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A RADIATION EFFICIENCY FOR UNBAFFLED
PLATES WITH EXPERIMENTAL VALIDATION

C. H. O†  S. D

Department of Mechanical Engineering, M.I.T., Cambridge, MA 02139, U.S.A.

(Received 7 July 1995, and in final form 1 July 1996)

A radiation efficiency is developed for sound radiation from rectangular plates with
unbaffled edges below the plate critical frequency. The expression modifies the modal
average radiation efficiencies obtained from the simply supported plane-baffled plate by
considering the effects of fluid flow around a structure. These flows reduce sound radiation
by allowing fluid to escape compression. The unbaffled plate radiation efficiency is assessed
by comparison with experimental data of sound radiated by impacts between balls and a
plate. The expression is observed to be more accurate than the simply supported
plane-baffled plate model and more versatile than a model of sound radiated from a
plane-baffled free edge of a plate. Sound radiated by non-propagating plate vibration near
ball-plate impacts appears to play a minor role. Improvements in accuracy over the simply
supported plane-baffled model typically range from 4–12 dB, with the greatest
improvements occurring at low frequencies. A statistical method for bounding radiated
sound power with a degree of confidence is also developed and tested against measured
data. The results are encouraging but not statistically conclusive due to a limited amount
of measured data.
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1. INTRODUCTION

Substantial research has addressed the important problem of sound radiation from plates
[1–6]. Plate acoustics are often described in terms of radiation efficiencies, which relate
radiated sound power to spatially averaged vibration [7]. Using a simply supported
plane-baffled plate model, radiation efficiencies have been derived for both individual plate
modes and sets of plate modes [1, 8, 2, 9, 3]. The latter are called modal average radiation
efficiencies and are obtained by assuming that plate modes resonate with equal energy
[1, 8].

The plate critical frequency has been identified as an important parameter [1, 10]. Sound
with frequencies above critical is radiated efficiently and depends largely on the area and
the space-averaged square of surface velocity [1, 8]. Sound with frequencies below critical
is radiated less efficiently [1, 10], and depends largely on the spatial distribution of
vibration near structural discontinuities such as the plate perimeter or stiffeners [11, 12],
and neighboring structures which baffle the plate [13].

Various descriptions of these low frequency phenomena have been developed. These
include representations of the effects of stiffeners [1], neighboring structures [13], free
boundary conditions [14], and oscillating inertial flows surrounding a plate at low
frequencies where the acoustic wavelength exceeds plate dimensions [15]. A correction to
describe the effect of radiation-reducing inertial flows occurring in a localized region near
the edges of unbaffled plates at higher frequencies has not been developed, although a
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means for obtaining such a correction was suggested [16]. An iterative numerical method
has also been used to compute sound radiation from unbaffled plates [17].

In this paper a radiation efficiency for unbaffled rectangular plates is developed for
frequencies below the plate critical frequency. In developing the expression, radiating
sources near the plate perimeter are represented by oscillating spheres and cylinders as
suggested in reference [16]. The unbaffled plate radiation efficiency contains newly derived
local corrections that account for the effects of localized inertial flows near the edges of
unbaffled plates and is presented in Section 2. The unbaffled plate radiation efficiency also
contains a plate correction similar to that of reference [15] to represent the effects of inertial
flows that envelop a plate at low frequencies. The local and plate corrections both contain
scaling factors which are obtained empirically by comparison with measured data reported
in previous work [18]. The unbaffled plate radiation efficiency is assessed in Section 3 by
comparison against this data and predictions by existing models, namely the simply
supported baffled plate model and a model of sound radiation from baffled plate edge with
a free boundary condition [14]. The unbaffled expression is then assessed further using
measurements of sound power radiated by balls impacting a plate in Section 4. Predictions
by the baffled-supported and baffled-free plate radiation models, as well as a model of
sound radiated by non-propagating plate vibration near ball-plate impact points, are
compared to the measured data and the unbaffled radiation efficiency. A method for
bounding sound power with a degree of certainty is also presented in Section 4 which is
based on reference [19].

2. A RADIATION EFFICIENCY FOR UNBAFFLED PLATES

2.1. 

Radiation efficiency s is defined as the proportionality between radiated sound power
P and the square of surface normal velocity �v2� averaged over time and radiating surface
S:

P= srocS�v2�, (1)

in which ro is the density of the acoustic fluid, and c is the speed of sound. A radiation
efficiency for frequencies below the plate critical frequency has been developed by
averaging radiation efficiencies of the modes of a simply supported plane-baffled plate
[1, 2]. In this paper this expression is called the (subcritical) baffled plate radiation
efficiency:

sbaf = scorner + sedge , fQ fc , (2)

in which scorner and sedge are the modal average radiation efficiences for the so-called corner
and edge modes, and fc is the critical frequency of the plate. Corner modes radiate primarily
from regions near the corners of a plate (see Figure 1), and edge modes radiate primarily
from regions along the plate perimeter [1]. The scorner and sedge are given by [1]

scorner =
8
p4 0l2

c

A1×6(1−2a2)/(a(1− a2)1/2), a2 Q 1/2,
0, a2 e 1/2,

(3)

sedge =
1

4p2 0Plc

A 1$(1− a2) ln ((1+ a)/(1− a))+2a

(1− a2)3/2 % , (4)
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in which A=area of one side of a plate, P=plate perimeter, a=( f/fc)1/2 where f is
frequency and fc is plate critical frequency, and lc =acoustic wavelength at the plate
critical frequency.

The expression in equation (3) was originally presented in reference [1] and has been
corrected in reference [20]. The radiation efficiency of equation (2), based on a simply
supported model with an infinite plane baffle, cannot accurately model sound radiation
at low frequencies where the plate is unbaffled, or surrounding structures serve as
non-plane acoustic baffles and affect sound radiation [1, 16]. The radiation efficiency
introduced in the next section overcomes this limitation for unbaffled plates which have
no surrounding structures through the use of oscillating spherical and cylindrical sources,
as shown in Figure 1.

2.2.       

The subcritical radiation efficiency sunb presented in this paper is intended for sound
radiation below the critical frequency of rectangular unbaffled plates. In the development
it is assumed that the plate edges are simply supported and that sound is radiated primarily
by resonating plate modes that vibrate with equal energies, as has been done to obtain
the modal average radiation efficiencies scorner and sedge in equation (2). Unlike equation (2),
however, the unbaffled plate radiation efficiency is obtained by considering the effect of
hydrodynamic (oscillating inertial) flows around a plate without an acoustic baffle.
Hydrodynamic flows allow fluid to escape compression, thereby reducing sound radiation,
particularly at low frequencies at which the fluid has more time to escape compression.

The subcritical unbaffled plate radiation efficiency is given by

sunb =Fplate(Fcornerscorner +Fedgesedge), fQ fc , (5)

in which Fplate is a plate correction that accounts for the effect of inertial flows that surround
the plate at low frequencies where the acoustic wavelength exceeds the dimensions of the
plate, and the local corrections Fcorner and Fedge account for the effect on radiation from
corner and edge modes at higher frequencies due to localized inertial flows near the plate
perimeter. The correspondence between terms in equation (5) and the radiating regions of

Figure 1. Dominant radiating regions of a baffled plate (shaded), and oscillating source representation (dashed
lines) of unbaffled plate radiation. (a) Corner radiation is represented by oscillating spheres, and (b) edge
radiation is represented by oscillating cylinders. Radiation from each region is described by the product of a
baffled plate radiation efficiency sk and a correction factor Fk .
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Figure 2. Representation of baffled and unbaffled radiating regions: (a) pulsating baffled source with radial
velocity amplitude V	 r , (b) equivalent representation of pulsating baffled source, (c) oscillating source with
translational velocity amplitude V	 t .

a plate is shown in Figure 1: contributions by corner modes are represented by term
Fcornerscorner , and contributions by edge modes are represented by term sedgeFedge . The
derivation of the unbaffled plate radiation efficiency and the corrections Fplate , Fcorner , and
Fedge are discussed in the following.

The oscillatory inertial flow factors Fcorner and Fedge in equation (5) multiply a radiation
efficiency obtained from the simply supported baffled plate model. It is convenient to
introduce the following form:

sk, unb =Fksk, baf , (6)

in which subscript k refers to corner, edge, or plate. In the following discussion the factors
are presented according to the size of the region in which radiation-reducing flow occurs.

2.2.1. The local corrections
The corrections Fcorner and Fedge describe the effects of localized flow in the vicinity of the

perimeter of an unbaffled plate. Corner and edge corrections are introduced for the corner
and edge regions that are largely responsible for sound radiation from a simply supported
baffled plate; see Figure 1. No local correction is introduced for the so-called surface modes
because these modes radiate from the entire plate surface [1, 8] and are therefore assumed
to be affected negligibly by local flows.

Consider the removal of the baffle from a plane-baffled plate. With the baffle present,
corner and edge modes radiate from both sides of the plate like pulsating spherical and
cylindrical sources located next to the plate perimeter. With the baffle removed, fluid flow
couples pairs of these oppositely phased sound sources on opposing sides of the plate, and
oscillating sources are formed. The transition from a baffled plate to an unbaffled plate
may therefore be modeled by replacing pulsating sources by oscillating sources, as
suggested in reference [16]. Spherical sources are used for the corner regions, and
cylindrical sources are used for edge regions, as indicated in Figure 1. Identical radii are
used for corresponding pulsating and oscillating sources because the size of the radiating
corner and edge regions is independent of baffling.

A local correction is related to the sound power ratio of oscillating and pulsating
sources:

Flocal = 1
2 0Posc

Ppul1 . (7)

The factor of 1/2 arises because radiation efficiency is inversely proportional to radiating
surface area, which doubles in going from a one-sided baffled plate to a two-sided
unbaffled plate; see equation (1). The sound power ratio Posc/Ppul is found using the
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modeling scheme shown in Figure 2. A radiating baffled corner or edge region is
represented by a pulsating source with a semi-circular profile and uniform radial velocity
amplitude V	 r ; see Figure 2(a). The tilde in V	 r denotes a complex quantity with magnitude
and phase. The semi-circular source is acoustically equivalent to the pulsating source in
Figure 2(b) which has a circular profile and the same uniform surface normal velocity V	 r .
The circular and semi-circular sources are equivalent because they both satisfy the baffled
boundary condition, namely surface normal velocity V	 _ =0 on the plane baffle and
V	 _ =V	 r on the source above the plane baffle. Unbaffled corner or edge sources are
modeled using an oscillating source with circular profile and translational rigid body
velocity amplitude V	 t as shown in Figure 2(c).

Expressions for Posc/Ppul are obtained by casting descriptions of low and high frequency
behavior into a convenient analytical form. At high frequencies radiated power depends
on the surface average of the square of normal velocity �v2� [11, 21], and the power ratio
is taken with equal mean square velocities: �v2

pul�= �v2
osc�. The local correction at high

frequencies is taken as unity because the radiated poser of pulsating and oscillating sources
is approximately the same for equal �v2�, as will be seen below. At low frequencies radiated
power depends on displaced volume [21], and the ratio is evaluated for compact pulsating
and oscillating sources with equal volume velocity magnitudes, =Q	 pul == =Q	 osc =. Here, Q	 pul is
the volume velocity amplitude displaced by the pulsating source in Figure 2(b), and Q	 osc

is the volume velocity amplitude displaced by one side of the oscillating source in Figure
2(c). The correction factor thus has the form

Flocal =
1
2

×6x(ka), ka�1,
1, ka�1,

(8)

in which x is a function of the acoustic wave number k=v/c, and the radius a of the
pulsating or oscillating source is indicative of the effective separation between the actual
source pairs on opposing sides of the plate. The low and high frequency limits of equation
(8) are found in the function

Flocal = 1
2[x(ka)/(1+ x(ka))] . (9)

The source radius a is related to the size of the efficiently radiating corner or edge region.
The size of a radiating region for a plate mode is related to the wave number components
km,x and km,y of mode shape cm:

cm =2 sin (km,xx) sin (km,yy)=2 sin (nxpx/lx) sin (nypy/ly), nx , ny =1, 2, . . . , (10)

in which lx and ly are the length and width of the plate. The radius a is assumed to be
proportional to a representative structural wavelength l�:

a= el�=2pe/k�m(km,x , km,y), (11)

in which the representative modal wave number k�m is a function of modal wave number
components, and e is a proportionality factor whose value is determined empirically below.
Substituting this relationship into equation (9) gives a local correction for plate mode m:

F m
local = 1

2[x(e2a2
m)/(1+ x(e2a2

m))], (12)

in which am = k/k�m .
The modal average unbaffled plate radiation of equation (5) is found by averaging modal

unbaffled plate radiation efficiencies over the arc in wave number space that corresponds
to the resonant plate response at frequency v. The radius of the arc is given by the bending
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wave number kb =(v/kcl)1/2 and spans both corner and edge mode regions, as shown in
Figure 3:

sunb =Fplate�sm
unb�km =Fplate�Fm

corners
m
corner,baf +Fm

edges
m
edge,baf�km , (13)

in which subscript km indicates an average over plate modal wave number. To carry out
the modal average, the summation over modes in the averaging operation is replaced by
an integration over wave number space, the assumption being that the density of plate
modes is large enough to provide a good approximation. The plate correction Fplate is
factored out from the averaging operation because it is at most weakly dependent on
modal wave number, as will be seen below.

Having presented the general procedure for deriving local correction factors and
unbaffled plate radiation efficiency, the discussion now specializes to the specific
expressions for corner and edge radiating regions. To derive the corner correction,
pulsating and oscillating spheres are used [21]:

Ppul = 1
2rocAs [(ka)2/(1+ (ka)2)]=V	 r =2, Posc = 1

6rocAs [(ka)4/(4+ (ka)4)]=V	 t =2, (14)

in which V	 r is the radial velocity amplitude of the pulsating sphere, V	 t is the translational
rigid body velocity amplitude of the oscillating sphere, and As =4pa2 is the sphere surface
area. At high frequencies, ka�1, the sound power ratio is approximately unity with equal
surface averaged squared normal velocities because �v2

pul�= 1
2=V	 r =2 for the pulsating sphere

and �v2
osc�= 1

6=V	 t =2 for the oscillating sphere. At low frequencies, ka�1, the sound power
ratio is evaluated with equal volume velocities: Q	 pul =AsV	 r for the pulsating source and
Q	 osc = 1

4AsV	 t for the oscillating source. Following equation (11), radius a is related to a wave
number that represents the size of an efficiently radiating corner region of plate mode m:
a=2pe(k2

m,x + k2
m,y)−1/2 =2pe/kb . Here, kb =(v/kcl)1/2 is the bending wave number in which

k is the plate radius of gyration, and cl is the bulk speed of the plate. Radius a corresponds
to the diagonal length of a corner region when e=1/4. Equation (12) takes the form

Flocal =Fcorner = 1
2 [(16/3)p2e2a2/(1+ (16/3)p2e2a2)], (15)

Figure 3. Wave number space for frequencies below plate critical frequency, after reference [1]. Each plate
mode has a modal wave number vector (km,x , km,y). The relation of the wave number components to the acoustic
wave number k and the bending wave number kb acoustically classifies a plate mode as a corner, edge, or surface
mode.
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in which a2 = f/fc , and superscript m has been omitted because the result is independent
of modal wave number.

The derivation of the edge correction is similar to that for the corner modes except that
cylindrical sources are used. The surface normal velocity on a cylinder is
V	 _ =V	 n cos (nf)eikzz, in which f is the polar angle over the cylinder cross-section and kz

is the wave number along the cylinder axis. The value n=0 corresponds to a pulsating
cylindrical circular cross-section, and n=1 corresponds to an oscillating cylindrical
cross-section. The relevant quantity is sound power per length P':

P'n =(rock/enk2
r a=H(2)'n (ka)=2)=V	 n =2, (16)

in which a is cylinder radius, H(2)'n (ka) is the derivative of the Hankel function of the second
kind evaluated at ka, kr =zk2 − k2

z , and en =0·5 for n=0 and en =1 for ne 1 [11].
At high frequencies, ka�1, the sound power ratio P'osc/P'pul evaluates to unity because

the square of surface normal velocity averaged over time and radiating surface is
�v2

pul�= 1
2=V	 0=2 for the pulsating cylinder and �v2

osc�= 1
4=V	 1=2 for the oscillating cylinder. At

low frequencies, ka�1, the sound power per length of the pulsating and oscillating
cylinders are [7]

P'0 = (p2/2)r0ca(ka)=V	 0=2, P'1 = (p2/4)roca(ka)3=V	 1=2, ka�1. (17)

After these expressions are written in terms of volume velocities per unit length,
Q	 'pul =2paV	 0 for the pulsating cylinder and Q	 'osc =2aV	 1 for the oscillating cylinder, the
sound power ratio is taken with equal volume velocities. A wave number that
approximately represents the width of edge regions is k�m 1 kb , the accuracy of which is
best well below the plate critical frequency [22]. The edge correction follows:

Flocal =Fedge = 1
2[2p4e2a2/(1+2p4e2a2)], (18)

which again is independent of modal wave number. Because the corner and edge
corrections of equations (15) and (18) are independent of modal wave number, the modal
averaging operation of equation (13) is a simple step and gives the subcritical unbaffled
plate radiation efficiency of equation (5).

The value for the proportionality factor e is obtained empirically by comparing predicted
and measured data for a plate reported in the literature [18]. The plate measures
0·3 m×0·3 m×1·22 mm. Its critical frequency, at which acoustic and plate bending wave
speeds are equal, is 10 200 Hz. Measured third octave band radiation data for this plate
are considered in the subsequent discussions.

Radiation efficiencies for various values of e are shown in Figure 4. The predictions are
made using equation (5): the corner and edge corrections Fcorner and Fedge are varied by
changing e, and no plate correction is applied (Fplate =1). The figure shows reasonably good
predictions of radiation efficiency from 500–5000 Hz for e=1/2. Substituting this value
into equations (15) and (18) gives

Fcorner = 1
2[13f/fc/(1+13f/fc)], Fedge = 1

2[49f/fc/(1+49f/fc)]. (19)

These local corrections suggest that the effect of localized flows on sound radiated from
regions near the plate perimeter becomes important for frequencies well below critical,
fQ fc/13, or lb Q 0·28l in terms of the plate bending and acoustic wavelengths.

The effective separation between the corner and edge regions on opposite plate sides are
suggested by the source radius a. For e=1/2, the radius is lb/2 in which lb is the plate
bending wavelength. This compares with the value lb/4 hypothesized in reference [16].
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Figure 4. Effect of local corrections as a function of proportionality factor e for a 0·3 m×0·3 m×1·22 mm
unbaffled plate: —— , measured data; – – – – – , e=0·25; . . . . . . . , e=0·5; — – — – — , e=1. Measurements
from reference [18].

2.2.2. The plate correction
At low frequencies where the acoustic wavelength exceeds plate dimensions, inertial

flows occur over a region that envelops the plate. The effect of these flows is described
by the plate correction. The plate correction for unbaffled plates is obtained by considering
the low frequency radiation of an oscillating sphere [15]:

Fplate = 1
12(kb)4, kb�1, (20)

in which b is the sphere radius and is obtained by equating radiating surface areas of the
sphere and plate, b= b(A/2p)1/2, in which A is the one-sided area of the plate.

The plate correction is modified in two ways in this paper. First, a parameter b is
introduced that multiplies the sphere radius b. Second, instead of applying the plate
correction in a piecewise manner, the low frequency limit in equation (20) is incorporated
into an expression with the form of equation (9), giving a smooth function of frequency.
The resulting plate correction is

Fplate = b4k4A2/48p2/(1+ b4k4A2/48p2). (21)

The effect of varying the proportionality factor b is shown in Figure 5. The plate
correction Fplate is varied by changing b while the corner and edge corrections of equation
(19) are applied. The value b=1 has been used implicitly in reference [15], but b=2
provides better accuracy. Substituting this value into equation (21) gives

Fplate =53f 4A2/c4/(1+53f 4A2/c4). (22)

The effect of the plate correction becomes important at low frequencies where 53f 4A2/c4 =1
or l/zA=2·7, in which l is the acoustic wavelength. This corresponds to a dimensionless
wave number of kzA=2·3, where k is the acoustic wave number.

Having presented the unbaffled plate radiation efficiency and the local and plate
corrections that it contains, its accuracy relative to other models is discussed next.

3. ASSESSMENT OF THE UNBAFFLED PLATE RADIATION EFFICIENCY

In this section the unbaffled plate radiation efficiency developed above is assessed against
measured data, predictions by the simply supported baffled plate model, and a model of
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Figure 5. Effect of plate correction as a function of proportionality factor b for a 0·3 m×0·3 m×1·22 mm
unbaffled plate: —— , measured data; – – – – – , b=1; . . . . . . , b=2; — – — – — , b=4. Measurements from
reference [18].

sound radiated by bending waves normally incident on a plane-baffled free edge of a plate.
The unbaffled plate radiation efficiency sunb of equation (5) accounts for the
radiation-reducing effects of oscillating inertial flow. The baffled plate expression splate of
equation (2), based solely on the simply supported plane-baffled plate model, does not.
The radiation efficiency of the baffled free edge model for frequencies well below critical
is [14]

sbaf,free = 2
5( f/fc)2splate . (23)

Figure 6 shows a comparison of unbaffled plate, baffled (simply supported) plate and
baffled free edge radiation efficiencies for the unbaffled plate considered in the previous
section. The unbaffled predictions generally follow the frequency dependence of the
measured data and are 3–20 dB more accurate than baffled predictions except at 1250 and
2000 Hz where baffled predictions are 1–3 dB more accurate. Improvements in accuracy
above 800 Hz where 13f/fc 1 1 result largely from the local corrections which reduce

Figure 6. Improvement in predicted radiation efficiency for 0·3 m×0·3 m×1·22 mm unbaffled plate: —— ,
measured data; – – – – – , unbaffled; . . . . . . , baffled supported; — – — –— , unbaffled supported. Measurements
from reference [18].
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Figure 7. Schematic of ball drop system.

radiation efficiency by roughly one-half (3 dB). Greater improvements below 400 Hz where
53f 4A2/c4 1 1 are due to both the local and plate corrections.

Unbaffled predictions are also seen to be more accurate than those of the baffled free
edge model. Baffled free edge predictions range 6–24 dB lower than both measured data
and unbaffled predictions. The degree of underprediction is surprising, as one might expect
removal of the plane baffle to decrease sound radiation further.

4. EXPERIMENTAL VERIFICATION

To validate further the unbaffled radiation efficiency developed in Section 2, sound
radiated by impacts between balls and a plate is examined. Measured data are compared
with predictions obtained using the unbaffled, baffled simply supported, and baffled free
edge radiation efficiencies. Sound radiated by non-propagating plate vibrations near
ball-plate impact points is also considered. Impact and plate response predictions, which
are necessary prior steps for sound radiation prediction, are done through established
methods.

A schematic of the ball drop system is shown in Figure 7. Balls are expelled periodically
from a hopper and fall onto an inclined plate. The steel balls measured 9·53 mm diameter,
were expelled at a rate of 2 Hz, and attained a velocity component of 3·9 m/s normal to
the plate prior to impact. The balls fell on one of two aluminum plates. One plate measured
0·4 m in length, 0·32 m in width, and 6·35 mm in thickness. The second had the same length
and width but was 12·7 mm thick. The plates were supported at the corners by elastic
cords. Felt was applied to each plate to provide damping. The loss factor of the
fundamental mode on each plate was measured by the decay method. For the thin plate
the loss factor was measured at 0·012; for the thick plate it was measured at 0·0055. The
sound power radiated by the ball drop system was inferred from a ten point spatial average
of sound pressure in a room of known reverberation time.

The vibration and sound power radiation of the ball drop system is predicted as follows.
The normal impact force between the plate and the balls is obtained using the dynamic
model shown in Figure 8 [10, 23]. In this model, a ball is represented as a rigid mass m,
an idealization well approximated below the fundamental ball resonance. The contact
stiffness between a ball and the plate is represented by a spring with rate k. The spring
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rate was estimated at k=30×106 N/m by linearizing an expression for Hertzian contact
stiffness [23]. The dynamics of the plate at the impact point are idealized by a dashpot
with resistance equal to the plate drive point impedance Ra =4rsclh2/z3, in which r and
h are the plate density and thickness, and cl is the speed of compression waves in the plate.
Using this dynamic model an equation for the force l(t) between a ball and a plate can
be written [10, 23]:

l� +2zvbl� +v2
bl=0, (24)

alongwith initial conditions l(0)=0and l� (0)= kvo inwhich vo is the velocity of the ball prior
to impact. In this equation, vb =zk/m is the bounce frequency of a ball against an infinitely
thick plate, and z=zkm/2Ra is a rebound indicator; the balls rebound when zQ 1.

The force pulse due to one impact is obtained by solving equation (24) and zeroing the
force l(t) at times after it first becomes zero. The impact force spectral density Wl( f ) due
to a periodic train of force pulses is then given by [10]

Wl( f )=2n=L(2pf )=2, (25)

in which n is the rate of impact, and L(v) is the Fourier Transform of the force pulse,
and v=2pf [10, 23]:

=L(v)=2
(mv0)2 = [(1−V2)+4z2V2]−164e−pb=cos[(p/2)(Vd −ib)]=2,

1,
zQ 1,
ze 1,

(26)

in which

V=v/vb , Vd =V(1− z2)1/2, b= z(1− z2)−1/2. (27)

The average of the squared normal plate velocity, taken over time and the plate surface,
is related to the impact force by [10]

�v2�= =H=2�l2�= �l2�/RaR=gDf

Wl( f ) df/RaR1Wl( f ) Df/RaR, (28)

in which �l2� is the time average of the squared impact force in frequency band Df,
=H=2 = �=V/L=2� is the squared magnitude of the plate frequency response function
averaged over drive (impact) point and response point, and R= hvM is the average
resistance of plate modes, M being the plate mass and h the average plate loss factor over
frequency band Df. The average over response points in =H=2 is appropriate because the
sound power radiation is, to a good approximation, proportional to the surface average
of the square of velocity by equation (1). The average over the drive points is appropriate
because more than 40 spatially distributed ball-plate impacts occurred during a

Figure 8. Dynamic impact model of ball and plate.
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measurement; the majority of these occurred in a central region with roughly one-third
of the plate area.

A comparison between the radiated power of the plate and the balls has shown that the
contribution of the balls is negligible, largely because of the small ratio (0·0048) of surface
areas of a ball to the plate [23]. The sound power radiated by the ball drop system is thus
closely approximated by the power contribution of its plate:

P= rocsS�v2�, (29)

in which S=2A is the radiating surface area of the plate, and s is a radiation efficiency.
The radiation efficiency used for the ball drop system is

s=min (s0, 1), (30)

in which min( ) returns the minimum of its arguments, and so is either the unbaffled
radiation efficiency sunb of equation (5), the baffled radiation efficiency sbaf of equation (2),
or the baffled free edge radiation efficiency sbaf,free of equation (23). The unity value in
equation (30) is the high frequency limit of radiation efficiency for a simply supported
baffled plate [1]. The radiation efficiency defined in equation (30) omits a description of
increased radiation near the critical frequency, which can occur for plates with larger ratios
of length to thickness than those considered in this study [5].

Sound radiated by non-propagating (near field) plate vibrations around the impact
points is also considered. The sound power radiated from one side of an infinite plate
excited by a normally applied force l is [11]

Pa =(ro/2prsh2cl)�l2�, fQ fc , (31)

in which r and h are the plate density and thickness, and cl is the speed of compression
waves in the plate. In the ball drop system a structural near field radiates sound from both
sides of a plate, radiating power

Pnf =2Pa. (32)

This relation, being an infinite plate result, does not account for the effects of the free edge
boundary conditions and finite self-baffling of the plate in the ball drop system.
Hydrodynamic flows that couple the structural near fields on both sides of the plate are
expected to reduce sound power radiation relative to equation (32), especially at low
frequencies where the acoustic wavelength is larger than the plate dimensions.

Predictions of sound power radiated by the ball drop system with 6·35 mm and 12·7 mm
thick plates are compared to measured one-third octave band data in Figures 9 and 10.
Predictions are made using the unbaffled plate radiation efficiency, the baffled (simply
supported) plate radiation efficiency, the baffled free edge radiation model, and the model
of sound radiation from the structural near field. Predictions by the unbaffled and baffled
plate radiation efficiencies coincide at high frequencies but differ at low frequencies,
splitting near the critical frequency fc which is 2000 Hz for the thin plate and 1000 Hz for
the thick plate. Sound radiation is greatest at frequencies above critical, due to efficiently
radiating surface modes which radiate from the entire plate surface [1, 8]. At supercritical
frequencies the radiation efficiency is well predicted by the unity value associated with
surface mode radiation from baffled plates well above the plate critical frequency. Surface
mode radiation is thus minimally affected by inertial flows, and the two plate sides radiate
independently, as has been assumed above and is consistent with previous findings [1].

The near field model generally underpredicts sound power radiation by the ball drop
system, especially for the thicker plate. Underprediction ranges from 0–10 dB for the thin
plate and 3–15 dB for the thick plate. The role of the near field contribution appears to
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Figure 9. Measured and predicted sound power for ball drop system with 6·4 mm thick plate: —— , measured
data; – – – – – , unbaffled; . . . . . . , baffled supported; — – — – — , baffled free; – · – · – , near field. Plate critical
frequency fc and frequency above which one-third octave band mode count N1/3 exceeds three are indicated.

be relatively minor, contributing importantly only to third octave bands with low levels
of sound radiation.

The baffled free edge predictions are comparable to the unbaffled predictions. For the
thin plate, unbaffled predictions tend to be more accurate at the lowest frequencies but
less accurate at higher frequencies, and frequency dependence is suggested better by the
unbaffled predictions. For the thick plate, the baffled free edge predictions are 2–5 dB more
accurate, and the unbaffled and baffled free edge predictions show comparable frequency
trends. This contrasts with the situation for the unbaffled plate discussed in Section 3 for
which unbaffled predictions were 6–24 dB more accurate than baffled free edge predictions.
The unbaffled radiation efficiency is thus more versatile than the baffled free edge model,
at least for the three plates considered here, as can be seen by examining Figures 6, 9, and
10.

Figure 10. Measured and predicted sound power for ball drop system with 12·7 mm thick plate: —— , measured
data; – – – – – , unbaffled; . . . . . . , baffled supported; — – — – — , baffled free; – · – · – , near field. Plate critical
frequency fc and frequency above which one-third octave band mode count N1/3 exceeds three are indicated.
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Below the critical frequency, unbaffled predictions are more accurate than baffled
predictions and better reflect the frequency trend of the measured data. Accuracy
improvements range 3–9 dB, with a 3–6 dB improvement over most of the subcritical
range. 3 dB of the improvement occurs from scaling the unbaffled radiation efficiency for
two-sided instead of one-sided plate surface radiation; see equation (7). The remaining
improvements are due to modeled inertial flow effects. The acoustic effect of flows that
surround the plates is important below 360 Hz, where 53f 4A2/c4 1 1 for both the thin and
thick plates (which have equal surface areas). Local flows have a negligible effect on sound
radiated by both plates over the measured frequencies; equation (19) suggests that
radiating regions near the plate perimeter remain uncoupled by local flows for frequencies
fq fc/13, namely 150 Hz for the thin plate and 75 Hz for the thick plate.

The accuracy of the unbaffled predictions generally improves as frequency increases.
Below 2000 Hz the local minima of the power radiated from the thin plate are
overpredicted by 6–10 dB, and the local maxima are predicted within 1 dB. Accuracy
within 3 dB is reached at 2000 Hz and above. Similar trends occur for the thick plate.
Measured data are overpredicted by 4–12 dB below 1000 Hz. Between 1000 and 2000 Hz
local maxima are predicted within 2 dB, and local minima are overpredicted by 5–12 dB.
Consistent 23 dB accuracy is reached at 4000 Hz and above.

These accuracies are good in view of the low density of resonant modes in the plates.
The expected mode count in a third octave band is N1/3 = n( f )Df, in which n(f)=1·7A/hcl

is the (expected) plate modal density and Df1 0·23fo is the width of a third octave band
with center frequency fo [11]. The one-third octave band mode count is small at low
frequencies—0·6 for the thin plate and 0·3 for the thick plate in the 400 Hz band—and
increases with frequency due to the increasing width of the third octave bands. The mode
count exceeds three at 2000 Hz and above for the thin plate and at 4000 Hz and above
for the thick plate. These frequencies correlate well with the transition to consistent 3 dB
accuracy seen in Figures 9 and 10.

The effect of mode count on prediction accuracy arises from the statistical nature of the
modeling approach. In the derivations of the impact model, the plate response model, and
the unbaffled radiation efficiency, an average of response and sound radiation by resonant
plate modes is considered, and therefore the number of resonating modes per frequency
band is important. Accurate prediction of the mode count is more difficult when the mode
count is low. At low frequencies the actual mode count is likely to be either zero or one,
not a fraction as suggested by the expected mode count. Similarly, the one mode resonating
in a band is either a corner or edge mode, not a fraction of each as equation (2) suggests.
Moreover, the impact and plate response models are likely to be more accurate at high
frequencies as the bending wavelength shortens relative to the plate region where impacts
occur.

Another source of prediction error lies in the local and plate corrections contained in
the unbaffled radiation efficiency. The corrections evaluate the effects of inertial flows in
a simple approximate fashion, as opposed to a detailed evaluation of inertial flow effects
based on the plate surface vibration distribution. Moreover, the proportionality factors
contained in the corrections have been empirically obtained through comparison against
only one plate. In spite of this simple approach, the modeling approach with the corrected
radiation efficiency is able to predict the sound radiated by unbaffled plates with
reasonable accuracy, even for plates with low mode counts.

The uncertainty in sound power radiated by the ball drop system may roughly be
quantified using a statistical approach. The mean and variance of radiated sound power
is determined, and a confidence interval is computed based on an assumed statistical
distribution which uses these statistics as parameters. To compute the variance of sound



104

90

40
102

Frequency (Hz)

A
-w

ei
gh

te
d 

so
u

n
d 

po
w

er
 (

dB
 r

e 
1.

0 
pW

)

50

80

70

60

103

  487

Figure 11. Comparision of 80% confidence interval against measured sound power of ball drop sytsem with
6·4 mm thick plate: —— , measured data; . . . . . . , predicted mean and 80% confidence interval.

power radiation, the viewpoint is taken that plate resonance frequencies are not known
and are treated as a random variable. It is assumed that the sound power variability is
largely due to a sensitivity of plate response to frequency, and that the effect of impact
force variability is negligible.

Using these assumptions the mean mP and variance s2
P of sound power radiation are

found using equations (28) and (29):

mP = srcS�l2�m=H=2, s2
P =[srcS�l2�]2s2

=H=2, (33)

in which m=H=2 and s2
=H=2 are the mean and variance of the plate response function

=H=2 = �=V/L=2�, which is averaged over drive and response points. Using the methods
developed in reference [19], the normalized variance of =H=2 can be shown to be

w=H=2 = s2
=H=2/m2

=H=2 =2[1+1/2M]F(Q)/Q, (34)

in which M is plate modal overlap, Q is specific bandwidth, and F(Q) is given by

F(Q)= (2/p)[tan−1 (p/2)−(1/pQ) ln (1+ p2Q2/4)]. (35)

The modal overlap M is the ratio of the effective modal bandwidth phv/2 to the modal
separation 1/n(v), in which n(v) is the modal density (modes per radian frequency). The
specific bandwidth Q is the lesser of the excitation and analysis bandwidths divided by
effective modal bandwidth; for the ball drop system broad band impact sound is examined
in one-third octave bands and Q=0·46/ph. Equation (34) is independent of impact and
response location, which would appear as spatial moments of plate mode shape, because
these dependencies have been averaged out of the response function =H=2.

Confidence intervals for radiated power are found by assuming the plate response to
be gamma distributed. The gamma probability distribution has been shown to be exact
for systems with large modal overlap and is assumed to be approximate for smaller modal
overlap values [19]. The confidence coefficient CC is the probability that the surface
average of plate response resulting from impacts uniformly distributed over the plate falls
within a factor of r of the mean response, which is given by equation (28):

CC=G(u)−1[g(u, ru)−g(u, u/r)], (36)

in which G(u) is the gamma function, g(u, x) is the incomplete gamma function, and
u=1/w is the reciprocal of normalized variance [19].
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In Figure 11 measured sound power data is compared to an 80% confidence interval
found by numerically inverting equation (36). The 80% confidence interval is the factor
r, expressed in dB, that is expected to capture 80% of the measured values. The portion
of data contained in the confidence interval would be expected to approach 80% as the
amount of measured data increased, provided that both the modeling approach and the
gamma distribution described above were accurate descriptors. In fact the confidence
interval contains 15 of the 17 measured values, a fraction of 88%. To assess the
performance of the confidence interval, the statistics of a process with an 80% chance of
bounding each data point is examined using binomial distribution [24]. The probability
of bounding 15 of the 17 data points is 19%; the most probable number of bounded data
points is 14 and has a 23% chance of occurring. The performance of the confidence
interval, which is based on a number of modeling and statistical assumptions, is thus
encouraging but not conclusive due to the limited amount of measured data.

5. CONCLUSION

A corrected radiation efficiency for radiation below the critical frequency of plates has
been developed and experimentally validated. The corrected radiation efficiency contains
scaling factors whose values were chosen empirically by comparison with measured data.

The accuracy of the corrected radiation efficiency is encouraging. The corrected
radiation efficiency provides better low frequency accuracy than a modal average radiation
efficiency derived from the simply supported plane-baffled plate model while requiring
minimal additional calculation. The prediction accuracy is also more consistent than
predictions by a plane-baffled, free edge model. Improvement in accuracy typically ranges
from 4–12 dB, with the greatest improvements occurring at low frequencies, where
accuracy may be better by more than 20 dB.
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