A direct
approach is to substitute the appropriate periodic series into the equations of motion, and
approximate solutions are obtained from the truncated Hill’s determinant.

Since the governing equations in the rotating frame of reference have time-varying
coefficients with a frequency of double the speed, the transition curves of the T-type and
2T-type motions are

fT(t)= s
a

n=0,1,2,...

( fcn cos 2ngt+ fsn sin 2ngt)= s
a

n=0,2,4,...

( fcn cos ngt+ fsn sin ngt) (9a)
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with period p/g (=2p/2g), and

f2T(t)= s
a

n=1,2,3,... 0fcn cos 02n−1
2

2gt1+ fsn sin 02n−1
2

2gt11
= s

a

n=1,3,5...

( fcn cos ngt+ fsn sin ngt) (9b)

with the period 2p/g, respectively, where f is utilized to denote all of the state variables
u, v, a, b, P, Q, M and N.

T-type solutions include 1×, 3×, . . . (n=0, 2, . . . ) and other odd order harmonic
motions of the free whirl. On the other hand, 2T-type solutions include 2×, 4×, . . .
(n=1, 3, . . . ) and other even order harmonic motions of the free whirl. The complete
motions can be expressed by combining equations (9a) and (9b) as follows:

f(t)= s
a

n=0,1,2,...

( fcn cos ngt+ fsn sin ngt). (9c)

Substituting equation (9c) into the equations of motion, the transfer matrices can be
obtained by constructing the relationships of the state variables between both sides of the
components.

4. FORMULATION OF TRANSFER MATRIX

4.1. 

Substituting equation (9c) into equations (3) and (4), and equating the coefficients in
the same harmonic terms, gives

(u0)v =(u0)l , (v0)r =(v0)l , (a0)r =(a0)l , (b0)r =(b0)l ,

(P0)r =(P0 −C7g
2u0)l , (Q0)r =(Q0 −C7g

2v0)l ,

(M0)r =(M0 +C3a0 +C4b0)l , (N0)r =(N0 +C6b0 +C4a0)l (10a)

for the zeroth order, and

(usn)r =(usn)l , (ucn)r =(ucn)l , (asn)r =(asn)l , (acn)r =(acn)l ,

(vsn)r =(vsn)l , (vcn)r =(vcn)l , (bsn)r =(bsn)l , (bcn)r =(bcn)l ,

(Psn)r =(Psn −C7g
2(n2 +1)usn −2ng2C7vcn)l ,

(Pcn)r =(Pcn −C7g
2(n2 +1)ucn −2ng2C7vsn)l ,

(Qsn)r =(Qsn −C7g
2(n2 +1)vsn −2ng2C7ucn)l ,

(Qcn)r =(Qcn −C7g
2(n2 +1)vcn −2ng2C7usn)l ,

(Msn)r =(Msn +(−n2g2C1 +C3)asn +(−n2g2C2 +C4)bsn)l ,

(Mcn)r =(Mcn +(−n2g2C1 +C3)acn +(−n2g2C2 +C4)bcn)l ,

(Nsn)r =(Nsn +(−n2g2C5 +C6)bsn +(−n2g2C2 +C4)asn)l ,

(Ncn)r =(Ncn +(−n2g2C5 +C6)bcn +(−n2g2C2 +C4)acn)l , (10b)
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for the nth order, where n=1, 2, 3, . . . , a and C1, C2, . . . , C7 are defined in equation (3).
The transfer matrix of a non-axisymmetrical disk is constructed by assembling equations
(10a) and (10b) into a matrix form as

{S0}r =[Td
0]

8×8
{S0}l (11a)

for the zeroth order, and

{Sn}r = [Td
n]

16×16
{Sn}l (11b)

for the nth order, where {S0}=(u0, v0, a0, b0, M0, N0, P0, Q0)T and {Sn}=
(ucn , usn , vcn , vsn , acn , asn , bcn , bsn , Mcn , Msn , Ncn , Nsn , Pcn , Psn , Qcn , Qsn)T are state vectors.

4.2. 

Where the free vibration at the transition curves is concerned, the homogeneous
solutions of equations (6a) and (6b) can be assumed by

u= s
a

n=0

(Ucn cos ngt+Usn sin ngt) esnz,

v= s
a

n=0

(Vcn cos ngt+Vsn sin ngt) esnz. (12)

Evidently, the non-dimensional frequency of the free whirl in the stationary frame is
(n+1)g given by equation (12). Substituting equation (12) into equation (6a) and (6b),
the eigenvalues sn and the eigenfunctions Ucn , Usn , Vcn and Vsn are determined. A general
solution of the free whirl at the instability boundaries is then given by

u= u0 + s
a

n=1

un = {f0}T{w*0 }+ s
a

n=1

({fcn}T{w*n } cos ngt+ {fsn}T{wn} sin ngt),

v= v0 + s
a

n=1

vn = {g0}T{w0}+ s
a

n=1

({gcn}T{wn} cos ngt+ {gsn}T{w*n } sin ngt), (13)

where {w} and {w*} are the vectors of the real constant coefficients, and {f} and {g} are
the vectors of the shape function. The details of the derivation of equation (13) are
provided in Appendix A.

Due to the above approach, the shape functions provided by this study are exact ones.
However, on the basis of finite element methods, the shape functions utilized in the
consistent approach are assumed by the polynomial forms and the accuracy of the
solutions is dependent on the order of these polynomials. Theoretically, a polynomial of
infinite order corresponds to the exact solution, but in practice polynomials of finite order
are used as an approximation. The transfer matrix derived from the conventional approach
is constructed by assuming that the total masses are taken lumped at discrete stations and
are connected by massless flexible elements. The accuracy of both the finite element and
the conventional transfer matrix approaches can be improved by increasing the partitioned
number of the shaft. However, the smallest number of shaft segments is required in the
approach used in this study.
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Equation (13) can be rewritten into a matrix form for formulating the relationship
between the shape functions and the real constant coefficients, as follows:

{R0(z)}
8×1

=${u0(z)}
{v0(z)}%=[M0(z)]

8×8 &w1.
.
.

w8'=[M0(z)]
8×8

{W0}
8×1

(14a)
8×1

8×1

for the zeroth order, and

{usn(z)} w1

{ucn(z)} w2

{Rn(z)}
16×1

=G
G

G

K

k
{vsn(z)}

G
G

G

L

l

=[Mn(z)]
16×16

G
G

G

K

k

.

.

.
G
G

G

L

l

=[Mn(z)]
16×16

{Wn}
16×1

(14b)

{vsn(z)} w16
16×1

for the nth order, where

{u0}=$u0
1u0

1z
12u0

1z2

13u0

1z3%
T

, {W0}=({w0}T{w*0 }T)T, {Wn}=({wn}T{w*n }T)T

and {v0}, {ucn}, {usn}, {vcn} and {vsn} have similar forms. At both ends, z=0 and z=1,
of an uniformly non-axisymmetrical shaft, equation (14a) becomes

{R0(z=0)}=[M0(0)]{W0}, {R0(z=1)}=[M0(1)]{W0} (15a, b)

respectively. Combining equations (15a) and (15b) gives

{R0(z=1)}=[M0(1)][M0(0)]−1{R0(z=0)}. (16a)

Similarly,

{Rn(z=1)}=[Mn(1)][Mn(0)]−1{Rn(z=0)}. (16b)

The relationships between the state variables and the derivatives of the deflections are
obtained from the equations of compatibility and elastic relationships as shown by

{S0}=[G0]
8×8

{R0}, {Sn}= [Gn ]
16×16

{Rn}, (17a, b)

where [G0] and [Gn ] are shown in Appendix B. Substituting equation (16a) into equation
(17a) gives

{S0}z=1 = [G0][M0(1)][M0(0)]−1[G0]−1{S0}z=0 = [Ts
0]{S0}z=0. (18a)

Similarly,
{Sn}z=1 = [Gn ][Mn(1)][Mn(0)]−1[Gn ]−1{Sn}z=0 = [Ts

n]{Sn}z=0. (18b)

Consequently, the transfer matrices [Ts
0] and [Ts

n] in a non-axisymmetrical shaft segment
are obtained in the rotating frame of reference. This approach uses continuous-system
sense to formulate the transfer matrix of the shaft. Infinite modes of resonance are
considered in the formulation.
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4.3. 

Substituting equation (9c) into equation (8a) gives

{q}r =[F]${x}
{q}%l

, (19)

where

{x}=(u0 v0 uc1 us1 vc1 vs1 . . . ucn usn vcn vsn . . . )T

and

{q}=(P0 Q0 Pc1 Ps1 Qc1 Qs1 . . . Pcn Psn Qcn Qsn . . . )T.

Substituting the form of u, v, a, b, M and N in equation (9c) into equation (8b), and
combining with equation (19), gives the transfer matrix of a bearing as

K L K L K L K L{S0} {S0} Tb
20 0 Tb

32 0 0 0 0 · · · {S0}G G G G G G G G
{S1} {S1} 0 Tb

21 0 Tb
33 0 0 0 · · · {S1}G G G G G G G G

{S2} {S2} Tb
10 0 Tb

22 0 Tb
34 0 0 · · · {S2}G G G G G G G G

G G G G G G G G{S3} {S3} 0 Tb
11 0 Tb

23 0 Tb
35 0 · · · {S3} ,G G G G G G G G{S4}

=[Tb] {S4}
=

0 0 Tb
12 0 Tb

24 0 Tb
36 · · · {S4}G G G G G G G G

··· ··· 0 0 0 Tb
13 0 Tb

25 0 · · · ···G G G G G G G G
G G G G G G G G··· ··· 0 0 0 0 Tb

14 0
.
.
.

· · · ···G G G G G G G G
··· r

··· l
· · · · · · · · · · · · · · · · · · · · · · · · ··· lk l k l k l k l

(20)

where the first subscript of Tij denotes the coefficients to be related to the harmonic
functions of (n−2)gt, ngt and (n+2)gt by 1, 2 and 3, respectively, and the second
subscript denotes the number of the harmonic order of the free whirls.

Since the transfer matrix of the bearing contains all orders of harmonic motion, it is
called the extended transfer matrix. At the same time, the extended state vector includes
state variables of all the harmonic orders.

When the bearing or the stator are axisymmetrical, the coefficients T1n and T3n vanish,
and the state vectors among all orders of the bearing are decoupled; then the transfer
matrix has the same form as the shaft or the disk.

It is also noticed that only two state vectors {Sn−2} and {Sn+2} are correlated by {Sn}.
Therefore, equation (20) can be divided into

{S0} Tb
20 Tb

32 0 0 · · · {S0}
{S2} Tb

10 Tb
22 Tb

34 0 · · · {S2}
{ST}r =G

G

G

G

G

K

k

{S4} G
G

G

G

G

L

l

= G
G

G

G

G

K

k

0 Tb
12 Tb

24 Tb
36 · · · G

G

G

G

G

L

l

G
G

G

G

G

K

k

{S4} G
G

G

G

G

L

l

=[Tb
T ]{ST}l

··· 0 0 Tb
14

.
.
.

· · · ···
··· r · · · · · · · · · · · · · · · ··· l

(21a)
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Figure 4. A general rotor–bearing system.

for the T-type motion, and

{S1} Tb
21 Tb

33 0 0 · · · {S1}
{S3} Tb

11 Tb
23 Tb

35 0 · · · {S3}
{S2T}r = G

G

G

G

G

K
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2T ]{S2T}l

··· 0 0 Tb
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.
.
.

· · · ···
··· r · · · · · · · · · · · · · · · ··· l

(21b)

for the 2T-type motion. In the above equations, {ST} and {S2T} are the extended state
vectors including the state variables of all even and odd harmonic motions, respectively.

In a rotating frame of reference, periodic terms will appear in the equations for the
bearing: however, the governing equations of non-axisymmetrical shafts have constant
coefficients. Thus, it is convenient to formulate the transfer matrix of the shaft by shape
functions, since these shape functions and the transfer matrix are all constant coefficients
in the rotating frame.

5. SOLUTION METHOD

Since the form of the transfer matrix of the bearing is different from that of the shaft
and the disk, the matrices and the state vectors of each must be modified to the same form
before constructing transfer matrices of an overall rotor–bearing system. Thus, equation
(11) must be changed to

{ST}r =[Td
T]{ST}l , {S2T}r =[Td

2T]{S2T}l (22a, b)

and equations (18a) and (18b) are changed to

{ST}r =[Ts
T]{ST}l , {S2T}r =[Ts

2T]{S2T}l , (23a, b)

where

Ti
0 0 0 · · · Ti

1 0 0 · · ·

0 Ti
2 0 · · · 0 Ti

3 0 · · ·
[Ti

T]=G
G

G

K

k
0 0

.
.
.

· · ·
G
G

G

L

l

and [Ti
2T]=G

G

G

K

k
0 0

.
.
.

· · ·
G
G

G

L

l

, i= d, s.

· · · · · · · · · · · · · · · · · · · · · · · ·

Let R and L denote the right and the left sides of the overall system, respectively. The
overall transfer matrix of a system, as shown in Figure 4, is obtained by

{ST}R = t
1

i=N

[TT ]i{ST}L =[To
T]{ST}L (24a)



   –  391

for the T-type motion, and

{S2T}R = t
1

i=N

[T2T ]i{S2T}L =[To
2T]{S2T}L (24b)

for the 2T-type motion, where

t
1

i=N

[TT ]i and t
1

i=N

[T2T ]i

represent the product of transfer matrices from the first station (denoted by L) to the nth
station (denoted by R). Thus, the two Hill’s infinite determinants of the T- and 2T-type
motions are obtained independently. The roots of the truncated determinants of [To

T] and
[To

2T] give approximate solutions of T- and 2T-type transition curves respectively.
Based on the boundary conditions of the rotor–bearing system being satisfied, equations

(24a) and (24b) are formulated as

${F}
{0}%R

=$T1 T2

T3 T4%${F}
{0}%L

, (25)

where {0} is the zero state vector, and {F}R and {F}L are formed by non-zero state
variables, at both ends of a rotor–bearing system. For example, when the shear forces and
bending moments are free at both ends and n harmonic terms of equation (9c) are
considered, {F}R , {F}L =(u0 v0 a0 b0 uc2 us2 vc2 vs2 ac2 as2 bc2 bs2 . . . ucn . . . bsn)T, both
vectors have dimensions of 4n+4, and {0} is a zero vector with dimensions 4n+4. For
the non-trivial solution of {F}, one has

=T3(g)==0. (26)

Equation (26), derived from equation (24a), gives T-type solutions and the one derived
from equation (24b) gives 2T-type solutions. Unstable regions of synchronous and
subcritical modes with odd multiple speeds are bounded by transition curves of the T-type
solutions. On the other hand, unstable regions of subcritical modes with even multiple
speeds are bounded by transition curves of the 2T-type solutions.

6. NUMERICAL EXAMPLES

A model of a uniform non-axisymmetrical shaft was utilized to verify the formulation
and the algorithm for instability analysis. The physical parameters of this shaft are
L=2 m, E=2×1011 N/m2, A=7·85×10−3 m2, r=7750 kg/m3, and the stiffness and
damping coefficients of the bearing are assumed to be constant in the speed range under
consideration.

When bearings are axisymmetrical, the coefficients are assumed to be Cij =0,
Kxx =Kyy = kp4(EC/L3) and Kxy =Kyx =0. The unstable regions due to various values of
non-dimensional factor k are shown in Figure 5. Solid curves and dashed curves are
utilized to illustrate the transition curves of instability belonging to T-type and 2T-type
solutions respectively. The T-type solution of free motion contains only the main modes
of synchronous whirl, denoted by 1×. The 2T-type solution contains subcritical modes
of double-speed whirl, denoted by 2×. The first subscript of Pij denotes the unstable region
belonging to the ith main mode, and the second subscript denotes the rigid body motion
or the flexural mode.
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When k=0·01, the stiffness of the bearing is much smaller than that of the shaft.
Therefore, the first two modes of the rigid body motion are very slightly affected by the
asymmetry of the shaft. When k=0·1, the unstable regions of the rigid body motions
expand, but the size is still smaller than that in the flexural mode. When k=1 the stiffness
of the bearing and the shaft almost equal, both rigid body motions vanish and all unstable
regions belong to the flexural mode. As k increases to 100, the plot of the low modes is
closely similar to that of the same shaft with the boundary conditions of both
hinged–hinged ends.

When D/C is increasing, the unstable regions of the main modes enlarge and the
subcritical speeds decrease. Due to the fact that the shaft and disk asymmetry are
multiplied by the square of the rotating speeds, as shown in equations (1) and (5), the
unstable region of a higher flexural mode is larger than that of a lower flexural mode. It
is noticed that the support flexibility can shrink the unstable regions of all modes and
reduce the speeds of the transition curves. However, instability cannot be eliminated by
increasing k.

Consider the same non-axisymmetrical shaft with both non-axisymmetrical bearings
which have Cij =0, Kxx =0·5kp4(EC/L3) and Kyy =1·5kp4(EC/L3). The T- and 2T-type

Figure 5. The unstable regions of a non-axisymmetrical shaft with a varying stiffness (kxx = kyy = kp4(EC/
L3), z=0). (a) k=100; (b) k=10; (c) k=1; (d) k=0·1; (e) k=0·01. ——, T-type solution; ––––, 2T-type
solution.
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Figure 6. Transition curves and unstable regions of (a) T-type solution (the fourth order approximation;
—— 1× whirl, –––– 3× whirl) and (b) 2T-type solution (the fifth order approximation; —— 2× whirl,
–––– 4× whirl).

solutions are shown in Figure 6. These curves of the n× whirl are located at about 1/n
times the speed values of the unstable regions of the main modes. Unstable regions of the
synchronous (1×) whirl and the 3× whirl are shown in Figure 6(a), and subcritical speeds
of 2× and 4× whirls are shown in Figure 6(b). The number preceding Pij denotes the order
of subcritical resonance due to the free whirl, which has a frequency of the multiple number
of the spin speed.

In the determination of the truncated T-type determinant, the zero values are obtained
to give approximate transition curves of the odd n× whirls. Thus, unstable regions of the
synchronous whirl and the 3× whirl are obtained while, in the determination of the
truncated 2T-type determinants, the minimum values are obtained to give approximate
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Figure 7. A model of an unsymmetrical rotor–bearing system.

subcritical speeds of the even n× whirls. Thus, the result is that there is no unstable region
of subcritical resonances of even n× whirls, and subcritical speeds of 2T-type motions
reveal that there are response peaks in the free whirl which can be excited at the even n×
subcritical modes. It is also shown that subcritical speeds of the 4× whirl are located at
about half the values of the 2× whirls.

A complex rotor–bearing system shown in Figure 7, having a non-axisymmetrical shaft
(o=D/C=0·5) and three axisymmetrical disks, is considered. Two non-dimensional
parameters m1 = Id/(rCA) and m2 =md/(rAL), are utilized for the moment of inertia and
the mass of these identical disks. The coefficients of both axisymmetrical bearings are
assumed to be kxx = kyy = k and zxx = zyy = z, and the other coefficients are zero.

When the parameters are k=10, m1 =14·62 and m2 =7·31, the dependence of the shaft
asymmetry on unstable regions for various damping coefficients is shown in Figure 8.

These unstable regions due to slight asymmetry in the shaft can be eliminated by
damping of the bearings. In other words, unstable regions can be raised by increasing the
damping coefficients. Moreover, unstable regions of the second and the third flexural
modes are completely eliminated by large damping when z=30, as shown in this example.

Consider this system with D/C=0·5 and various inertias of disks. The dependence of
the bearing damping on the stability is plotted in Figure 9, which shows that unstable
regions move to the right when the damping coefficients increase. In the first case, with

Figure 8. The influence of shaft asymmetry on unstable regions for various damping coefficients. (a) z=30;
(b) z=10; (c) z=0.
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Figure 9. The influence of bearing damping on instability: o=0·5, kxx = kyy =10. ––––, m1 =20, m2 =10;
——, m1=14·62, m2 =7·31; –·–·–, m1 =6·67, m2 =3·33.

m1 =20 and m2 =10, there is an unstable region of about g=1·0 which cannot be
eliminated by changing the damping, as shown by the dashed curves. The second case, with
m1 =14·62 and m2 =7·31 being the critical values, is shown by solid curves. When m1 and
m2 are larger than the critical values, the unstable regions then cannot be eliminated by
any damping coefficient. In the third case, with m1 =6·67 and m2 =3·33, the unstable region
of the first flexural mode is eliminated from z=28 to z=52 as shown by chain curves.
Also, the unstable regions of the P2f and P3f modes for three cases are shown by three types
of transition curves without hatching. These instabilities can be completely eliminated
when the damping coefficient increases to z=15 or z=20.

For the modified transfer matrix approach, the accuracy of solutions is independent on
the partitioned number of shaft elements. The least number is required. For example, the
system as illustrated in Figure 7 is partitioned into four elements. When either the finite
element approach or the conventional transfer matrix approach is utilized, the accuracy
of the solutions may be improved by increasing the partitioned number. To achieve the
same accuracy, the CPU time and memory size of both approaches are much more than
that of the modified transfer matrix approach. For steady state solutions, the comparisons
of accuracy and CPU times between the FEM and the modified transfer matrix approach
are reported by Lee et al. [15].

7. CONCLUSIONS

This study utilized a modified transfer matrix method to analyze the instability in
unsymmetrical rotor–bearing systems. The modified transfer matrix of a shaft segment was
derived from a continuous-system sense to decrease the number of matrix-multiplying
operations and to achieve higher accuracy than those from a lumped-system sense. This
matrix contains infinite modes, since the shape function of the shaft is derived by an
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analytical method and has an exact form. Thus, one can obtain solutions for unstable
regions including higher modes.

Unstable regions were obtained by determining the transition curves of the free-whirl
motions of period T and period 2T. It was shown that the unstable regions of T-type
solutions are bounded by two transition curves in each mode; however, 2T-type solutions
are subcritical speeds which are minimum values of the truncated determinant. From these
instability analyses, the following results can be obtained: (1) unstable regions are widened
by increasing the asymmetry of the shaft in the same mode; (2) the unstable region of a
higher flexural mode is larger than that of a lower flexural mode for the same shaft
asymmetry; (3) the damping of the bearings has effects of stabilization and destabilization
on unsymmetrical rotor–bearing systems, and the unstable regions can be eliminated by
a suitable choice of system parameters.

Most commercial software packages (for example, ANSYS, COSMOS for FEM, and
RAPIDD-RSR for TMM) do not have any particular element for analyzing the
unsymmetrical rotor–bearing system and solving the code for a parametric instability. This
study has provided these complementary contents by using the approach of the modified
transfer matrix method.
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APPENDIX A

The characteristic equation of equations (6a) and (6b) is

s4 + as2(l2 − g2)=
ab

2ouov
[(ou + ov)(l2 + g2)2 (ou − ov)(l2 + g2)]

= g1 (of plus) and g2 (of minus), (A1)

where g1 and g2 are both postive real numbers. Related to g1 and g2, respectively, equation
(A1) gives

s2 =
−a
2

(l2 − g2)2$a2

4
(l2 − g2)2 + g1%

0·5

= g3, g4

or

s2 =
−a
2

(l2 − g2)2$a2

4
(l2 − g2)2 + g2%

0·5

= g5, g6, (A2)

where g3, g4, g5 and g6 are all positive real numbers. Thus the roots of equation (A1) are
solved and obtained: s1,2 =2zg3 and a5,6 =2zg5, being real values; and s3,4 =2izg4

and s7,8 =2izg6, being pure imaginary values.
When l=0,

u0 =w5 cosh zg3z+w6 sinh zg3z+w7 cos zg4z+w8 sin zg4z= {f0(z)}T{w*0 },

v0 =w1 cosh zg5z+w2 sinh zg5z+w3 cos zg6z+w4 sin zg6z= {g0(z)}T{w0}, (A3)

where {w0}=(w1 w2 w3 w4)T and {w*0 }=(w5 w6 w7 w8)T.
When l= g,

uc1 =
2abg2

ovg1 −2abg2 vs1 = g7vs1, us1 =−g7vc1, (A4a)

for s1, s2 =2zg3, s3, s4 =2izg3 and

uc1 = vs1, us1 =−vc1, (A4b)

for s5, s6, s7, s8 =0. Consequently, u and v can be expressed by

u1 = [g7(w9 cosh zg3z+w10 sinh zg3z+w11 cos zg3z+w12 sin zg3z)

+ (w13 +w14z+w15z2 +w16z3)] cos gt

−[g7(w1 cosh zg3z+w2 sinh zg3z+w3 cos zg3z+w4 sin zg3z)

+ (w5 +w6z+w7z2 +w8z3)] sin gt

= {fc1(z)}T{w*1 } cos gt+ {fs1(z)}T{w1} sin gt

= uc1 cos gt+ us1 sin gt, (A5a)

v1 = [(w1 cosh zg3z+w2 sinh zg3z+w3 cos zg3z+w4 sin zg3z)

+ (w5 +w6z+w7z2 +w8z3)] cos gt

−[(w9 cosh zg3z+w10 sinh zg3z+w11 cos zg3z+w12 sin zg3z)

+ (w13 +w14z+w15z2 +w16z3)] sin gt
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= {gc1(z)}T{w1} cos gt+ {gs1(z)}T{w*1 } sin gt

= vc1 cos gt+ vs1 sin gt, (A5b)

where {w1}=(w1, . . . , w8)T and {w*1 }=(w9, . . . , w16)T are coefficient vectors of uc1, us1, vc1

and vs1.
When le 2g,

ucn =
2abl

ovg1 − ab(l2 + g2)
vsn = g8vsn , usn =−g8vcn , (A6a)

for s1 to s4, and

usn =
2abl

ovg2 − ab(l2 + g2)
vcn = g9vcn , ucn =−g9vsn , (A6b)

for s5 to s8. Thus,

un =[g8(w9 cosh zg3z+w10 sinh zg3z+w11 cos zg4z+w12 sin zg4z)

− g9(w13 cosh zg5z+w14 sinh zg5z+w15 cos zg6z+w16 sin zg6z)] cos ngt

−[g8(w1 cosh zg3z+w2 sinh zg3z+w3 cos zg4z+w4 sin zg4z)

− g9(w5 cosh zg5z+w6 sinh zg5z+w7 cos zg6z+w8 sin zg6z)] sin ngt

= {fcn(z)}T{w*n } cos ngt+ {fsn(z)}T{wn} sin ngt

= ucn cos ngt+ usn sin ngt, (A7a)

vn =[(w1 cosh zg3z+w2 sinh zg3z+w3 cos zg4z+w4 sin zg4z)

+ (w5 cosh zg5z+w6 sinh zg5z+w7 cos zg6z+w8 sin zg6z)] cos ngt

+[(w9 cosh zg3z+w10 sinh zg3z+w11 cos zg4z+w12 sin zg4z)

+ (w13 cosh zg5z+w14 sinh zg5z+w15 cos zg6z+w16 sin zg6z)] sin ngt

= {gcn(z)}T{wn} cos ngt+ {gsn(z)}T{w*n } sin ngt

= vcn cos ngt+ vsn sin ngt, (A7b)

where {wn}=(w1, . . . , w8)T and {w*n }=(w9, . . . , w16)T are coefficient vectors of ucn , usn , vcn

and vsn for integer ne 2.

APPENDIX B

Compatible equations at both ends of a shaft are shown below:

1u/1z= a, 1v/1z= b, ov 12u/1z2 =M, ou 12v/1z2 =N,

ov 13u/1z3 =P, ou 13v/1z3 =Q. (B1)

Substituting equation (13) into equation (B1) gives

a0 = 1u0/1z, b0 = 1v0/1z, M0 = ov 12u0/1z2, N0 = ou 12v0/1z2,

P0 = ov 13u0/1z3, Q0 = ou 13v0/1z3 (B2a)

for the zeroth order and, similarly,

acn = 1ucn/1z, bcn = 1vcn/1z, asn = 1usn/1z, bsn = 1vsn/1z,

Mcn = ov 12ucn/1z2, Ncn = ou 12vcn/1z2, Msn = ov 12usn/1z2, Nsn = ou 12vsn/1z2,

Pcn = ov 13ucn/1z3, Qcn = ou 12vcn/1z3, ov 13usn/1z3 =Psn , ou1
3vsn /1z3 =Qsn

(B2b)
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for the nth order. Assembling equations (B2a) and (B2b) gives

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
[G0]=G

G

G

G

G

G

G

G

G

K

k

0 0 0 0 ov 0 0 0
G
G

G

G

G

G

G

G

G

L

l

0 0 0 0 0 ou 0 0

0 0 0 0 0 0 ov 0

0 0 0 0 0 0 0 ou

and

K L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G G

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0G G
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0G G

G G0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
G G0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
G G

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0G G
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0G G

[Gn ]=
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

.
G G
G G0 0 0 0 0 0 0 0 ov 0 0 0 0 0 0 0
G G

0 0 0 0 0 0 0 0 0 ov 0 0 0 0 0 0G G
0 0 0 0 0 0 0 0 0 0 ou 0 0 0 0 0G G
0 0 0 0 0 0 0 0 0 0 0 ou 0 0 0 0G G

G G0 0 0 0 0 0 0 0 0 0 0 0 ov 0 0 0
G G

0 0 0 0 0 0 0 0 0 0 0 0 0 ov 0 0G G
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ou 0G G
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ouk l

APPENDIX C: NOTATION

A, E, r, L cross-sectional area, Young’s modulus, density and length of the shaft
i =z−1
e =2·71828
Id, Dd, Jd average, deviatoric and polar disk moment of inertia
Id

m, Id
n second moment of inertia about the principal axes m and n of the disk

K, C stiffness and damping coefficients of bearing
k, z non-dimensional K, C
md mass of disk
[M(Z)] matrix of shaft shape function
M, N bending moments in the rotating frame
M, N non-dimensional M, N
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P', Q' shear forces in the fixed frame
P, Q shear forces in the rotating frame
P, Q non-dimensional P, Q
{r}, {R} non-dimensional displacement vector and amplitude function related to (UVW)
{S} state vector
[T] transfer matrix
U, V lateral deflections in the rotating frame
u, v non-dimensional U, V
(UVW) the rotating frame or principal axes of shaft
{W} column vector of constant coefficients
w real constant coefficients
(XYZ) the fixed frame of reference
X, Y lateral deflections in the fixed frame
Z, t position and time co-ordinates
a, b deflected angle components in the rotating frame (UVW)
C, D average and deviatoric moment of area of shaft
Cu , Cv second moment of area about the principal axes U and V of shaft
o D/C=(Cu −Cv)/(Cu +Cv)
ov =Cv/C
ou =Cu/C
s eigenvalue of shape function of shaft
V rotating speed
V0 fundamental speed
t =V0t, non-dimensional time
g =V/V0, non-dimensional rotating speed
v non-dimensional whirl frequency
(mn) principal axes of a non-axisymmetrical disk
{R0}, {Rn} vectors of shape functions with derivatives

Superscripts
T transpose of a vector or a matrix
s, d, b, o shaft, disk, bearing, overall system

Subscripts
c, s cosine or sine term
R, L the right and left side of a whole rotor
r, l the right and left side of a component of a rotor
n the number of the harmonic order


