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SHELL–PLATE INTERACTION IN THE FREE
VIBRATIONS OF CIRCULAR CYLINDRICAL
TANKS PARTIALLY FILLED WITH A LIQUID:

THE ARTIFICIAL SPRING METHOD
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The free vibrations of a circular cylindrical tank partially filled with an inviscid and
incompressible liquid with a free surface orthogonal to the tank axis are analytically
studied. The tank is modelled by a simply supported circular cylindrical shell connected
to a simply supported circular plate by an artificial rotational distributed spring of
appropriate stiffness. The plate is considered to be resting on a Winkler elastic foundation.
The effects of the free surface waves and the hydrostatic liquid pressure are neglected. The
bulging modes (where the tank walls oscillate with the liquid) of the structure are
investigated and the solution is obtained as an eigenvalue problem by using the
Rayleigh–Ritz expansion of the mode shapes and then minimizing the Rayleigh quotient
for coupled vibrations. The effects of the liquid level inside the tank, of the stiffness of the
Winkler foundation and of the spring stiffness at the shell–plate joint are investigated for
shallow and tall water-filled tanks. Comparison with available results is also given.
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1. INTRODUCTION

During recent years, many papers on the vibrations of structures made by joining simple
elements together have been published. Different techniques have been used, such as the
artificial spring method [1–4], the transfer matrix method [5] and the receptance method
[6–8]. Recently, these techniques have been applied by some authors to cylindrical
shell–circular plate structures [2, 4–9]. Different approaches to similar problems have given
an incentive for research in this field.

The Rayleigh–Ritz method has been proved to be very efficient in studying complex
structures but, in order to obtain correct results, the trial functions must satisfy all the
geometrical boundary conditions. When the Rayleigh–Ritz method is applied to a
structure obtained by joining some components together, the boundary conditions require
the continuity of translational and rotational displacements between all the rigid junctions
of the substructures. This condition causes many problems in the choice of the correct trial
functions to use for each single component. The use of artificial springs at the junctions
allows one to overcome this difficulty. In particular, the joints between the components
of the structure are represented by translational and rotational artificial springs that are
distributed along the whole joint length or area. Obviously, each degree of freedom
involved in the joint must be simulated by a distributed spring.

The plate-ended circular cylindrical shell is the simpler plate–shell structure and it is also
important for application to engineering. Free vibrations of this structure have been
studied, e.g., by Cheng and Nicolas [2] and by Huang and Soedel [6]. Cheng [9] has also
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studied the free vibrations when the plate-ended circular cylindrical shell is coupled with
a fluid-filled acoustic cavity. A common application of this structure is the tank; tanks are
often coupled with a liquid having a free surface. The liquid-filled tanks have two families
of modes: sloshing and bulging. Sloshing modes are caused by the oscillation of the liquid
free surface, due to the rigid body movement of the container; these modes are also affected
by the flexibility of the container. The vibrations of the tank walls (bottom plate and shell)
take the name of bulging modes when the amplitude of the wall displacement is dominant
over that of the free surface; in this case, the tank walls and base oscillate with the liquid.
The velocity field of the liquid in a circular cylindrical tank has been studied by Bauer and
Siekmann [10]. However, they considered the shell and the plate to be independent and
not coupled together; moreover, they were interested in sloshing modes.

The present paper reports a study of a tank partially filled with an inviscid and
incompressible liquid having a free surface orthogonal to the tank axis. The tank is
modelled by a simply supported circular cylindrical shell connected to a simply supported
circular plate by an artificial rotational distributed spring of opportune stiffness. The plate
is considered to be resting on a Winkler elastic foundation. This model is quite realistic
because the connection between the plate and the shell gives a reciprocal constraint that
can be assumed to be a simple support. In many applications, the top of the tank is closed
by a thin diaphragm or by a ring that constrains the shell displacements in a manner similar
to that of a simple support (except for beam-bending modes). Moreover, the effect of the
soil stiffness can also be modelled by the Winkler elastic foundation. The bulging modes
of the structure are investigated and the solution is obtained as an eigenvalue problem by
using the Rayleigh–Ritz method.

2. THEORETICAL APPROACH TO THE SHELL–PLATE STRUCTURE

A simply supported circular cylindrical shell made of isotropic, homogeneous and
linearly elastic material is considered, so that the Flügge theory of shells [11] is applicable.
A simply supported thin circular plate is connected to a shell end and rests on a Winkler
elastic foundation [12]; it is also assumed that the plate is made of isotropic, homogeneous
and linearly elastic material, so that the Kirchhoff theory of plate vibrations [13] is
applicable.

When a plate is joined to a circular cylindrical shell, in general three displacements and
two slope connections should be considered, according to the classical thin shell theory.
However, the full treatment of using five connections is not necessary if one investigates
only lower modes of the system. For these modes, the plate can be assumed to be inelastic
in its plane and to allow only transverse displacements. Moreover, influences of connection
deflections in the tangential planes of the shell can be neglected with respect to transverse
amplitudes [6]. Therefore only the radial slope at the plate boundary can be considered
to be coupled to the axial slope of the shell at the bottom end. A similar approach was
used in reference [14]; in references [6–8] two connections were used because the plate was
not connected to the shell’s simple support. In the present case, only one connection is
required; the shell and the plate are connected together by an artificial rotational
distributed spring of opportune stiffness (Figure 1) in order to obtain a tank of radius a
and height L.

A cylindrical polar co-ordinate system (O; r, u, x) is introduced, with the pole on the
centre of the circular bottom plate. Due to the axial symmetry of the structure, only modes
of the shell and the plate with the same number n of nodal diameters are coupled. In
particular, in the present study both the axisymmetric vibrations (n=0) and asymmetric
vibrations (nq 0) are investigated. In addition, it is interesting to note that, due to the
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axial symmetry, for each asymmetric mode there exists a second mode having the same
frequency and shape but angularly rotated by p/2n.

The Rayleigh–Ritz method [15] is applied to find the mode shapes of the circular
cylindrical tank. Therefore, the radial displacement w of the shell wall (see Figure 1) can
be given by the expression

w(x, u)= cos (nu) s
a

s=1

qsBs sin (sp x/L), (1)

where n is the number of nodal diameters, qs are the unknown parameters and Bs is a
constant depending on the normalization criterion used. The eigenvectors of the single and
empty simply supported shell [11] are used as admissible functions. Then the following
normalization is introduced

(L/a)2 g
1

0

B2
s sin2 (spl) dl=1, (2)

where l= x/L. The result of the integration gives

Bs =B=z2 a/L (3)

The transverse displacement, wP , of the plate can be given as [16]

wP(r, u)= cos (nu) s
a

i=0

q̃i$AinJn0linr
a 1+CinIn0linr

a 1%, (4)

Figure 1. A diagram of the tank and of the symbols used: (a) the cross-section defined by u=0 and u= p;
(b) the mode shape with n=2 nodal diameters in the cross-section defined by x=L/2.
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where n and i are the number of nodal diameters and circles, respectively, a is the plate
radius and lin is the well known frequency parameter that is related to the plate natural
frequency; Ji and Ii are the Bessel function and modified Bessel function of order i,
respectively. In equation (4), the eigenfunctions of the single plate, simply supported at
the edge and vibrating in a vacuum, are assumed as admissible functions. The trial
functions are linearly independent and constitute a complete set. Values of lin for simply
supported plates are given, for example, in reference [17]. To simplify the computations,
the mode shape constants, Ain and Cin , are normalized in order to have

g
1

0

[AinJn(linr)+CinIn(linr)]2r dr=1, (5)

where r= r/a. The result of integration of equation (5) is (see equations 11.106, 33.101
and 31.101 in reference [18])

6A2
in

2 $(J'n(lin))2 +01−
n2

l2
in1J2

n(lin)%−
C2

in

2 $(I'n(lin))2 −01+
n2

l2
in1I2

n(lin)%
+

AinCin

lin
[Jn(lin)In+1(lin)+ In(lin)Jn+1(lin)]7=1, (6)

where J'n and I'n indicate the derivatives of Jn and In with respect to the argument. The ratio
of the mode shape constants Ain/Cin =−In(lin)/Jn(lin) for simply supported plates.

In order to solve the problem, one evaluates the kinetic and potential energies of the
shell, plate, liquid, elastic foundation and coupling spring. The reference kinetic energy [15]
of the shell, neglecting the tangential inertia, is given by

T*S = 1
2rShSB2 g

2p

0 g
L

0

w2 dx a du= 1
2rSahS

L
2

B2cn s
a

s=1

q2
s , (7)

where hS is the shell thickness, rS is the density of the shell material (kg m−3) and

cn =62p,
p,

for n=0
for nq 07.

In equation (7) the orthogonality of the sine function is used. Similarly, the reference
kinetic energy of the plate is given by

T*P = 1
2rPhP g

2p

0 g
a

0

w2
Pr dr du= 1

2rPa2hPcn s
a

i=0

q̃2
i , (8)

where hP is the plate thickness and rP is the density of the plate material (kg m−3). In
equation (8) the orthogonality of the Bessel functions (plate mode shapes) is used. Then,
the maximum potential energy of each mode of the single and empty shell is equal to the
product of the reference kinetic energy of the same mode for the square circular frequency
v2

s of this mode. Moreover, in coupled vibrations, due to the series expansion of the mode
shape, the potential energy is the sum of the energies of each single component mode.
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Therefore the maximum potential energy of the shell is given by

VS = 1
2rShSa

L
2

B2cn s
a

s=1

q2
sv

2
s , (9)

where vs are the circular frequencies of the flexural modes of the simply supported shell
that can be computed by using the Flügge theory of shells [11]. Similarly, the maximum
potential energy of the plate is the sum of the reference kinetic energies of the
eigenfunctions of the plate in a vacuum multiplied by ṽ2

in ,

VP = 1
2rPa2hPcn s

a

i=0

q̃2
i ṽ

2
in = 1

2

D
a2 cn s

a

i=0

q̃2
i l

4
in , (10)

where the plate circular frequency ṽin is related to the frequency parameter lin by
ṽin =(l2

in/a2)zD/(rPhP) and D=EPh3
P/[12(1− n2

P)] is the flexural rigidity of the plate; nP

and EP are the Poisson ratio and Young’s modulus of the plate, respectively. The maximum
potential energy of the rotational distributed spring connecting the plate and the shell is

VC = 1
2 g

2p

0

c1[(1w/1x)x=0 − (1wP/1r)r= a ]2a du, (11)

where c1 is the spring stiffness (Nm/m). It is interesting to note that the sign to rotations
is attributed by considering that both w and wP are assumed to be positive outside the tank
(see Figure 1), so that both the displacements give a positive contribution to the increment
of the angle between the shell and the plate, which gives a compression to the rotational
spring. The rotation of the shell end at x=0 is given by

01w
1x1x=0

=
Bp

L
cos (nu) s

a

s=1

qss. (12)

The rotation of the plate edge, changed by sign, is

01wP

1r 1r= a

=cos (nu) s
a

i=0

q̃i
lin

a
[AinJ'n(lin)+CinI'n(lin)]. (13)

Therefore, by using equations (11)–(13), the maximum potential energy stored by the
coupling spring is given by the expression

VC = 1
2c16B2 p2

L2 s
a

s=1

s
a

j=1

qsqjsj+ s
a

i=0

s
a

h=0

q̃iq̃h
lin

a
lhn

a
[AinJ'n(lin)+CinI'n(lin)]

× [AhnJ'n(lhn)+ChnI'n(lhn)−2B
p

L
s
a

s=1

s
a

i=0

qsq̃is
lin

a
[AinJ'n(lin)+CinI'n(lin)]7acn .

(14)
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The maximum potential energy stored by the Winkler elastic foundation is

VB = 1
2k1 g

2p

0 g
a

0

w2
P r dr du= 1

2k1cna2 s
a

i=0

q̃2
i , (15)

where k1 is the stiffness of the foundation (N m−3).

3. LIQUID–STRUCTURE INTERACTION

The tank is considered partially filled with an inviscid and incompressible liquid, with
a free surface orthogonal to the tank axis; the free surface is at distance H from the bottom
plate (see Figure 1). The free surface waves, superficial tension of the liquid and hydrostatic
pressure effects are neglected in the present study [19], so that only a kinetic energy can
be attributed to the liquid; therefore the sloshing modes of the tank are not obtained by
the present approach and only the bulging modes are investigated. As a consequence of
these hypotheses, the free surface does not exhibit an intrinsic capability of oscillation; thus
the free liquid surface is not subjected to a restoring force once moved.

3.1.     

For an incompressible and inviscid liquid, the velocity potential satisfies the Laplace
equation 92f(r, u, x)=0. In the case studied, the liquid velocity potential, using the
principle of superposition, is described by the sum f=f(1) +f(2), where the function f(1)

describes the liquid velocity potential of the flexible shell considering the bottom plate as
rigid and the function f(2) describes the liquid velocity potential of the flexible bottom plate
considering the shell as rigid. Therefore, by using Green’s theorem for harmonic functions
[20], the reference kinetic energy of the liquid can be computed by integration over the
liquid boundary,

T*L = 1
2rL gS

(f(1) +f(2))
1(f(1) +f(2))

1z
dS, (16)

where rL is the liquid mass density (kg m−3), z is the direction normal at any point to the
surface S and is oriented outward, S=S1 +S2, S1 is the shell lateral surface and S2 is the
plate surface. Integration over the free liquid surface is not necessary; in fact, the liquid
boundary conditions are

(1f(1)/1r)r= a =w(x, u), (1f(1)/1x)x=0 =0, (f(1))x=H =0, (17a–c)

and

(1f(2)/1x)x=0 =−wP(r, u), (1f(2)/1r)r= a =0, (f(2))x=H =0, (18a–c)

so that the result of the extension of equation (16) on the free surface is zero. The zero
dynamic pressure on the free surface is assumed as a boundary condition as a consequence
of the assumed hypothesis of neglecting the free surface waves. The result of integration
of equation (16) can be divided into four different terms by using equations (17a) and (18a):

T*L = 1
2rL gS1

(f(1) +f(2))w dS+ 1
2rL gS2

(f(1) +f(2))wP dS

=T*(1)
L +T*(1–2)

L +T*(2–1)
L +T*(2)

L . (19)
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3.2. – 

In this section, the vibration problem of a simply supported flexible shell in a circular
cylindrical tank with a rigid base is considered. A large number of papers on the vibrations
of fluid-filled shells have been published; it is worth remembering, for example, references
[21–27]. The liquid velocity potential f(1) is assumed to be of the form

f(1) = s
a

s=1

qsF
(1)
s . (20)

The functions F(1)
s are given by

F(1)
s (x, r, u)= s

a

m=1

AmnsIn02m−1
2

p
r
H1 cos (nu) cos 02m−1

2
p

x
H1, (21)

where Amns are coefficients depending on the integers m, n and s. The functions F(1)
s satisfy

the Laplace equation and the two boundary conditions given in equations (17b, c); the
condition given in equation (17a) is used to compute the coefficients Amns :

s
a

m=1

Amns
(2m−1)p

2H
I'n02m−1

2
p

a
H1 cos (nu) cos 02m−1

2
p

x
H1=B sin 0sp x

L1. (22)

If one multiplies equation (22) by

cos 02j−1
2

p
x
H1

and then integrates between 0 and H, using the well known properties of the orthogonal
functions, one obtains

F(1)
s = s

a

m=1

4B
(2m−1)p

sms$In02m−1
2

p
r
H1>I'n02m−1

2
p

a
H1%

×cos (nu) cos 02m−1
2

p
x
H1, (23)

where

sms =$ s
L

+(−1)m 2m−1
2H

sin 0sp H
L1%>0 s2

L2 −
4m2 −4m+1

4H2 1p if s$ 2m−1
2

L
H

,

(24a)

or

sms =
L

2sp
if s=

2m−1
2

L
H

. (24b)
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Therefore, the term T*(1)
L of the reference kinetic energy of the liquid is given by

T*(1)
L = 1

2rL g
2p

0 g
H

0

(f(1))r= awa du dx

= 1
2rLB2acn s

a

s=1

s
a

j=1

qsqj s
a

m=1

×
4smssjm

(2m−1)p

In02m−1
2

p
a
H1

I'n02m−1
2

p
a
H1

. (25)

3.3. – 

In this section, the vibration problem of the simply supported flexible bottom plate is
studied with the circular cylindrical shell assumed to be rigid [10, 12, 28–32]. The liquid
velocity potential f(2) is assumed to be of the form

f(2) = s
a

i=0

q̃iF
(2)
i . (26)

The functions F(2)
i , for axisymmetric modes (m=0), are expressed as

F(2)
i (r, u, x)=Ki00(x−H)+ s

a

k=1

Ki0kJ00o0k
r
a1$cosh 0o0k

x
a1

−sinh 0o0k
x
a1>tanh 0o0k

H
a1%, (27)

and, for asymmetric (mq 0) modes, as

F(2)
i (x, r, u)= cos (nu) s

a

k=0

KinkJn0onk
r
a1$cosh 0onk

x
a1−sinh 0onk

x
a1>tanh 0onk

H
a1%,

(28)

where onk are solutions of the equation

J'n(onk)=0. (29)

The functions F(2)
i satisfy equations (18b,c). The constants Kink are calculated in order to

satisfy equation (18a). For asymmetric modes,

s
a

k=0

KinkJn0onk
r
a1 onk

a tanh (onkH/a)
=$AinJn0linr

a 1+CinIn0linr
a 1%. (30)

If one multiplies equation (30) by (1/a2)Jn([onk(r/a)]r and then integrates, this results in

Kink =
(Ainbink +Cingink)

ankonk
a tanh 0onk

H
a1, (31)
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where

ank = 1
2[1− (n/onk)2][Jh(onk)]2, bink =

lin

o2
nk − l2

in
J'n(lin)Jn(onk),

gink =
lin

o2
nk + l2

in
I'n(lin)Jn(onk). (32–34)

Then, the term T*(2)
L of the reference kinetic energy of the liquid is given by

T*(2)
L = 1

2rLa3cn s
a

i=0

s
a

h=0

q̃iq̃h s
a

k=0

(Ainbink +Cingink)
ankonk

(Ahnbhnk +Chnghnk) tanh 0onk
H
a1. (35)

For axisymmetric modes, equation (30) is replaced by

−Ki00 + s
a

k=1

Ki0kJ00o0k
r
a1 o0k

a tanh (o0kH/a)
=$Ai0J00li0r

a 1+Ci0I00li0r
a 1%. (36)

The constant Ki00 is given by

Ki00

2
=−g

1

0

[Ai0J0(li0r)+Ci0I0(li0r)]r dr=−ti0, (37)

where [18]

ti0 = [(Ai0/li0)J1(li0)+ (Ci0/li0)I1(li0)]. (38)

The constants Ki0k , for kq 0, are obtained by equation (31) computed for n=0; therefore,
for axisymmetric modes, the term T*(2)

L of the reference kinetic energy of the liquid is given
by

T*(2)
L = 1

2rLa3cn s
a

i=0

s
a

h=0

q̃iq̃h$2 H
a

ti0th0 + s
a

k=1

(Ai0bi0k +Ci0gi0k)
a0ko0k

×(Ah0bh0k +Ch0gh0k) tanh 0o0k
H
a1%. (39)

3.4.     

In Section 3.1 it was shown that the reference kinetic energy of the liquid is not given
by the simple sum T*(1)

L +T*(2)
L , but is given by four terms; this fact can be justified as the

coupling effect of the liquid. In fact, even if one eliminates the presence of the coupling
spring between the plate and the shell, these two elements result, coupled by the presence
of the liquid inside the tank. In particular, the quantity T*(1–2)

L , for asymmetric modes, is
given by

T*(1–2)
L = 1

2rL gS1

(f(2))r= aw dS

= 1
2rLBa2cn s

a

s=1

s
a

i=0

qsq̃i s
a

k=0

KinkJn(onk)$z(1)
snk −

z(2)
snk

tanh (onkH/a)%, (40)
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where the constants Kink are given by equation (31) and

z(1)
snk =

(spa/L)− (spa/L) cos (spH/L) cosh (onkH/a)+ onk sin (spH/L) sinh (onkH/a)
o2

nk + s2p2a2/L2 ,

(41)

z(2)
snk =

−(spa/L) cos (spH/L) sinh (onkH/a)+ onk sin (spH/L) cosh (onkH/a)
o2

nk + s2p2a2/L2 , (42)

The quantity T*(1–2)
L , for axisymmetric modes (n=0), is given by

T*(1–2)
L = 1

2rLBa2cn s
a

s=1

s
a

i=0

qsq̃i6Ki00z
(0)
s + s

a

k=1

Ki0kJ0(o0k)$z(1)
s0k −

z(2)
s0k

tanh (o0kH/a)%7, (43)

where

z(0)
s =

−(spa/L)H+ a sin (spH/L)
(spa/L)2 . (44)

The last component of the reference kinetic energy of the liquid is the term T*(2–1)
L that has

the following expression for both axisymmetric and asymmetric modes:

T*(2–1)
L = 1

2rL gS2

(f(1))x=0wP dS= 1
2rLBa2cn s

a

s=1

s
a

i=0

qsq̃i

× s
a

m=1 64sms>$(2m−1)pI'n02m−1
2

p
a
H1%7(Ainj

(1)
imn +Cinj

(2)
imn), (45)

Here, the constants sms are given by equations (24a,b) and

j(1)
imn =

2m−1
2

p
a
H

02m−1
2

p
a
H1

2

+ l2
in

Jn(lin)I'n02m−1
2

p
a
H1, (46)

j(2)
imn =$linIn02m−1

2
p

a
H1I'n(lin)−

2m−1
2

p
a
H

In(lin)

× I'n02m−1
2

p
a
H1%>$l2

in −02m−1
2

p
a
H1

2

%. (47)

4. THE EIGENVALUE PROBLEM

For the numerical calculation of the natural frequencies and the unknown parameters
describing modes, only N terms in the expansion of w, equation (1), and N	 +1 in the
expansion of wP , equation (4), are considered, where N and N	 are chosen large enough
to give the required accuracy to the solution. Therefore, all of the energies are given by
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finite summations. It is convenient to introduce a vectorial notation; the vector q of the
unknown parameters is defined by

q= 8{q}

{q̃}9, (48)

where

q1 q̃0

{q}=g
G

G

F

f

.

.

.
h
G

G

J

j
and {q̃}=g

G

G

F

f

.

.

.
h
G

G

J

j
. (49)

qN q̃N

The maximum potential energy of the shell becomes

VS = 1
2rShSa(L/2)cnB2qTKSq. (50)

The partitioned matrix KS is

KS =$[v1]
[0]

[0]
[0]%, (51)

where the elements of the diagonal submatrix [v1] are given by

v1sj = dsjv
2
s , s, j=1, . . . , N, (52)

and dsj is the Kronecker delta. The maximum potential energy of the plate can be written
as

VP = 1
2(D/a2)cnq

TKPq. (53)

The matrix KP is

KP =$[0]
[0]

[0]
[l1]%, (54)

where the elements of the diagonal submatrix [l1] are given by

l1ih = dihl
4
in , i, h=0, . . . , N	 . (55)

The maximum potential energy stored by the coupling spring can be written as

VC = 1
2c1acnq

TKCq. (56)

The matrix KC is

Kc =$ [K1]
[K2]T

[K2]
[K3]

,% (57)

where the elements of the submatrices [Ki ] are given in Appendix A. The maximum
potential energy stored by the Winkler elastic foundation can be written as

VB = 1
2k'a2cnq

TKBq. (58)

- - -

=
=
=- - - - - - -- - - - - -
=
=

=
=
=- - - - - - - - - - - -
=
=

=
=
=- - - - - - -- - - - - -
=
=
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The matrix is KB is

KB =$[0]
[0]

[0]
[I]%, (59)

where [I] is the identity (N	 +1)× (N	 +1) submatrix. The reference kinetic energy of the
shell, equation (7), can be written as

T*S = 1
2rShSa(L/2)cnB2qTMSq. (60)

The matrix MS is

MS =$[I][0]
[0]
[0]%, (61)

where [I] is the N×N identity matrix. The reference kinetic energy of the plate, equation
(8), can be written as

T*P = 1
2rPhPa2cnq

TMPq, (62)

The matrix MP is

MP =$[0]
[0]

[0]
[I]%, (63)

where [I] is the identity (N	 +1)× (N	 +1) submatrix. The reference kinetic energy of the
liquid can be written as

T*L = 1
2rLacnq

TMLq, (64)

where ML is a symmetric partitioned matrix of dimension (N+(N	 +1))× (N+(N	 +1)):

ML =$ [M1]
[M2]T

[M2]
[M3]%, (65)

where the elements of the submatrices [Mi ] are given in Appendix B. Hence it is useful
to introduce the Rayleigh quotient for coupled fluid-structure vibrations [33]. The Rayleigh
quotient can be written as

(VS +VP +VC +VB)/(T*S +T*P +T*L ). (66)

Thus, the values of the vector q of the unknown parameters are determined in order to
render equation (66) stationary [15], and the following Galerkin equation is obtained:

(1
2B

2rShSaLKs +(D/a2)KP + c1aKC + k1a2KB)q

−L2(1
2B

2rShSaLMs + rPhPa2MP + rLaML)q=0, (67)

where L is the circular frequency (rad/s) of the tank partially filled with liquid. Equation
(67) gives a linear eigenvalue problem for a real, symmetric matrix.

=
=- - - - - - - - - - -
=
=

=
=
=- - - - - - - - - - -
=
=

=
=
=- - - - - -- - - - - -
=
=

=
=
=- - - - - - - -- - - - - - - -
=
=
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T 1

The circular frequencies v (rad/s) of the plate-ended circular cylindrical shell studied in
reference [6]; only modes having n =4 circumferential waves are considered; the results
obtained by using the approach presented are compared to the data given by Huang and

Soedel [6]

Mode Present study Huang and Soedel [6] Difference (%)

First 8 520·94 8 518 0·03
Second 19 885·6 19 650 1·2
Third 21 466·5 21 031 2·0
Fourth 31 656·8 31 640 0·05
Fifth 39 407·3 39 328 0·2
Sixth 42 299·1 41 509 1·9

5. NUMERICAL RESULTS

5.1.    

The numerical solution to the eigenvalue problem, equation (67), is obtained by using
the Mathematica [34] computer program. Ten shell modes and ten plate modes are
considered in the Rayleigh–Ritz expansion. To check the theory used, the numerical results
obtained by using the present approach were compared to the data presented by Huang
and Soedel [6] for an empty plate-ended circular cylindrical shell. The plate and the shell
are assumed to be joined by a spring of infinite stiffness c1. For infinity, one in fact takes
a large enough quantity in the calculations. In practice, one sometimes considers a trial
value of the spring stiffness and then changes it until one obtains eigenvalues that are not
affected by an increment in the stiffness value. However, one can give directly a stiffness
value much larger than the plate and shell edge stiffness. Both the shell and the plate
considered in reference [6] are made of a steel with the following material properties:
E=206 GPa, rS = rP =7850 Kg m−3 and n=0·3. The dimensions are: a=0·1 m,
L=0·2 m and hS = hP =2 mm. The comparison is shown in Table 1 for modes having
n=4 nodal diameters. A very good agreement between the natural frequencies given in
reference [6], obtained by using the receptance method, and the present results was
found. Obviously, this test does not validate the liquid–tank interaction theory studied in
section 3.

T 2

The circular frequencies v (rad/s) of the circular cylindrical shell studied in references
[23, 25]; only axisymmetric bulging modes (n=0) are considered; the results obtained by
using the approach presented are compared to the data given by Kondo [23] and Gupta and

Hutchinson [25]

Kondo exact Kondo series Gupta and
Mode Present study solution [23] solution [23] Hutchinson [25]

First 22·23 22·09557 22·33470 22·3494
Second 44·00 43·76193 44·12022 44·1699
Third 57·19 56·82922 57·21935 58·2442
Fourth 67·29 66·88753 67·30628 69·5125
Fifth 75·84 75·34688 75·85164 79·1894
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T 3

The natural frequencies (Hz) of the circular bottom plate studied in reference [32]; only
axisymmetric bulging modes (n=0) are considered; the results obtained by using the
approach presented are compared to the data given by Chiba [32] for two different water

levels: H/a=0·2, 1

H/a=0·2 H/a=1
ZXXXXXXXCXXXXXXXV ZXXXXXXXCXXXXXXXV

Mode Present study Chiba [32] Present study Chiba [32]

First 148 144 100 97
Second 617 614 520 515
Third 1505 1510 1397 1406

Circular frequencies (rad/s) obtained by using the proposed method are compared in
Table 2 with results obtained by Kondo [23] and Gupta and Hutchinson [25] for the
axisymmetric bulging modes (n=0) of a circular cylindrical shell simply supported at both
ends (c1 =0) and having the following dimensions: a=25 m, L=30 m, H=21·6 m and
hS =0·03 m. The shell is considered made of a steel with the following material properties:
E=206 GPa, rS =7850 Kg m−3 and v=0·3; the base of the tank is rigid and the liquid
inside the shell is water, having rL =1000 kg m−3. The results obtained are compared to
the data given in reference [23] and obtained by using both the exact solution and the
Fourier series solution, and to results given in reference [25] and obtained by an
approximate formula. It is clear that the present results are closer to the exact solution
than the Fourier series results [23] and the approximate results of reference [25].

Figure 2. The first four mode shapes with n=4 nodal diameters of the tank having hP =0·55 mm and
H=0·6 m. Natural frequencies: (a) 100·86 Hz; (b) 124·49 Hz; (c) 292·08 Hz; (d) 319·66 Hz.
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Figure 3. The first four mode shapes with n=4 nodal diameters of the tank having hP =0·55 mm and
H=0·2 m. Natural frequencies: (a) 124·47 Hz; (b) 187·48 Hz; (c) 292·05 Hz; (d) 536·84 Hz.

A further comparison is then also given in order to check the theory proposed to
investigate the liquid–plate coupled vibrations. To this aim, the results given by Chiba [32]
for a circular bottom plate clamped to a rigid circular cylindrical shell are compared with
the results of the proposed theory for two different levels of water inside the tank. The
plate dimensions are: a=0·144 m and hP =2 mm, and the plate’s material is a steel having
E=206 GPa, rP =7850 kg m−3 and n=0·25 [32]. The natural frequencies (Hz) of
axisymmetric bulging modes (n=0) are compared in Table 3 and a good agreement is
verified; it is to be noted that the data in reference [32] are given in diagrammatic form,
so that the actual values could be little different from those reported in Table 3. It is
interesting to observe that the conditions of rigid shell or rigid bottom plate can be
obtained by the proposed theory, giving a very high value to the Young’s modulus of the
corresponding element (E:a).

5.2.       

The study is now addressed to tanks partially filled with water, having rL =1000 kg m−3.
In the cases studied, both the shell and the plate are assumed to be made of steel with
the following material properties: E=206 GPa, rS = rP =7800 kg m−3 and n=0·3 (the
mass density of this steel is little different from that considered in section 5.1). Tall tanks
(Le 2a ) are initially considered; the dimensions fixed for all computations relative to this
case are: a=0·175 m, L=0·6 m and hS =1 mm. The elastic foundation is initially not
considered (k1 =0), and the plate and the shell are considered to be coupled by a spring
with infinite (in practice) stiffness at the joint (c1:a).

First, a tank with a bottom plate having a thickness hP =0·55 mm and being
completely water-filled (H=0·6 m) is studied. The first four mode shapes having n=4
nodal diameters are given in Figure 2. Mode shapes are plotted in the tank cross-section
defined by u=0 and u= p. The mode shapes with an even number n of nodal diameters
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Figure 4. The first four mode shapes with n=4 nodal diameters of the tank having hP =1 mm and H=0·6 m.
Natural frequencies: (a) 101·08 Hz; (b) 287·96 Hz; (c) 320·28 Hz; (d) 607·81 Hz.

are symmetric with respect to the longitudinal axis, whereas those modes with an odd
number n are antisymmetric. In Figure 2 there are symmetric mode shapes; the first (Figure
2(a)) and fourth (Figure 2(d)) modes are shell-dominant (shell displacement larger than
plate displacement), while the second (Figure 2(b)) and third (Figure 2(c)) are
plate-dominant. It is clear that, due to the relatively small plate thickness, the plate is
dragged by the shell. If one neglects the coupling effect of the liquid (T*(1–2)

L =T*(2–1)
L =0)

in the computation of the natural frequencies one obtains the following results: first mode

Figure 5. The effect of the spring stiffness c1 on the natural frequencies (Hz) of the first four modes, with four
nodal diameters, of the tank having hP =0·55 mm and H=0·6 m. The first two plate-dominant modes and the
first two shell-dominant modes are given. ——Q——, P1; ——E——, P2; ——q——, S1; ——e——. S1.
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Figure 6. The effect of the elastic Winkler foundation stiffness k1 on the natural frequencies of the first four
modes, with four nodal diameters, of the tank having hP =0·55 mm, H=0·6 m and c1 =a. The first two
plate-dominant modes and the first two shell-dominant modes are given. Key as Figure 5.

100·79 Hz, second mode 124·49 Hz, third mode 291·64 Hz and fourth mode 319·72 Hz.
These results are close to the actual frequencies given in the caption of Figure 2. Therefore
the coupling effect of the liquid is not great in this case.

In Figure 3, the same tank is considered to be partially filled with a level of water
H=0·2 m and modes with n=4 are considered. The natural frequencies are obviously
higher than in the preceding case and the mode shapes are changed. In this case, the first
and second modes are shell-dominant and the third and fourth are plate-dominant.

In Figure 4 the tank with the bottom plate of thickness hP = hS =1 mm is considered
to be completely water-filled (H=0·6 m and n=4). The plate has now a greater flexural
stiffness than in the two preceding cases. In fact, upon comparing Figures 2(a) and 4(a),
it is clear that the plate is now less dragged by the shell. Moreover, the natural frequencies

Figure 7. Natural frequencies as functions of the depth ratio H/L. Modes with four nodal diameters of the
tank with hP =0·55 mm. The first three plate-dominant modes (P1, P2 and P3) and the first two shell-dominant
modes (S1 and S2) are reported. Key as Figure 5, with ——R——, P3.
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Figure 8. Natural frequencies as functions of the depth ratio H/L. Modes with four nodal diameters of the
tank with hP =1 mm. The first two plate-dominant modes (P1 and P2) and the first three shell-dominant modes
(S1, S2 and S3) are reported. Key as Figure 5, with ——r——, S3.

of the shell-dominant modes are less affected by the increase of the plate thickness than
plate-dominant modes.

The effect of the spring stiffness c1 at the shell–plate joint is illustrated in Figure 5 for
the completely water-filled tank with hP =0·55 mm and n=4. This figure shows that some
modes are more sensitive to the spring stiffness than others and that a stiffness c1 =106

[Nm/m] can be used to simulate an infinite stiffness in computations, for the tank
considered. It is also interesting to remember that, due to the artificial spring method used,
all the axisymmetric conditions at the plate–shell joint can be simulated by changing only
the spring stiffness value c1.

The presence of an elastic Winkler foundation is now considered for the same tank
completely water-filled with n=4 and c1:a. It is interesting to note that in Figure 6, due
to the low relatively flexural stiffness of the plate considered, the first mode is little affected

Figure 9. Natural frequencies as functions of the depth ratio H/L; the plate and the shell are both considered
to be uncoupled. Modes with four nodal diameters of the plate with hP =0·55 mm. The first three plate modes
(P1, P2 and P3) and the first two shell modes (S1 and S2) are reported. Key as Figure 7.
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Figure 10. Natural frequencies as functions of the number of nodal diameters n: modes of the completely
water-filled tank with hP =1 mm. The first two plate-dominant modes (P1 and P2) and the first two
shell-dominant modes (S1 and S2) are given. Key as Figure 5.

by the increase of the foundation stiffness k1. On the contrary, plate-dominant modes are
greatly affected by a change of k1.

The natural frequencies of the tank as function of the depth ratio H/L are shown in
Figures 7 and 8 for two different values of the thickness hP of the bottom plate and
for n=4. Plate-dominant modes show similar curves, that are different from curves
relative to shell-dominant modes. Figure 9 is similar to Figures 7 and 8, but it relates
to the shell and the plate vibrating completely uncoupled, considering the other
component of the tank to be rigid; so that there is no coupling effect due to the spring
and to the liquid. A comparison of Figures 7 and 9, that are relative to the tank having
hP =0·55 mm, shows that the natural frequencies of plate-dominant modes decrease in
the uncoupled case, Figure 9; for shell-dominant modes this phenomenon is almost

Figure 11. Natural frequencies as functions of the depth ratio H/L for the shallow tank studied. The first three
plate-dominant modes (P1, P2 and P3) and the first two shell-dominant modes (S1 and S2) with four nodal
diameters are considered. Key as Figure 7.
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imperceptible, due to the low flexural stiffness of the plate considered with respect to shell
flexural stiffness.

The natural frequencies as functions of the number of nodal diameters n are given in
Figure 10 for the completely water-filled tank with 1 mm plate thickness. For the tank
considered, the shell-dominant mode having the lower frequency has n=4 nodal
diameters, whereas the plate-dominant mode having the lower frequency has no nodal
diameters (n=0); obviously, the first shell-dominant mode has no nodal circles (excluding
at the edges), as well as the first plate-dominant mode.

The results given so far refer to tall tanks whereas natural frequencies (Hz) relating to
a shallow tank are reported in Figure 11. The tank dimensions are: a=L=0·175 m,
hS = hP =1 mm and H=06 0·175 m. Also, for this shallow tank one can see that the
effect of the liquid plays an important role on the natural frequencies.

6. CONCLUSIONS

The vibration problem of circular cylindrical tanks, partially filled with liquids has a
relevant role in many engineering applications. The artificial spring method allows a
flexible and accurate description of the system; the inclusion of other complicating effects,
not considered in the present paper, is made possible by using the same procedure. This
approach, already successfully used in the study of the empty plate-ended circular
cylindrical shell and its internal sound field, can be used to describe the free vibrations of
the fluid-loaded structure. If one is interested only in bulging modes, a zero dynamic
pressure can be imposed on the free liquid surface, neglecting the free surface waves, and
the solution of the coupled liquid–structure problem is obtained by a linear eigenvalue
problem.

It was found that the natural frequencies and mode shapes of thin walled tanks are
greatly affected by the presence of different water levels inside. An interesting shell–plate
coupling is observed in mode shapes; this coupling is due both to the artificial spring, which
simulates the shell–plate joint, and to the liquid inside the tank. The presence of a joint
that can be modelled with opportune stiffness in order to simulate the actual behaviour
of the shell–plate system and the effect considered of an elastic Winkler foundation also
makes the model more realistic for some engineering applications.
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APPENDIX A: SPRING MATRIX KC

In this appendix, the partitioned spring matrix KC, equation (57), is reported. The
elements of the spring submatrix K1 of dimension N×N are given by

(K1)sj =B2(p2/L2)sj. (A1)

The elements of the spring submatrix K2 of dimension N×(N	 +1) are given by

(K2)si =−B(p/L)s(lin/a)[AinJ'n(lin)+CinI'n(lin)]. (A2)

The elements of the spring submatrix K3 of dimension (N	 +1)× (N	 +1) are given by

(K3)ih =(lin/a)(lhn/a)[AinJ'n(lin)+CinI'n(lin)][AhnJ'n(lhn)+ChnI'n(lhn)]. (A3)

APPENDIX B: MATRIX ML FOR PARTIALLY FILLED TANKS

In this appendix, the elements of the partitioned matrix ML, describing the inertial effect
of the liquid inside the tank, are given only for asymmetric modes; the axisymmetric case
is easily obtained by using the equations given in section 3. The elements of the submatrix
M1 of dimension N×N are given by

(M1)sj =B2 s
a

m=1

4smssjm

(2m−1)p $In02m−1
2

p
a
H1%>$I'

n02m−1
2

p
a
H1%, (B1)

where sms are defined in equations (24a,b). The elements of the submatrix M2 of dimension
N×(N	 +1) are given by

(M2)si = 1
2Ba6 s

a

k=0

KinkJn(enk)$z(1)
snk −

z(2)
snk

tanh (enkH/a)1
+ s

a

m=1 $4sms>$(2m−1)pI'n02m−1
2

p
a
H1%%(Ainj

(1)
imn +Cinj

(2)
imn)7 (B2)

where Kink , z(1)
snk , z(2)

snk , j(1)
imn , and j(2)

imn are defined in equations (31), (41), (42), (46) and (47),
respectively. The elements of the submatrix M3 of dimension (N	 +1)× (N	 +1) are given
by

(M3)ih = a2 s
a

k=0

(Ainbink +Cingink)
ankonk

(Ahnbhnk +Chnghnk) tanh 0onk
H
a1. (B3)


