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REFLECTION OF FLEXURAL WAVES IN
GEOMETRICALLY PERIODIC BEAMS
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The paper focuses on the reflection characteristics of elastic beams having a periodically
varying cross-sectional area. Assuming a weak sinusoidal variation of the beam
cross-section along its axis, perturbation methods are employed to determine flexural
resonance conditions and analyze the resonant destructive interaction of flexural waves
with the periodic beam. This interaction is represented in the form of coupled-wave
equations, which are solved analytically, together with relevant boundary conditions, at the
ends of the periodic section of the beam. The reflection coefficient is then calculated for
beams having different types of periodicity. This study is intended to provide guidelines to
control passively the flexural vibration in beams.

7 1997 Academic Press Limited

1. INTRODUCTION

Periodic beams have been a subject of special interest due to their common usage in several
engineering applications. Based on the type of periodicity, they can be classified under the
following two general categories: (1) Beams with geometric/material periodicity, (2) beams
resting on equispaced supports. Most of the efforts so far to model dynamically periodic
beams has been spent on the characterization of the second category.

As a result, several studies have been published on wave motion in continuous beams
over equispaced supports. Heckl [1] used the receptance method to study the transmission
of bending and torsional waves on beams with periodic discontinuities. Ungar [2] derived
expressions that describe the steady-state behavior of infinitely long beams with uniformly
spaced attached impedances. Lin and McDaniel [3] applied the transfer matrix method on
a periodic Bernoulli-Euler beam on many elastic supports. Mead [4] looked at the free
vibratory harmonic motion of an undamped infinite beam on regularly spaced identical
supports as a group of sinusoidal waves travelling in different directions at different speeds.
Mead and Pujara [5] have obtained the response of periodically stiffened beams due to
spatial and temporal harmonic pressure in the form of a series of space harmonics, evolved
from considerations of progressive wave propagation. Abrahamson [6] presented
formulations for deriving normal modes in infinite periodic structures, by introducing wave
propagation constants via ‘‘propagation selection conditions’’. Orris and Petyt [7] used a
finite element technique to evaluate the frequency variation of the imaginary part of the
propagation constant of a periodically supported infinite beam. Mead and Mallik [8] used
an approximate assumed mode method to predict the space-averaged response of a
periodically supported beam subject to convected loading. Mead and Markus [9] studied
the interaction between longitudinal and flexural wave motion in beams, to which offset
spring-mounted masses were attached at regular intervals. Mead [10] found a receptance
function for a periodic Timoshenko beam, which is subjected to an array of harmonic
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forces or moments, by dealing with them as phased arrays. Zhang and Zhang [11] studied
the energy flow in a periodically supported beam and reached the conclusion that the
power transmitted along the periodic beam in both directions is equal. Mead et al. [12]
provided a proof of this phenomenon. Mukherjee and Parthan [13] applied the wave
approach, using deflection functions which satisfy geometric and force boundary
conditions, to analyze the free vibration of rotationally restrained infinite periodic beams
on rigid supports.

Comparatively speaking, beams with periodic geometry or material properties have
received less attention. Periodically segmented beams, where material properties vary in
a piecewise fashion, have been considered. Tassilly [14] used Floquet theory to obtain the
dispersion relation and analyzed Brillouin zones for bending waves in a two-segment
periodic beam. Each segment was modeled as a Bernoulli-Euler beam with damping
properties and resting on an elastic foundation. Lee et al. [15] considered flexural wave
propagation in a periodically segmented beam, with each unit cell made up of two
materials, using Floquet theory. They investigated the decoupling of the dispersion relation
at the end points of the Brillouin zone. Nayfeh and Hawwa [16] employed the transfer
matrix method to reach the dispersion relation of flexural waves in multi-segmented
periodic beams, by giving each segment the possibility of having material viscosity, elastic
foundation, and axial force.

More scarce has been the study of wave motion in periodic beams with continuously
varying material or geometric properties. Lee and Ke [17] used the Floquet theory to study
flexural waves in a periodic beam with continuously varying mechanical impedance. They
presented the banded structure of the dispersion curves and showed that the dispersion
relation is uncoupled into two simpler ones at the end points of Brillouin zones as in
reference [15].

The present paper gives special attention to the problem of wave propagation in beams
with continuous geometric periodicity, emphasizing the reflection characteristics of such
beams. Using perturbation techniques, an analysis is given for the interaction of flexural
waves with an elastic beam having a sinusoidally varying cross-sectional area. The
straightforward asymptotic expansion is found to break down when the wavenumber of
the flexural wave is half of that of the beam periodicity, corresponding to the Bragg
resonance in the area of solid-state physics. Uniform expansion near resonance is obtained
by using the method of multiple scales, leading to the coupled-wave equations describing
a stopband interaction. Numerical illustrations are given in terms of the wave reflection
coefficient.

2. PROBLEM FORMULATION

Figure 1 represents a periodic section of an infinitely-extended elastic beam. The periodic
segment extends from x̂=0 to x̂=L and has a sinusoidally varying thickness which is
described as h
 (x̂)= h
 0{1+o[d sin (k
 ex̂+ u)− sin (k
 ex̂)]}, where h
 0 is the average thickness
of the beam, ke is the wavenumber of the periodic surfaces, o is a small dimensionless
parameter much smaller than unity and equals to the ratio of the amplitude of the
sinusoidal variation of the surface to h
 0, d is a parameter allowing for different amplitudes
of the periodic surfaces, and u is a phase angle.

The governing equation of time-harmonic flexural waves in terms of deflection in the
y-direction (V
 ) is given by

E
12

1x̂2 $I
 (x̂)
12V

1x̂2%− rv2A
 (x̂)V
 =0, (1)
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where A
 is the cross-sectional area, I
 is the moment of inertia, v is the frequency of
oscillation, and r is the material density. Dimensionless quantities (without the carets) are
introduced by using the average thickness of the beam, h
 0, as the characteristic length. The
following dimensionless governing equation is obtained:

d4V
dx4 +02I dI

dx1 d3V
dx3 +01I d2I

dx21 d2V
dx2 −0rv2

E
h
 20

A
I1V=0. (2)

Using a power series expansion of [I(x)]−1 and defining the flexural wavenumber
k=(rA0/EI
 0)1/4v1/2h
 0, equation (2) can be written in the following Hill-type form:

d4V/dx4 + o{[d cos (kex+ u)− cos (kex)](6ke d3V/dx3)+ [d sin (kex+ u)

− sin (kex)](2k4V−3k2
e d2V/dx2)}− k4V+H.O.T.=0. (3)

The flexural wave is assumed to emanate from x=−a. As the wave is incident on the
periodic section of the beam, it will be exposed to a process of successive reflections, and
consequently, it is partly reflected from and partly transmitted through the periodic
structure. Perturbation techniques are next employed to analyze the reflection process.

3. STRAIGHTFORWARD ASYMPTOTIC EXPANSION

An approximate solution for V is sought in the form

V(x)=V0(x)+ oV1(x)+ · · · (4)

by substituting equation (4) into equation (3) and equating each of the coefficients of o0

and o1 to zero, to obtain

O(1): d4V0/dx4 − k4V0 =0, (5)

O(o): d4V1/ dx4 − k4V1 =−[d cos (kex+ u)− cos (kex)](6ke d3V0/dx3)

+ [d sin (kex+ u)− sin (kex)](3k2
e d2V0/dx2 −2k4V0). (6)

The general solution of equation (5) can be written as

V0 =A eikx +B e−ikx +C ekx +D e−kx, (7)

Figure 1. Beam geometry.
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where A,B,C, and D are arbitrary constants. By considering only propagating waves, V0

can be substituted in equation (6) and the trigonometric functions expressed in polar form.
This yields terms including ei(ke 3 k)x at the right-hand side. Such terms produce secular terms
in the particular solution of V1 when

22k1 ke , (8)

which leads to the break down of the asymptotic expansion. To remedy this, the method
of multiple scales is employed in the next section [18].

4. METHOD OF MULTIPLE SCALES

To find a uniform expansion (free of secular terms) near resonance, a first-order
perturbation expansion is sought for V in powers of o in the form

V(x)=V0(X0, X1)+ oV1(X0, X1)+ . . . , (9)

where X0 = x is a short length scale of the order of the wavelength in the beam and X1 = ox
is a long length scale which characterizes the spatial amplitude and phase modulations due
to the geometric periodicity. The derivatives with respect to x are expanded in terms of
o as

d
dx

=
1

1X0
+ o

1

1X1
+ · · · ,

d2

dx2 =
12

1X2
0
+2o

12

1X0 1X1
+ · · · ,

d3

dx3 =
13

1X3
0
+3o

13

1X2
0 1X1

+ · · · , and
d4

dx4 =
14

1X4
0
+4o

14

1X3
0 1X1

+ · · · . (10)

Substituting equations (9) and (10) into equation (3), and equating the coefficients of o0

and o1 on both sides, one has

O(1): 14V0/1X4
0 − k4V0 =0 (11)

O(o): 14V1/1X4
0 − k4V1 =−414V0/1X3

0 1X1 − [d cos (keX0 + u)− cos(keX0)]

× (6ke 13V0/1X3
0)+ [d sin (keX0 + u)

− sin (keX0)](3k2
e 12V0/1X2

0 −2k4V0). (12)

The general solution of equation (11) is given in the form

V0 =A+(X1) eikX0 +A−(X1) e−ikX0 +B+(X1) ekX0 +B−(X1) e−kX0, (13)

where A+ (A−) are the amplitudes of the incident (reflected) wave, and B+ (B−) are the
amplitudes of the near field incident (reflected) wave. Attention will be given only to the
propagating waves. The wave amplitudes are unknown functions of the long scale X1 at
this level of approximation.

In order to describe quantitatively the nearness of the wavenumber k to resonance, a
detuning parameter s of O(1) is introduced such that

2k= ke + os. (14)

Equation (13) is substituted into equation (12), the resonance condition (14) is imposed,
and trigonometric functions are expressed in polar form. Then, the terms that produce
secular terms in V1 are eliminated to ensure a uniform expansion. This is accomplished
by setting each of the coefficients of e3ikX0 to zero. The result is

dA+/dX1 =CcA− e−isX1, dA−/dX1 =C*c A+ eisX1, (15, 16)
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Figure 2. Resonant reflection coefficient versus the phase angle u when a=1.

where the superscript * indicates a complex conjugate, and

Cc =(1/8k)(6kke −3k2
e −4k2)(d eiu −1). (17)

Equations (15) and (16) are the coupled-wave equations. They describe the resonant wave
interaction in the periodic section of the beam. From the coupled-wave equations, one
realizes that the physical meaning of the resonance condition given by equation (8) is that
a wave travelling in the +x-direction generates necessarily its counterpart wave travelling
in the −x-direction, resulting in a stopband interaction. This corresponds to the well
known Bragg condition in the field of solid-state physics.

Before this analysis is closed, it must be mentioned that the other possibility of building
a beam with a periodic cross-sectional area is to have the width of the beam vary
periodically. It is found that a beam with a periodic width has weak reflection properties
and it does not show any resonance phenomenon. The analysis of this case is included in
Appendix A.

5. DISCUSSION AND EXAMPLES

To solve the coupled-wave equations (15) and (16), they are provided with relevant
boundary conditions. Without any loss of generality, these conditions are given by

A+ =1, at X1 =0; A− =0, at x1 = l. (18)

Note that the first condition represents the excitation amplitude of the incident wave,
and the second condition expresses the fact that the reflected wave vanishes at the end of
the periodic section. System (15)–(18) forms a standard two-point boundary value problem
that can be solved analytically for the missing boundary conditions.

To facilitate the algebra, system (15)–(18) is transformed into an autonomous one by
introducing the transformations

A− = a−, A+ = a+ e−isX1, (19)

which leads to

da+/dX1 =Cca− + isa+, da−/dX1 =C*c a+, (20, 21)

a+(0)=1, a−(l)=0. (22)
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The system of equation (20)–(22) is now solved for the missing boundary condition at
x=0, i.e.,

a−(0)=Cc( el1l −el2l)/[l2 el1l − l1 el2l], (23)

where
l1,2 = 1

2[−is3 (4CcC*c − s2)1/2]. (24)

To evaluate the reflection process in the periodic section of the beam, the reflection
coefficient is used as an indicator. It can be calculated from the relation R= =a−(0)/a+(0)=.

For the numerical example, a beam is assumed to be made of aluminum with
r=2·7×103 kg/m3 and E=7·1×1010 N/m2. The beam has an average thickness, h
 0 1 cm
and a width, b
 =5 cm. The geometric periodicity is built in such a way that the beam
wavenumber is equal to twice the wavenumber of the flexural wave propagating at a
frequency of 1250 Hz. Then, the periodicity of the beam is described as
b=5[1+ od sin (5·15x+ u)− sin (5·15x)] cm. Hence, the wavelength of the periodic
beam is L=1·22 cm. The small parameter o is taken to be 0·1, and the length of the
periodic section is assumed to be l=10L.

Figure 3. Reflection coefficient versus frequency when a=1 for (a) u=5°, (b) u=45°, (c) u=90°, and (d)
u=180°.
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Figure 4. Reflection coefficient versus N (number of resonant wavelengths of the periodic section of the beam).

An important consideration when studying the reflection characteristics of the beam is
to determine the roots of the coupling coefficient Cc . These roots correspond to the cases
of decoupling, i.e., unmodulated propagation. This occurs when d eiu −1=0. For the case
when d=1, decoupling occurs at u=0 or 2p, corresponding to the case of a wavy beam.
The variation of the reflection coefficient at resonance with the phase angle u for the case
when d=1 is shown in Figure 2. One notes that periodic beams act well as wave filters
except when u is equal 0 or 2p. If d$ 1, the coupling coefficient, Cc , has no roots, which
means that the wave will always suffer some reflection for every u.

The reflection coefficient spectra for periodic beams with d=1 and u=5, 45, 90, and
180° are shown in Figures 3a–d. Reflection at resonance is noticed to be complete in all
beams except in that with a phase angle of 5°. The widths of the stopbands shown in the
reflection coefficient spectra are respectively 100, 340, 430, and 620 Hz. This indicates that
a periodic beam with best performance is the one having d=1 and u=180°.

The influence of the length of the periodic section of the beam on its reflection
characteristics is also examined. For a beam with d=1 and u=90°, the reflection
coefficient is monitored against the length of the periodic section for representative
frequencies in Figure 4. The length of periodic section is measured by the number of
periods. It is evident that the wave is efficiently reflected for all lengths at the resonance
frequency 1250 Hz. This is an expected result because the beam periodicity is tuned to filter
out the wave at that frequency. For frequencies which lie in the ‘‘rippled region’’ of the
reflection coefficient spectrum, such as 1000 Hz and 2000 Hz, reflection varies critically
when changing the length of the periodic section.

It is finally worth mentioning that any periodic function can be expressed in terms of
a summation of sinusoidal periodicities using Fourier series. Thus, the above analysis could
be considered as a building block to handle beams with a piece-wise, continuous type of
periodicity.
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6. CONCLUSION

The stopband reflection of flexural waves in a periodic beam, whose thickness or width
are sinusoidally varying, has been analyzed. The analysis has been performed using
asymptotic expansions, leading to the derivation of the coupled-wave equations. The
performance of the beam, as flexural wave filters, was presented in terms of the reflection
coefficient. It was found that a beam with periodic thickness reflects flexural waves more
efficiently than a beam with periodic width. It is concluded that the interaction could be
weakened or strengthened by carefully designing the phase difference. The choice depends
on the type of application for which the beam is to be employed.
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APPENDIX A: BEAM WITH A PERIODIC WIDTH

An elastic beam which has a sinusoidally varying width is considered. The width is
described by b(x̂)= b
 0{1+ o[d sin (kex̂+ u)− sin (kex̂)]}, where b
 0 is the average width of
the beam, ke is the wavenumber of the edges, o is a small dimensionless parameter and equal
is to the ratio of the amplitude of the sinusiodal variation of an edge to b
 0, d is a parameter
allowing for different amplitudes of the periodic edges, and u is a phase angle.

Using the average width of the beam b
 0 as the characteristic length, defining
k=(rA
 0/EI
 0)1/4v̂1/2b
 0, and expanding [I(x)]−1 in terms of a power series, the following
governing equation of flexural motion is obtained:

d4V/dx4 +2oke [d cos (kex+ u)− cos (kex)] d3V/dx3 − ok2
e [d sin (kex+ u)

− sin (kex)] d2V/dx2 − k4V+H.O.T.=0. (11)

An approximate solution for V is sought in terms of a straightforward asymptotic
expansion in the form

V(x)=V0(x)+ oV1(x)+ · · · . (2)

Then, one obtains the following two problems:

O(1): d4V0/dx4 − k4V0 =0, (3)

which has the solution (7) of section 3, and

O(o):
d4V1

dx4 − k4V1 =−2ke [d cos (kex+ u)− cos (kex)] d3V0/dx3

+ k2
e [d sin (ke + u)− sin(kex)]

d2V0

dx2 . (4)

Substituting for V0 from equation (7) into the right-hand side of the O(o) problem leads
to the following particular solution of V1:

V1p =
ik2(d eiu −1)

2[(ke − k)2 + k2]
A ei(ke − k)x −

ik2(d e−iu −1)
2[(ke − k)2 + k2]

B e−i(ke − k)x, (5)

which is a uniform solution even when 2k1 ke . Hence, resonance does not occur in this
case, and the flexural wave is weakly reflected.


