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The equations of motion of a spinning Timoshenko shaft with time-dependent spin rate
are formulated using Hamilton’s principle and the assumed mode method. The
deformations of the shaft are expressed in terms of an inertial reference frame. The
time-dependent spin rate is assumed to be a steady state average value superimposed by
sinusoidal perturbations. The resulting governing equations of motion involve periodic
coefficients, which are not in the form of standard Mathieu–Hill equations. The periodic
functions are embedded in both the gyroscopic and stiffness coefficient matrices. By the
use of the multiple scales method, the regions of instability due to parametric excitations
are determined. Numerical results for a simply supported spinning shaft are presented.
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1. INTRODUCTION

Studies on the dynamic behaviour of spinning beams are related to the vibration and
stability of rotating shafts, drills, end-mills, boring bars and satellite booms. A
comprehensive review of this subject can be found in the publications by Dimentberg [1],
Bolotin [2], Loewy and Piarulli [3], Eshleman [4], Dimaroganas and Paipeites [5] and Rao
[6]. Likins et al. [7] and Bauer [8] investigated an Euler beam attached to a rigid base
spinning with a constant angular speed. Laurenson [9] analyzed the behaviour of a
spinning beam having different flexural rigidities in the two principal directions of the
cross-section. Leung and Fung [10] analyzed the vibration of spinning Euler beams using
the finite element method. Filipich et al. [11] investigated the vibration of a spinning beam
with uniform cross-section having only one axis of symmetry. Lee and Jei [12] and Lee
et al. [13] analyzed the vibration of rotating Rayleigh beams. Chen and Liao [14] reported
the behaviours of spinning pre-twisted beams subjected to axial compressive loads. A
consistent formulation for a rotating Timoshenko’s shaft subjected to axial loads was
recently reported by Choi et al. [15]. Zu and Han [16] presented the natural frequencies
and mode shapes of spinning Timoshenko’s beams with constant spin rate. Related studies
on the dynamic responses of spinning shafts subjected to moving loads were reported by
Huang and Chen [17] for a spinning Euler orthotropic shaft subjected to moving harmonic
forces, Han and Zu [18] for a spinning Timoshenko beam with the equations of motion
expressed in a body-fixed co-ordinate system, and Hashish and Sankar [19] for a spinning
Timoshenko beam subjected to stationary stochastic loads using the finite element method.
The spinning speed of the shafts was assumed to be constant in all of these studies. On
the other hand, there have been relatively few studies on the dynamics of a spinning beam
with a non-constant spin rate. Kane et al. [20] investigated a Timoshenko beam built into

0022–460X/97/030401+15 $25.00/0/sv960656 7 1997 Academic Press Limited



. .   .402

a rigid base undergoing general three-dimensional motions. Kammer and Schlack [21]
analyzed an Euler beam with a constant spin rate superimposed by small periodic
perturbations using a KBM perturbation method. The stability of a spinning Timoshenko
beam with a time-dependent spin rate has not been analyzed.

The equations of motion of a spinning Euler beam with circular cross-section, when
derived in an inertial co-ordinate system, have been shown to be identical to the equation
of motion of a non-spinning Euler beam (see, for example, Han and Zu [18]). The
behaviour of a spinning Euler beam with a circular cross-section is therefore independent
of the spinning speed. A spinning Euler beam with equal flexural rigidities in the two
principal directions of the cross-section was also reported by Kammer and Schlack [21]
to be always stable, independent of the spinning speed. More recently, a few publications,
including those by Young and Liou [22, 23] as well as by Liao and Huang [24, 25], make
use of a modal analysis technique developed by Meirovitch [26] to uncouple the equations
of motion of gyroscopic systems. Subsequently, the multiple scales method is applied to
perform the parametric analysis. Their equations of motion are formulated based on
Euler’s beam model.

When the equations of motion of a spinning Timoshenko shaft are derived in an inertial
frame of reference, the spinning speed of the shaft appears in the equations of motion (see,
for example, Chen and Ku [27]). The stability of the shaft is therefore expected to be
dependent on the spinning speed. These equations of motion in matrix form are formulated
in the present study using Hamilton’s principle and the assumed mode method for a
spinning shaft with time-dependent spin rate. The deformations of the shaft are expressed
in an inertial reference frame. The spinning speed of the shaft is assumed to be a steady
state average value, on which sinusoidal perturbations are superimposed. The resulting
equations of motion are found to be different from the standard Mathieu–Hill equations,
and this form of equation has not been analyzed in the literature. This coupled set of
equations of motion is then uncoupled and the multiple scales method is used to determine
the instability boundaries of the system. Numerical results are presented for a simply
supported spinning Timoshenko shaft.

2. THEORY AND FORMULATION

The shaft considered is an axisymmetric shaft of uniform circular cross-section and
length L, rotating about its longitudinal axis and simply supported at its two ends, shown
in Figure 1. A set of co-ordinates (X, Y, Z) is assumed to be fixed in an inertial frame,
with the X-axis parallel to the undeformed longitudinal axis of the rotating shaft. The shaft
is assumed to be spinning with a time dependent rotational speed, denoted by V. The
deformation of the shaft is assumed to be governed by Timoshenko’s beam theory. The
deformed state of the shaft can be described by the transverse translations V(s, t) and
W(s, t) in the Y and Z directions and by small angular displacements B(s, t) and G(s, t)
about the Y- and Z-axes. The variable s is the position of a point along the beam on the
X-axis and t is the time. The two translations V and W consist of contributions due to
bending, Vb and Wb , and contributions due to transverse shear deformation, Vs and Ws .
The relations amongst these variables are as follows [27]:

V(s, t)=Vb(s, t)+Vs(s, t), W(s, t)=Wb(s, t)+Ws(s, t) (1, 2)

B(s, t)=−1Wb(s, t)/1s, G(s, t)= 1Vb(s, t)/1s. (3, 4)
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Figure 1. A spinning Timoshenko shaft subjected to a time-dependent spin speed.

The potential energy, U, of the beam due to elastic bending and shear deformation is given
by Chen and Ku [27] as

U= 1
2 g

L

0

EI{(V0b )2 + (W0b )2} ds+ 1
2 g

L

0

kGA{(V's )2 + (W's )2} ds, (5)

where the prime (') denotes partial differentiation with respect to s. The parameter E is
Young’s modulus, G is the shear modulus, k is the shear coefficient, I is the second moment
of area, and A is the cross-sectional area of the shaft. Using the relations between the
rotational and translational variables, the above expression can be rearranged as

U= 1
2 g

L

0

EI{(G')2 + (B')2} ds

+ 1
2 g

L

0

kGA{(V')2 + (W')+G2 +B2 −2GV'+2BW'} ds. (6)

Similarly, the kinetic energy T of the beam as given in Chen and Ku [27] is

T= 1
2 g

L

0

rA{(V� )2 + (W� )2} ds+ 1
2 g

L

0

Id{(B� )2 + (G� )2} ds

− 1
2 IpV g

L

0

{G� B −B� G} ds+ 1
2 V2 g

L

0

Ip ds, (7)

where the dot ( � ) denotes differentiation with respect to time. The variable r is the mass
density of the shaft, and Id and Ip are the diametral and polar mass moments of inertia
of the shaft per unit length.
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Using the assumed mode method, the quantities V, W, G and B can be expressed as

V(s, t)= s
n

i=1

vi(t)fi(s), W(s, t)= s
n

i=1

wi(t)fi(s), (8, 9)

B(s, t)= s
n

i=1

pi(t)ci(s), G(s, t)= s
n

i=1

qi(t)ci(s), (10, 11)

where fi and ci are spatial functions that satisfy the boundary conditions at the two ends
of the shaft. For a shaft simply supported at both ends, these assumed functions are as
follows:

fi(s)=z2 sin
ips
L

, ci(s)=z2 cos
ips
L

. (12, 13)

The assumed forms of V, W, G and B enable the kinetic energy and the potential energy
to be expressed in matrix form as follows:

T= 1
2rAv̇TMv̇+ 1

2rAẇTMẇ+ 1
2Id ṗ

TSṗ+ 1
2Id q̇

TSq̇− 1
2VIp q̇

TSp+ 1
2VIp ṗ

TSq+ 1
2V

2 g
L

0

Ip ds,

(14)

U= 1
2EIpTKp+ 1

2EIqTKq+ 1
2 kGAvTHv+ 1

2 kGAwTHw+ 1
2kGApTSp+ 1

2 kGAqTSq

− kGAqTEv+ kGApTEw. (15)

where M, S, K, H and E are matrices, defined as

(M)ij =g
L

0

fifj ds, (S)ij =g
L

0

cicj ds, (K)ij =g
L

0

c'i c'j ds, (16–18)

(H)ij =g
L

0

f'i f'j ds, (E)ij =g
L

0

cif'j ds. (19, 20)

The vectors v and v̇ are n×1 column vectors consisting of vi and v̇i respectively. The other
vectors are also defined in a similar manner.

The Lagrangian of the rotating shaft can be expressed as

L=T−U. (21)

Using Hamilton’s principle, the resulting Euler–Langrange equations are

rAMv̈+ kGAHv− kGAETq= 0, rAMẅ+ kGAHw+ kGAETp= 0, (22, 23)

IdSp̈+VIpSq̇+EIKp+ kGASp+ kGAEw+ 1
2V� IpSq= 0, (24)

IdSq̈−VIpSṗ+EIKq+ kGASq− kGAEv− 1
2V� IpSp= 0. (25)

Non-dimensionalization can be carried out by introducing the following dimensionless
variables:
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t= t zG/rL2, V�=V zrL2/G, j= s/L, v̄= v/L, w̄=w/L, p̄= p,

q̄= q, I� d = Id/rAL2 = (b/p)2, I� p = Ip/rAL2 =2(b/p)2,

m=
EI

GAL2 =
2I(1+ n)

AL2 =2(1+ n)0r0

L1
2

=2(1+ n)0bp1
2

, (26)

where the radius of gyration r0 =zI/A, Rayleigh’s coefficient b= pr0/L and, by assuming
isotropic material, E and G can be linked via the Poisson ratio using G=E/2(1+ n).

M� ..
v̄+ kH� v̄− kE�Tq̄= 0, (27)

M� ..
w̄+ kH� w̄ + kE�Tp̄= 0, (28)

I� dS�
..
p̄+V�I� pS�

.
q̄+ mK� p̄+ kS�p̄+ kE�w̄ + 1

2

.

V�I� pS�q̄= 0, (29)

I� dS�
..
q̄−V�I� pS�

.
p̄+ mK� q̄+ kS�q̄− kE�v̄− 1

2

.

V�I� pS�p̄= 0. (30)

The above are coupled second order differential equations which can be combined to give

M0ä+V�M1ȧ+(M2 + 1
2

.

V�M1)a= 0. (31)

The vector a is a 4n×1 column vector, defined as a=(v w p q)T, whereas the other
matrices are as follows:

M� 0 0 0 0 0 0 0

0 M� 0 0 0 0 0 0
M0 =G

G

G

F

f
0 0 I� dS� 0

G
G

G

J

j

, M1 =G
G

G

F

f
0 0 0 I� pS�

G
G

G

J

j

,

0 0 0 I� dS� 0 0 −I� pS� 0

kH� 0 0 −kE�T

0 kH� kE�T 0
M2 =G

G

G

F

f
0 kE� mK� + kS� 0

G
G

G

J

j

.

−kE 0 0 mK� + kS�

The non-zero quantity
.

V� is the dimensionless angular acceleration of the spinning shaft
arising from the time-dependency of the spinning speed. The dimensionless spinning speed
V� is assumed to be a steady state value V0 on which is superimposed a harmonic
perturbation of amplitude Vp and a dimensionless frequency of perturbation v:

V� =V0 +Vp cos vt. (32)

Therefore, equation (31) can be rewritten as

M0ä+(V0 +Vp cos vt)M1ȧ+0M2 −
Vpv sin vt

2
M11a= 0. (33)

The equation of motion is not in the form of the standard Mathieu–Hill equation due to
the additional time dependent coefficient of the ȧ term. Pre-multiplying the entire equation
(33) by M−1

0 and introducing Vp = oV0, it can be transformed into
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ä+V0(1+ o cos vt)M−1
0 M1ȧ+0M−1

0 M2 −
oV0v sin vt

2
M−1

0 M11a= 0. (34)

Equation (34) is a set of differential equations which cannot be solved directly. The modal
analysis procedure used for uncoupling this gyroscopic system is similar to that used by
Meirovitch [26]. First we define a state vector b=[ȧ, a]T and rewrite equation (34) as

b� −KKb= 1
2oV0v sin vtF1b− oV0 cos vtF2b, (35)

where

KK=$−V0M
−1
0 M1

I

−M−1
0 M2

0 % , F1=$00 M−1
0 M1

0 % , F2=$M−1
0 M1

0

0

0% .

The eigenvalues of the above system come in conjugate pairs of pure imaginary numbers
(2ivi) which are the natural frequencies of the gyroscopic system (note that i=z−1,
whereas subscript i represents the ith mode). The modal matrix P is formed by assembling
the real and imaginary parts of the corresponding normalized eigenvectors of the
transformed stiffness matrix. The substitution of a linearly transformed b=Pz, followed
by pre-multiplication of P−1 with equation (35) yields

z� −Lz= oV00v2 sin vtFS−cos vtFC1z, (36)

where

L=P−1KKP, FS=P−1F1P, FC=P−1F2P. (37)

L is a real matrix with 2×2 blocks of

$ 0
−vi

+vi

0 %
along its diagonal, instead of having the purely imaginary eigenvalues along its diagonal.

Although the left side of this set of equations is uncoupled in the block sense, the terms
on the right side remain uncoupled. In order to match the structure of L, the transformed
state vector is chosen to be of the following form

z=[j1, h1, j2, h2, . . . ji , hi , . . . jm , hm ]T,

where m=4n. A general pair of discrete equations from equation (36) can be written as

ji −vihi = 1
2oV0v0s

m

j=1

( fs2i−1,2j−1jj + fs2i−1,2jhj)1 sin vt

− oV00s
m

j=1

( fc2i−1,j−1jj + fc2i−1,2jhj)1 cos vt,
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hi +viji = 1
2oV0v0 s

m

j=1

( fs2i,2j−1jj + fs2i,2jhj)1 sin vt

− oV00 s
m

j=1

( fc2i,2j−1jj + fc2i,2jhj)1 cos vt. (38)

In the multiple scales method, ji and hi are assumed to be of the form

ji(t)= ji(0)(T0, T1, T2, . . .)+ oji(1)(T0, T1, T2, . . .)+ o2ji(2)(T0, T1, T2, . . .)+ · · · ,

hi(t)= hi(0)(T0, T1, T2, . . .)+ ohi(1)(T0, T1, T2, . . .)+ o2hi(2)(T0, T1, T2, . . .)+ · · · ,

for i=1, 2, . . . , m, (39)

where i is the mode number and each term is a function of a set of independent variables
Tr , defined as ort, for r=0, 1, . . . , M. Among the recent publications [22]–[25] that utilize
Meirovitch’s modal analysis technique for a gyroscopic system followed by the multiple
scales method, only Young and Liou [23] went beyond M=2. However, in their plate
analysis, the range of o goes from 0·0 to 1·0 and yet the presented graphical results only
show minute difference between the first and second order resonances. Given the present
range of o from 0·0 to 0·1, the results of perturbation analysis obtained using the multiple
scales method with first order uniform expansion should be sufficient. With M=2, only
T0 and T1 will be required. Detail discussions on the multiple scales method can be found
in reference [25]. Upon substitution of equation (39) into equation (38), gathering
coefficients of like powers of o yields the following equations:

order 0 (o0), D0ji(0) −vihi(0) = 0, D0hi(0) +viji(0) = 0; (40)

order 1 (o1),

D0ji(1) −vihi(1) =−D1ji(0) + 1
2V0v0 s

m

j=1

( fs2i−1,2j−1jj(0) + fs2i−1,2jhj(0))1 sin vt

−V00 s
m

j=1

( fc2i−1,2j−1jj(0) + fc2i−1,2jhj(0))1 cos vt,

D0hi(1) +viji(1) =−D1hi(0) + 1
2V0v0 s

m

j=1

( fs2i,2j−1jj(0) + fs2i,2jhj(0))1 sin vt

−V00 s
m

j=1

( fc2i,2j−1jj(0) + fc2i,2jhj(0))1 cos vt. (41)

Solving equation (40) yields a pair of general solutions, given by

ji(0) =Ai(T1) eiviT0 +A�i(T1) e−iviT0, hi(0) = iAi(T1) eiviT0 − iA�1(T1) e−iviT0. (42)

Each of these solutions comprises two terms, in which the second is the complex conjugate
of the first. All of the coefficients are undetermined functions of T1. Substituting this pair
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of equations and its differentials into equation (41) with the trigonometric functions
reexpressed in exponential form yields

D0ji(1) −vihi(1) =−A'i eiviT0 −A�'i e−iviT0 −
iV0v

4
s
m

j=1

{fs2i−1,2j−1[Aj ei(v+vj)T0

+A�j ei(v−vj)T0]+ ifs2i−1,2j [Aj ei(v+vj)T0 −A�j ei(v−vj)T0]

− fs2i−1,2j−1[Aj e−i(v−vj)T0 +A�j e−i(v+vj)T0]

− ifs2i−1,2j [Aj e−i(v−vj)T0 −A�j e−i(v+vj)T0]}

−
V0

2
s
m

j=1

{fc2i−1,2j−1[Aj ei(w+vj)T0 +A�j ei(v−vj)T0]

+ ifc2i−1,2j [Aj ei(v+vj)T0 −A�j ei(v−vj)T0]

+ fc2i−1,2j−1[Aj e−i(v−vj)T0 +A�j e−i(v+vj)T0]

+ ifc2i−1,2j [Aj e−i(v−vj)T0 −A�j e−i(v+vj)T0]},

D0hi(1) +viji(1) =−iA'i eiviT0 + iA�'i e−iviT0 −
iV0v

4
s
m

j=1

{fs2i,2j−1[Aj ei(v+vj)T0

+A�j ei(v−vj)T0]+ ifs2i,2j [Aj ei(v+vj)T0 − A�j ei(v−vj)T0]

− fs2i,2j−1[Aj e−i(v−vj)T0 −A��j e−i(v+vj)T0]

− ifs2i,2j [Aj e−i(v−vj)T0 −A��j e−i(v+vj)T0]}−
V0

2
s
m

j=1

{fc2i,2j−1[Aj ei(v+vj)T0

+A��j ei(v−vj)T0]+ ifc2i,2j [Aj ei(v+vj)T0 −A��j ei(v−vj)T0]

+ fc2i,2j−1[Aj e−i(v−vj)T0 +A��j e−i(v+vj)T0]+ ifc2i,2j [Aj e−i(v−vj)T0

−A��j e−i(v+vj)T0]}. (43)

The general solution of this pair of equations is of the same form as that given in equation
(42). Before attempting to solve for the particular solutions of ji(1) and hi(1), we need to check
if the frequency of perturbation (v) is far from or near to the individual frequencies, as
well as to their combination. The focus in this case is on the sum-type resonance, which
also includes superharmonic resonance due to 2vi .

2.1. v   vp +vq

When the perturbation frequency v is far from the combinations of its natural
frequencies, terms that can give rise to secular terms will not surface. Hence particular
solutions with decaying exponents can be obtained for periodic inputs and the system is
said to be stable. A similar situation was encountered by Young and Liou [22] and Liao
and Huang [25] when their systems were subjected to time-dependent spinning speed.

2.2. v  vp +vq

However, as the perturbation frequency v approaches the sum of any two natural
frequencies of the system, combinational resonance of the summed-type can occur.
Superharmonic resonance due to v approaching 2vi will also be presented if they exist.
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A quantitative study on the dynamic stability of the system can be carried out by relating
v to the natural frequencies of any two modes, vp and vq ; i.e.,

v=vp +vq + so, (44)

where s is a detuning factor to describe the nearness. Substitution of equation (44) into
equation (43) results in the emergence of the undesirable secular term eivpT0, or eivqT0. The
particular solutions can be obtained by expressing ji(1),p and hi(1),p as

ji(1),p =Bi1(T1) eiviT0 and hi(1),p =Bi2(T1) eiviT0. (45)

Upon substitution of equation (45) into equation (43), and equating the coefficient of e+ivpT0

to zero (i= p and j= q), the following pair of equations with a singular coefficient matrix
is obtained:

ivpBp1 −vpBp2 =−A'p −
iV0v

4
[(fs2p−1,2q−1 − ifs2p−1,2q)A��q eisT1]

−
V0

2
[(fc2p−1,2q−1 − ifc2p−1,2q)A��q eisT1],

vpBp1 + ivpBp2 =−iA'p −
iV0v

4
[(fs2p,2q−1 − ifs2p,2q)A� q eisT1]

−
V0

2
[(fc2p,2q−1 − ifc2p,2q)A��q eisT1]. (46)

Let us denote the right sides of equation (46) by Rp1 and Rp2 to reduce the tedious algebra.
The solutions for Bp1 and Bp2 will only exist if

bivp

vp

Rp1

Rp2b=0. (47)

When i= q and j= p, equating the coefficient of e−ivqT0 to zero yields

ivqBq1 −vqBq2 =−A'q −
iV0v

4
[(fs2q−1,2p−1 − ifs2q−1,2p)A� p eisT1]

−
V0

2
[(fc2q−1,2p−1 − ifc2q−1,2p)A��p eisT1],

vqBq1 + ivqBq2 =−iA'q −
iV0v

4
[(fs2q,2p−1 − ifs2q,2p)A��p eisT1]

−
V0

2
[(fc2q,2p−1 − ifc2q,2p)A��p eisT1]. (48)

Denoting the right sides by Rq1 and Rq2 results in the following simplified forms:

ivqBq1 −vqBq2 =Rq1, vqBq1 + ivqBq2 =Rq2.
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The solutions for Bq1 and Bq2 will only exist if

bivq

vq

Rq1

Rq2b=0. (49)

Rewriting equation (47) and taking the conjugate of the left side of equation (49),

D1Ap +LpqA��q eisT1 =0, D1A��q +L� qpAp e−isT1 =0, (50)

where

Lpq =
V0

4 6v2 [( fs2p,2q−1 + fs2p−1,2q)+ i(fs2p−1,2q−1 − fs2p,2q)]+ ( fc2p−1,2q−1 − fc2p,2q)

− i( fc2p,2q−1 + fc2p−1,2q)7,
L��qp =

V0

4 6v2 [( fs2q,2p−1 + fs2q−1,2p)− i( fs2q−1,2p−1 − fs2q,2p)]+ ( fc2q−1,2p−1 − fc2q,2p)

+ i( fc2q,2p−1 + fc2q−1,2p)7 . (51)

Let us assume the solutions of equation (50) to be of the forms

Ap =Ep(T2) e−ilT1 and A��q =E��q(T2) e−i(l+ s)T1, (52)

where Ep(T2) and E��q(T2) are complex functions, while l� is the complex conjugate of l.
Substituting equation (52) into equation (50) yields the following matrix equation:

$ −il e−ilT1

L��qp e−i(l+ s)T1

Lpq e−ilT1

−i(l+ s) e−i(l+ s)T1%$Ep

E��q%=$00% . (53)

For a non-trivial solution, the determinant of the 2×2 matrix must be zero, i.e.,

l= 1
2(−s2zs2 −4LpqL��qp). (54)

Since the system is stable only when the imaginary part of l is negative, the transition at
which Im (l)=0 will be where the stability boundaries are located; i.e.,

s2 −4LpqL��qp =0. (55)

Upon substitution of equations (44) and (51) into equation (55), the general pair of
equations governing the stability boundaries is found to be

e=2
2[v−(vp +vq)]

V0zvpq(v, p, q)
, (56)

where

vpq = 1
4v

2[( fs2p,2q−1 + fs2p−1,2q)+ i( fs2q−1,2q−1 − fs2p,2q)][( fs2q,2p−1 + fs2q−1,2p)

− i( fs2q−1,2p−1 − fs2q,2p)]+ 1
2v[( fs2p,2q−1 + fs2p−1,2q)
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+ i( fs2p−1,2q)][( fc2q−1,2p−1 − fc2q,2p)+ i( fc2q,2p−1 + fc2q−1,2p)]

+ 1
2v[( fc2p−1,2q−1 − fc2p,2q)− i( fc2p,2q−1 + fc2p−1,2q)][( fs2q,2p−1 + fs2q−1,2p)

− i( fs2q−1,2p−1 − fs2q,2p)]+ [( fc2q−1,2q−1 − fc2p,2q)

− i( fc2p,2q−1 + fc2p−1,2q)][( fc2q−1,2p−1 − fc2q,2p)+ i( fc2q,2p−1 + fc2q−1,2p)]

for p, q=1, 2, 3, . . . , m. (57)

Equation (56) caters for all the possible sums of natural frequencies from all the m-modes
of vibration. The dimensionless stability boundaries are plotted with o versus v. vpq of
equation (57) will turn out to be a general real quadratic polynomial in v because FS and

Figure 2. The convergent process of the first three unstable regions using n=1, . . . , 5 for a spinning
Timoshenko beam (b=0·15) with V0 =50. (a) n=1; (b) n=2; (c) n=3; (d) n=4; (e) n=5.
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FC consist of 2×2 blocks with zeros either on the diagonal or off-diagonal. The same
finding was reported by Young and Liou [22].

3. RESULTS AND SIMULATIONS

In the present study, the dimensionless shaft parameters used in the numerical
simulations are the Poisson ratio n=0·3 and the shear modulus. The circular
cross-sectional area of the shaft, A, is computed from the radius of gyration r0 defined by
a non-dimensional parameter (Rayleigh’s coefficient) b= pr0/L.

Within the plotted array in each figure, all the individual plots have the same scale, to
facilitate easy comparison of the width of their unstable regions. However,
cross-comparison of subplots from different figures is invalid, due to the different scales
used.

For this simply supported Timoshenko shaft, three-term (n=3) assumed functions for
V, W, G and B are found to be adequate for the convergence of spinning speeds for the
boundaries of the first three unstable regions. This is illustrated in Figure 2, where all three
unstable regions remain unchanged beyond n=3. The shaft in Figure 2 has b=0·15 and
V0 =50.

The effect of the Rayleigh coefficient b, which relates the diameter of the shaft to its
length, is first examined for the spinning shaft. The first three unstable regions for V0 =50
are shown in Figure 3. Generally, all the unstable regions widen as b increases. However,
the increase is more significant as b increases from 0·05 to 0·10 than from 0·10 to 0·15.
Another observation made is the consistent right shift of almost all of the unstable regions.
That is due to the increment of the various frequencies that constitute the pivoting v-value
of the unstable regions (v=vi +vj). The same trend is observed at other spin speeds.

Figure 3. The first three unstable regions of three shafts with b=(a) 0·05, (b) 0·10 and (c) 0·15, spinning at
V0 =50.
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Figure 4. The first three unstable regions of the Timoshenko shaft (b=0·15) with V0 = (a) 10, (b) 20, (c) 30,
(d) 40 and (e) 50.

The effect of the steady state part of the dimensionless spin rate (V0) is illustrated in
Figure 4, in which b=0·10. It is apparent that the width of all the first three unstable
regions undergoes a corresponding widening as the steady state spin rate (V0) increases
from 10 to 50, with an increment of 10. This near-linear width increment is in accordance
with the fact that the undesirable gyroscopic moment is proportional to spin rate. Similar
findings are also reported by Chen and Ku [27], who conclude that the gyroscopic moment
has a destabilizing effect on rotating shafts. As in the case of increasing b, all of the
subplots in Figure 4 are also observed to experience a right shift as V0 increases.

A major advantage of this formulation is its simplicity. The present formulation, based
on an inertial reference frame, results in a simpler form of equations of motion and the
resulting characteristic equation for the stability analysis compared with that derived from
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a body-fixed reference frame. Moreover, the boundaries of the unstable regions can easily
be determined by evaluating FS and FC in equation (37) and subsequently substituting
them into equation (56). It is also very interesting to note that FS and FC are made up
of 2×2 blocks, with zeros either on the diagonal or off-diagonal. This in turn renders
the vpq to be real quadratic polynomials in v. The same result was obtained by Young
and Liou [22]. All of the matrix computations involved can be carried out using any
commercial package.

After obtaining the instability diagrams, various points near the unstable boundary, in
and out of the unstable regions, are chosen. These parameter combinations are then
substituted into equation (35) and integrated numerically for the time series of each bi using
Mathematica (capable of handling symbolic mathematics). It is verified that points in the
unstable region are indeed unstable.

4. CONCLUSIONS

The equations of motion of a spinning Timoshenko shaft with a time-dependent spin
rate have been formulated using Hamilton’s principle and the assumed mode method in
terms of an inertial reference frame. The time-dependent spin rate is assumed to be a steady
state average value on which are superimposed sinusoidal perturbations. The multiple
scales method is then employed to determine the primary regions of instability. Numerical
results are presented for a simply supported spinning shaft. The sizes of the unstable
regions are found to increase with a higher value of Rayleigh’s coefficient, which relates
the diameter of the shaft to its length. Most of the pivots of the unstable regions are found
to encounter a right shift as Rayleigh’s coefficient of the average spin rate increases. More
importantly, the widths of the unstable regions are found to increase almost proportionally
as the spin rate increases. This is due to the presence of the gyroscopic moment, which
is proportional to the spin rate.

Discrepancies could have arisen due to the unsuitability of the Timoshenko beam being
used on the beams, with too small a Rayleigh’s coefficient.
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