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1. INTRODUCTION

The problem of the vibration of thin, shallow shells has received considerable attention
since such components are often to be found in engineering applications where dynamic
excitation exists. Much of this work has been discussed in the excellent review articles by
Leissa [1] and Qatu [2]. The effects of various characteristics of the shell, such as degree and
nature of curvature and type of support conditions, have been examined by numerous
researchers. However, a topic which has so far been almost neglected is the effect of the
presence of a slit on a vibration of a shallow shell. This topic is of some practical importance
as a slit can be considered as a first approximation to an open crack, which can indeed occur
in practice. It may be noted that although a slit may be a relatively poor representation of
a crack for the prediction of quantities such as stresses in the vicinity of the crack tip, it is
a reasonable approximation for studies of more global characteristics such as natural
frequencies and mode shapes of vibration. Some work that has been reported on the
vibration of shallow shells with slits is that by Young and Dickinson [3, 4], in which natural
frequencies are given for annular and circular spherical shells with radial slits, and that by
Crossland, Young and Dickinson [5], which is a brief (two-page abstract) and preliminary
report on the approach described here. The work described in references [3] and [4] was part
of a more general study on the vibration of shallow shells with various different planforms
[4, 6], and was approached by using a Ritz solution with one to four general sectorial
elements being joined together through the use of artificial springs of very high stiffness. To
the author’s knowledge, no other researchers have treated the slit shell problem.

In the present work, uniform thickness, unstressed, shallow shells of rectangular
planform, with slits parallel to one edge, are considered. Each shell is subdivided into
several “free” rectangular shell elements which are joined together and to the boundaries
by means of very stiff, artificial, line springs, thereby enforcing the continuity and
boundary conditions. Slits are created by allowing the appropriate springs to have a
stiffness of zero. The resulting slit can be termed “open” and does not interfere with the
motion of the shell material in any of the three Cartesian directions. Natural frequency
parameters are presented for a variety of problems and the effect of such variables as
boundary conditions, curvature conditions, slit length and slit location are illustrated.

2. ANALYTICAL APPROACH
Consider the typical, rectangular planform, isotropic, thin, shallow shell shown in
Figure 1, the corners of which lie in an x—y plane at (x, y) = (0, 0), (a, 0), (0, b) and (a, b).
The principal radii of curvature R, and R, are assumed to be constant and their axes
coincide with the x- and y-axes; hence 1/R,, = 0. A slit of length ¢, approximating an open
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Figure 1. A shallow shell with an interior slit.

crack, lies parallel to the x-axis. It is further assumed that the middle surface of the shell
is unstressed in the static equilibrium position. Since the shell is shallow, the displacements
and energy expressions for both the entire shell and each element may be written in terms
of the Cartesian co-ordinates associated with the projection of the shell on to the x—y plane.
In this case, the shell may be idealized as composed of six rectangular planform, shallow
shell elements, as indicated; for different locations of the slit, it may be desirable to use
more or fewer elements. In using the artificial spring approach [7], each element is initially
treated as completely free and is subsequently connected to adjacent elements and/or to
the boundaries by means of line springs of very high stiffness. It is necessary to use up
to four line springs for each connection, these being the three translational springs of
stiffness K,, K, and K, and one rotational spring of stiffness R. Where a slit or a free
boundary exists, the stiffness of any connecting spring is simply set to zero, effectively
giving no connection. Similarly, if only partial support exists at a boundary, such as for
a shear diaphragm support, then the stiffness of the appropriate spring(s) is (are) set to
zero. In the event that elastic supports or inter-element connections are required, then the
spring stiffnesses are adjusted to the appropriate finite values, modelling the actual
connection.

The displacements of the middle surface are defined as u, v and w in the x, y and z
directions, respectively, and, for free, small amplitude vibration, the motion may be
described by u = U(x, y) sin wt, v = V(x, y) sin ot and w = W(x, y) sin wt. The quantities
U, Vand W for each element are chosen to satisfy the geometrical free boundary conditions
along the element edges and, in this work, simple polynomials are used. These are written

Ulx,y) = Z Z Ayx'y’, Vix,y)= Z Z Byx'y’ and Wi(x,y) = Z Z Cix'y’,

where i,7 =10, 1,2, ..., and the origin for the elemental x and y is at the corner of the
element closest to the origin of the global co-ordinates.

The maximum energies, with respect to time, may now be written for each element using
the standard expressions [8]. Further strain energy terms result from the inclusion of the
artificial springs. For example, for the connection between two elements 4 and B, joined
along an x = constant edge, the additional strain energy terms may be written

UUAB:;KUABJ\[UA(aAa ») — Us(0, ) dy, (1)

Uyis = %KVAB J[VA (aA 5 )/) - VB(O» y)]2 dy, (2)
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Uwap = %KWAB J\[WA (aA s y) - WB(Os y)]2 dy, (3)
dw. dw, i
URAB N %RAB J\|: dXA X=a B dXB ‘(0] dy’ (4)

where the integrals are carried out over y =0 to y = b, and the side lengths of element
A are a, and b,. The boundary conditions may also be accomodated by using similar
expressions simply by setting the appropriate displacement or normal slope values to zero,
in the event that rigid support is offered in a particular direction, or by setting the
appropriate stiffness value to zero, if the edge is free to move in a particular direction.
The energy contributions from all elements and artificial springs are then summed over
the whole system and the Lagrangian formed and optimized with respect to the
displacement coefficients A4,,, to yield an eigenvalue equation of the standard form.

It should be noted that different numbers of terms could be used in the displacement
functions for each element in both the x and y directions and for each of U, V and W
but, in this work, all series were taken from 0 to n. As a result, a six-element shell structure
has 18(n + 1)* degrees of freedom in the entire system.

3. NUMERICAL RESULTS

Throughout this section, the following non-dimensional stiffness parameters are used:
for translational line springs, Ka*/D, and for rotational line springs, Ra/D, where D is the
flexural rigidity of the shell, given by EA*/(12(1 — v?)), in which E is Young’s modulus of
elasticity, / is the shell thickness and v is the Poisson ratio. Furthermore, all spring stiffness
parameters for a particular shell are given the same numerical value x and the frequency
parameter reported is Q = wa*(ph/D)"?, where p is the material density. In addition, the
slit is always assumed to lie parallel to the x-axis.

In order to engender confidence in the analysis and to establish a satisfactory value of
the parameter r, studies examining the convergence of the frequency parameters were
conducted and comparisons made with results available from elsewhere. These results are
not tabulated here, but a brief description of their interpretation follows. The first two
systems considered were shells with no slits, these being the cantilevered cylindrical shell
treated by Lim, Liew and Ong [9], who used a single domain, two-dimensional polynomial
of fifteenth degree, Ritz solution, and the spherically curved, shear diaphragm supported
shell treated by Leissa and Kadi [10], who presented an exact solution. It was found that
there was no change in the fifth significant figure of the frequency parameters for the first
few modes of either system when using k = 10" or x = 10"”. The agreement with the
previously published results was excellent. Two problems involving slits were then treated:
a fully clamped, rectangular flat plate with a centrally located slit, previously investigated
experimentally by Maruyama and Ichinomiya [11] and theoretically by Yuan and
Dickinson, using the analysis given in reference [7]; and a fully free, square, spherical shell
with a slit that started at one edge and extended along a centreline. The theoretical results
used for both comparisons were obtained using similar analyses to that described
here—although each was formulated differently—and, as would be expected, the
agreement achieved was excellent. It was observed that the rate of convergence with
increased number of terms in the displacement series decreased in the presence of a slit,
as may be seen in the results that follow.
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For the slit shell, the number of parameters and degree to which each may be varied
is enormous and renders a comprehensive parametric study impractical. As a consequence,
only a brief parametric study is given here. A somewhat more comprehensive parametric
study, including the depiction of mode shapes for some cases, may be found in the work
by Crossland [12]. In all cases discussed, the following parameters were used for each shell:
k= 10", a/b =1 and a/h = 200. Two descriptive quantities are introduced to aid in the
discussion and the presentation of the results. The “‘convergence index”, abbreviated to
C.I. in the tables, is defined as the percentage difference between the n = 5 and n = 7 term
solutions (based on the n = 7 solution) for a particular case. While this does not indicate
that the solution has converged to within that percentage of the true solution, it does give
some indication of the degree to which convergence has occurred. The ‘“‘percentage
reduction” (P.R. in the tables) is the percentage reduction which is observed between the
natural frequency for the slit shell and that of the equivalent shell with no slit, based upon
the natural frequency of the shell with no slit. In all but one of the tables presented, the
mode type is described by means of S and A, the first indicating symmetry or antisymmetry
about the central x-axis and the second about the y-axis. For these cases, numerical results
for the first two modes of each type are reported.

For all cases in which the slit is wholly in the interior of the shell, the six-element
idealization shown in Figure 1 was used. For shells with a slit which abuts an x = constant
edge but does not lie along a y = constant edge, the element configuration shown in
Figure 2(a) was used. For shells with a slit along a y = constant edge, the configuration
shown in either Figure 2(b) or Figure 2(c) was used.

To investigate the effect of slit length, a fully clamped, spherically curved shell
(a/R. = a/R, =3), with a centrally located slit, was chosen for study. Four different slit
length ratios, c/a =0, c/a =1, c/a =1 and c/a = 3, were considered. A brief convergence
study is given in Table 1 and the convergence indices and percentage reductions in Table 2.
(In all subsequent cases, the convergence study, although conducted, is not given: only the
convergence indices are reported, together with the frequency parameters computed using
n =7.) It may be seen that the reductions in frequency increase as the slit lengthens, as
would be expected with the decrease in stiffness resulting from the presence of a slit. The
convergence rate decreases in the presence of a slit and tends to deteriorate as the slit
lengthens. Also included in Table 1 are values calculated for the first four modes by using
the commercial finite element program ABAQUS [13] for the case of ¢/a = 1. These are
designated FE 16 x 16 and FE 32 x 32 and were calculated using 16 x 16 and 32 x 32
eight-noded, quadrilateral shell elements, giving 3525 and 15365 degrees of freedom,

(a) (b)

Figure 2. The element configuration for slit shells.
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TABLE 1

Frequency parameters, Q, for shells with slits of various lengths

cla SS1 SAl AS] AAl SS2 SA2 AS2 AA2

0 n=23 368-39  363-54 370-24  382:67 47898 47473  411-32  500-70
n=>5 34993 35565 35594 369-53 367-80 390-31 389-83 421-34
n="7 349-79  355-58 35558  369-18 367-13  388-88  388-88  419-20

1 n=73 2957 3569 370-2 3619 474-2 497-8 413-5 544-4
n=>5 250-9 3431 350-3 3351 360-7 3873 3845 421-5
n="7 2457 340-9 3483 3313 359-5 3860 3819 4189

3 n=73 2313 304-7 361-0 3214 470-7 448-8 413-7 494-7
n=>5 179-2 2247 2655 229-5 356-3 384-8 3683 3824
n="17 1769 217-5 251-5 221-4 3486 3813 366-4 371-5

FE 16 x 16 1751 223-1 249-8 219-3 - - - -
FE 32 x 32 1739 2161 247-1 2151 - - - -

3 n=23 269 272 356 324 530 628 510 654

n=>5 187 167 239 174 347 384 366 371

167 155 187 162 298 322 327 334

N
Il
-

respectively. The agreement with the present solution using m = 7 in the displacement
series, for which the number of degrees of freedom for the whole shell is only 1152, is
reasonably close.

The ¢/a = { case has a fairly small average reduction in frequency, with by far the largest
change occurring for the SS1 mode. For the c¢/a =3 case, much larger reductions in
frequency occur, but it must be noted that all the modes have fairly large convergence
indices. Remembering that the Ritz solution converges from above, it may be concluded
that the true values of the frequencies could be considerably lower than those reported.
As would be expected, the behaviour of the c¢/a = 1 case falls between these two cases both
with respect to percentage reductions in frequency and convergence indices. Based upon
these results, in order to create a balance between a reasonable convergence rate and
significant change in frequency, a slit length of ¢/a =3 was chosen for use in all of the
subsequent cases.

In order to examine the effect of different boundary conditions, a spherically curved shell
(a/R. = a/R, = }) was again considered, both with no slit and with a centrally located slit.
This problem had already been treated for the fully clamped condition and, here, two
additional sets of boundary conditions were considered: all four edges shear diaphragm

TABLE 2
C.I. and P.R. for shells with slits of various lengths

cla SS1 SAl AS1 AAl SS2 SA2 AS2 AA1 Average
0 C.I 0-040 0-020 0-101 0-095 0-182 0-368 0-244 0-510 0-195
i C.I 2-12 0-645 0-574 1-15 0-334 0-337 0-681 0-621 0-807

P.R. 298 4-13 2:05 10-3 2:08 0-741 1-79 0-072 6-37
3 C.I 1-30 3-31 5:57 3-66 2:20 0-918 0-519 2:93 2-55

P.R. 494 38-8 29-3 40-0 5-05 1-96 578 11-4 227
3 ClI 120 774 27-8 7-41 164 19-3 119 11-1 14-2

P.R.. 52-3 56-4 47-4 561 18-8 172 159 20-3 356

C.I. convergence index;
P.R. percentage reduction in frequency.
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TABLE 3
Q, C.1I. and P.R. for shells with various boundary conditions

B.C. Slit  SSI SAl AS] AAl SS2 SA2 AS2 AA2 Average

SD. No 3275 3327 3327 3389 3441 3539 3539 3845 -
(0) (0) (0) ©0)  (0:003) (0:031)  (0)  (0-026) (0-008)

SD. Yes 1243 2117 2503 2204 3166 3426 3341 3415 -
(2:50)  (337)  (5:60) (359) (272) (0-353) (0-081) (1-44) (2-46)

P.R. 620 364 24-8 350 7-99 319 5-59 11-2 232

FE. No 20376 37788 37780 13-651 52:028 92:931 92:921 72736 -
(0-034)  (0-042) (0-056) (0-007) (0-092) (0-185) (0-266) (0-122) (0-101)

FF. Yes 20126 37738 37749 13-648 51-993 92863 92886 72-713 -
(0-214)  (0-058) (0-058) (0-007) (0-096) (0-219) (0-250) (0-117) (0-127)

PR. 123 0-106 0-082 0-022 0-067 0-073 0-038 0032 0-206

SD., shear diaphragm; FF., fully free;
(), convergence index; P.R., percentage reduction in frequency.

supported and all four fully free. The frequency parameters for these two cases are given
in Table 3, together wtih the convergence indices and the percentage reductions. Inspection
of Table 3 and the appropriate section of Table 2 (middle two rows) shows that, for the
shear diaphragm supported and clamped shells, the percentage reduction in frequency in
both cases is of similar order, with no clear pattern emerging other than that the lower
mode of each symmetry class is the more affected. The convergence indices are also of
similar order for the two cases and are significantly higher in the presence of a slit than
without. For the fully free case, the percentage reduction in frequency is two or more
orders of magnitude less than for the supported shells.

The effects of magnitude and type of curvature were now examined. Here, a clamped
shell was selected for study, again with the centrally located slit, with three types of

curvature: spherical (R./R, = 1), hyperbolic paraboloid (R./R, = —1) and cylindrical
(R:/R, =0 or R,/R,=0). Each of the spherical and hyperbolic curvatures were given
magnitudes of |a/R,| = |a/R,| = 0-5. The curvatures for the two cylindrical cases were

selected as a/R. = 0-5, a/R, = 0 and a/R, = 0-5, a/R, = 0 and correspond respectively to
situations in which the slit runs parallel and perpendicular to the axis along which the
curvature exists. These cases are identified by “‘parallel” and “perpendicular” in Table 4,
where the results are presented. To investigate the effect of magnitude of curvature for a
particular shell, three additional cases were selected for study, these being shells with
spherical curvatures with ratios a/R, = a/R, = 0-3, 0-1 and 0, the last corresponding to a
flat plate. The numerical results for the spherically curved shell with curvature ratio 0-5
are omitted since they are given in Tables 1 and 2. As before, the rate of convergence
deteriorates in the presence of a slit and, on average, is not significantly affected by the
magnitude or nature of the curvature, although for particular modes, significant differences
may be seen.

The effect of slit location was studied by considering a spherical (¢/R, = a/R, = 0-5),
fully clamped shell with the slit placed in different locations within the shell. The slit lies
along the line y = f3, between the points x = o and x = o 4+ @/2, and its location may then
be defined by the two parameters o/a and f#/b. (Note that here x and y are the co-ordinates
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of the whole shell.) Most of the systems studied in this section were not geometrically
symmetrical; hence the SA/AS nomenclature is no longer appropriate and, in Table 5,
where the numerical results for the first six modes of vibration are given, they are simply
numbered in order of ascending frequency. Inspection of Table 5 shows that, for most
cases, the closer the slit is to the geometric centre of the shell («/a = 1/4, /b = 1/2), the

TABLE 5
Q, C.I1. and P.R. for shells with slits in various locations

Mode number

A
r B

aja  PJb 1 2 3 4 5 6 Average
Q 176-9 217-5 221-4 2515 348-6 366-4 -

Bl
o=

(127)  (332) (365 (555  (219)  (0-535) (275
PR. 494 388 377 315 558 578 28-1
2 Q 1840 2165 2318 2539 3497 359 -
(143) (385 (325 (5339  (1:56)  (2:55) (301
PR. 474 39-1 348 308 528 7-66 275
s Q 2142 2212 3075 3220 3473 3566 -
(356)  (476)  (1-97)  (201) (1200  (207)  (2-60)
PR. 388 378 135 123 593 830 19-4
1 Q 2567 2612 3469  352:3 3545 3657 -
(517)  (6:16)  (0-092)  (0-133)  (0-302)  (0-339)  (2:03)
PR. 266 265 244 4-04 398 596 11-6
! ! Q 181-6 2203 2232 2532 3486 3618 -
(147)  (323)  (366)  (5348)  (221)  (139) (291
PR. 481 380 372 310 5-57 696 278
2 Q 1883 2193 2341 2555 3504 3574 -
(1-63) (374 (323) (331 (I'51) (205 (291
PR. 462 383 342 304 509 810 270
s Q 2170 2237 3082 3239 3479 3567 -
(375 (453 (1-93)  (2-13)  (I-14)  (193)  (2:57)
P.R. 380 371 133 118 576 828 19-0
1 Q 2576 2619 3474 3522 3547 3657 -
(521)  (6:14)  (0-101)  (0-125)  (0-313)  (0-295)  (2:03)
PR. 264 263 230 4-07 392 596 115
! ! Q 208-8  244-5 2483 2773 3558 3574 -
(0-546)  (1-40)  (1-31)  (0-923)  (0-191)  (0-406)  (0-796)
PR. 403 312 302 245 362 810 230
2 Q 2148 2464 2549 2790 3552 3569 -
0-633)  (1-87)  (0:953)  (0-911)  (0-710)  (0-429)  (0:918)
PR. 386 307 283 240 379 822 223
s Q 2407 2531 3182 3390 3516 3566 -
(1-30)  (242)  (0-305) (0-802)  (1-06)  (0-788)  (1-11)
PR. 312 28-8 10-5 7-66 476 830 152
1 Q 2664 2858 3495 3529 3559 3659 -
(480)  (546)  (0-100)  (0-091)  (0-278)  (0-118)  (1-81)
PR. 238 19-6 1-71 3-88 3-60 591 9-75

(), Convergence index;
P.R., percent reduction in frequency.
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higher is the percentage reduction in frequency caused by the slit. (It should be recognized
that this is for a fully clamped shell and, probably, a similar result would be seen for other
shells supported on all edges. However, if a free edge were to exist, it is expected that the
most significant reductions in frequency would occur when the slit reaches a free edge with
which it is mutually perpendicular, whereupon flapping motion could occur.)

Clearly, this has been a preliminary study and there is considerable scope for further
investigation of the vibration of shells with slits or cracks, including the important problem
of the effects of a pre-stressed middle surface.
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