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1. INTRODUCTION

Bapat and Bapat [1] developed an efficient approach based on the transfer matrix method
to determine the natural frequencies of a straight beam supported by translational and
torsional springs and carrying additional concentrated masses. In 1992, Matsuda et al. [2]
studied vibration of a tapered Timoshenko beam restrained at any intermediate points and
carrying a heavy tip body. The solutions were obtained by transforming the ordinary
differential equations into integral equations and integrating them numerically.

Recently, Hamdan and Latif [3] have studied, by means of exact and approximate
treatment, the dynamic behaviour of a beam with a constant cross-section in the presence
of applied masses with rotating inertia. The procedure has as its main objective the
numerical comparison between the exact methodology, expressed by the direct method,
and the approximate procedures (Galerkin, Rayleigh—Ritz and FEM).

In reality, for certain structures used in the field of engineering, it is often necessary to
analyze the dynamic behaviour of supporting structures in the presence of applied masses
and with geometric characteristics which can be schematized by means of tapered beams.
The simplest model of such a model is represented by a shelf with a supple joint both in
translation and in rotation and with a linearly variable cross-section using the parameters
o = hy/h and f = b,/b,; see Figure 1.

The problem is dealt with by using two distinct methodologies of calculation: the first,
of an exact type based on the direct method in which the solution is expressed by using
the well-known Bessel functions; and another approximate technique by employing the
Rayleigh—Ritz method [4, 5]. Some numerical examples, using calculation diagrams
already analyzed by other authors for particular cases, confirm the validity of the
procedures used.

2. EXACT ANALYSIS

For a tapered beam, the classical Bernoulli-Euler beam theory is applicable; the effects
of rotatory inertia and of transverse shear deformation are neglected. These assumptions
are reasonably valid provided that the wavelength of the flexural motion is large compared
with the section depth of the beam.
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The equation of motion may be written in the form

[EI(X)Wi ] o — pa?A(x)w) = 0, 0<x<cL,

[EIG)ws ), — p?A()wa =0, 0<y<(l—c)L, (1)
where w, and w, are the transverse displacements of the beam axis; () =d/dx and
(,) =d/dy.

After introducing the dimensionless variables

=1+ {—D/Lixl, n=[1+(@—D(+y/L)] (@)

the cross-sectional area and the moment of inertia are given by
A=A, 1) =0, 0<E<(I+ (2= Do), 3)
Am) =Am', I =Im*?  (1+@—Do)<n<o, 4)

where A4, and [, are the area and inertia at x = 0, respectively, and n describes the taper
of the cross-section; for n = 1—(a = h/h, f = 1), whereas, for n = 2—(a = ).
Substituting equations (2)—(4) into equations (1) yields the two equations

izwl‘gggg + 2(”! + 2)5W1_§§§ + 6]’”1/1,55 — qul = 0, 0 < f < 1 + (OC — l)C, (5)
W Wa + 201 4 2 Wayy + 60W2y — gawa =0, 14 (x — De <y < a, (6)

where
qo=ple—1),  p'=pw’d L*/EL. @)

The solutions of equations (5) and (6) are [12]
wi(€) = &M C(29.£") + CrY(29.8"°) + C5Li(29.£™) + CiK,(29.£™)},
wa(n) = n~"{CsJu(2qan™) + CY.(2q.n") + CiL.(2q1"°) + CsKu(2q.n™)},  (8)

where J and Y are Bessel functions of the first and second kinds, and I and K are modified
functions of the first and second kinds. The integration constants C; (i=1,...,8) are
determined from the boundary conditions of the support at the ends of the bar and
continuity conditions at x = cL.

For x=0, -¢=11[7,8],

wige + (ki + d)[p /(e — DIwie — wuld/(e — 1)]w) = 0, )
W + (1 4 2)wayy + ild/( — 1) wa, — [/( — 1)']wy = 0, (10)
where
_ 20+ o+ f+2_ _ M. T )
m, = pAL 6 =pA,LZ, n= gl k.=1L M

d
d=7.  m=uZp

The continuity conditions at x =¢cL, y=0->¢=n=1+4 (2 — 1)c, are
Wigee + (1 + 2)E Wie — 0i[& (00— 1) Iwi — (1 + 27wy — Way, = 0, (11

Wiz — Koo [p?E" 2 (o — D)]wi e — wayy = 0, Wi = W, Wig = Wi, (12-14)
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with

v =vpH o + (n — Do + 1]/(n + 1), v=M|m,, k=L"\/J/7M,
and, for the right end, y = (1 — ¢)L—(y = o),

- CT(” + 2)[(5C - 1)3/OC]W24’,,,7 + CT(‘X - 1)3Wl»1m1 = 07 (15)
Way + Cr(e — D)wy,, =0, (16)

where
CR == EIQ/kRL, CT = EIz/kTLS. (17)

Substituting equations (8) into equations (9)—(12) and (14)—(17), the corresponding
characteristic equations, the roots (p;) of which represent the free frequencies, can be
obtained from

det A =0, (18)

where A is an 8 x 8 matrix; all of the elements are listed in the Appendix. The frequencies
are calculated in dimensionless terms and are obtained by operating on equation (18) with
use of the False Position Method and a symbolic calculation program to manage the Bessel
function [13].

3. THE RAYLEIGH—RITZ METHOD

The Rayleigh—Ritz method can be used for this problem, as follows. It is assumed that
w(x) can be expressed as a series combination of beam functions which satisfy the specified
boundary conditions at x =0 and x = L: i.c.,

w(x) > Y qii(x), (19)

where the ¢’s are constants to be determined.

The set of polynomials {¢i, ¢, . . ., dx} is orthogonal on [0, 1] with respect to a weight
function r(x) = h(x) = b(x). The polynomials are constructed by employing the
Gram-Schmidt process [4, 5, 10].

With the approximation (19), the expressions for the maximum kinetic energy and the
maximum potential energy of the beam are known to be

2

T = %2 J' pA, <i q,~¢,~> X + 2 <Z qidhi (0)) 22 (Myjz + JJ(% qi¢i(0)>

X

2

+ w*M.d <Z\: Qi¢i(0)> (i ‘]id’i(o)) + % M <ZV: qfd’f(d‘))

< (2 qqui(cL)) , (20)

Upe =} f EI, [qux)} dx + 5 [qus(m} ;[qum} 1)
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Figure 1. A definition sketch of the beam system.

In terms of the non-dimensional parameters, the functional governing the problem, with
{ = x/L, can be written as

f H(C)(X q,»qs) dc+H(”<Z q,¢<1>>
=213 J G(C)(Z q,-<z>,-> dC+ﬂZ(kf+d2)<Z q/¢i(0>>u+u2<"z q,-qs[(O)) .
—HZd<Z Qid’i(o)) <Z q!¢i(0)>+02<2 q!¢i(¢)> +UZk2<Z q,qﬁi(c))
(22)
where
Ar = Ail(e — DEF I8 = DE+ 1] = 4G(0),
I = h[(e — DEH 1FB — DI+ 1] = LLH(). (23)
The minimization conditions 0I1/d¢; = 0 yield an eigenvalue problem of the type
(K — p'm)q =0, (24)

TABLE 1

Comparison of the frequency parameters between the exact values and the R—R method for
o = 1; R—R* (present); G[3] (Galerkin); R—R][3].

c k. I k v 1 2 3 4 5

0-4 1 5 1 5 0-577528 1-010010 1-614418 2-988467 7-922812  Exact
0-577772 1-015738 1:661745 3-033598 8:094794 G [3]
0-577895 1-018616 1-689432 3-064918 8-216193 R-R*
0-579576 1-:040670 1-665689 3-322992 §8:104343 R-R [3]

1 0-1 1 0-1 1-413511 2-492382 3-521664 6-195630 8-503077  Exact
1-413829 2-494927 3-611185 6-395637 8:636190 G [3]
1413994 2-496215 3:662253 6-531052 8-745954 R-R*
1-415931 2-556673 3-613588 6-903891 8:653406 R-R [3]

05 (1/5° 5  (1/5° 5 0752515 1-383353 2:137078 2:708818 9480262  Exact
0-752600 1-385825 2219663 2:727709 9:574332 G [3]
0752636 1386844 2259297 2-740545 9-609262 R-R*
0753286 1-420494 2:220540 2-893973 9-696748 R-R [3]
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with

ky = J HOGstis 4+ 582 60060 + L 6.9 1),

my = J GO AL + pZ(d + k)i (012 (0) + nZehi(0),(0)

— uZd[(9:1(0);:(0) + ¢;(0)ic (0)] + uZi(c)pi(c) + nZipic(c)r(c). (25)

The stiffness matrix K and mass matrix m are positive definite, and hence all the
eigenvalues p; are real and positive. The accuracy of the Rayleigh—Ritz method result
depends on the number N of the assumed mode shape functions ¢;.

4. NUMERICAL RESULTS

The first five free vibration frequencies for the structural model in Figure 1 have been
calculated, by using both the exact approach (henceforth Exact) and the Rayleigh—Ritz
method (henceforth R—R).

In Table 1 the non-dimensional frequencies are compared with the results given by
Hamdan and Latif [3] for a beam with a constant cross-section. The exact results obtained
by using the procedure outlined in section 2 coincide with the results given in reference [3],
whereas our approximate Rayleigh—Ritz results can be considered as a better result, with
respect to the analogous results given in reference [3]. This is probably due to our choice
of the polynomial functions, while the Hamdan and Latif results are comparable with those
obtained by using a Galerkin procedure [3].

In Tables 2 and 3 the first five non-dimensional frequencies p; are given, for a beam with
taper ratio o = f = 1-5, and for different values of the non-dimensional parameters of
the masses inertial properties. As can be noted the first free vibration frequencies are
practically exact even with only seven approximating functions, whereas the higher
frequencies show some significant discrepancies, up to a maximum of 9%.
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APPENDIX
an = pliioa) — Kwlii(@),  an=pYiia) — kKmY.i(a)
ai = plias(a) + k2uli(@),  aw = pKiia(a) — k2K, . 1(a)
an = —pJyis(a) + (n + 2)(0 — Dpl,ia(a) — wli(a),
an = —p’Y,.5(a) + (n + 2)(@ — Dp*Y..2(a) — Y. (a),
ax = p’Liis(a) + (n + 2)(e — Dpliia(a) — wli(a),
ar = —p'K, . 5(a) + (n + 2)(a — DpK, , 2(a) — wK,(a),
a; =0, a =0, i=5,...,8,
ay = —pb" ), . 3(bb) + 01J, . 2(bb) + v1],(bb),
ap = —pb" Y, 5(bb) + 01Y, 1 2(bb) + v/Y,.(bD)
azxy = pb" "1, 3(bb) + Q11,1 2(bb) + v,1,(bb),
axy = —pb" K, . 5(bb) + 0K, . 2(bb) + v:K, (bb),
azs = pb"* "), 5(bb) — Q1)+ 2(bb), azx, = pb" %Y, 4 3(bb) — Q1Y 1 2(bb),
ayy = —pb"* 1, 5(bb) — Qi1 2(bD),  aw = pb"* K, 5(bb) — QiK, ,2(bb),
dar = Ju12(bD) + Qadi 1 (DD), s = Yui2(bb) + 02Y, (b)),
as; = L+ 2(bb) — QoL 41(bD), au = K, 12(bb) + Q:K, . 1(bD),
ais = —1,,2(bb), axs = — Y. 12(bb), ag = —1,.2(bb), ag = — K, 12(bb),
asy = J,(bb) = —ass, as, = Y, (bb) = —as,
as; = L,(bb) = —as, ass = K, (bb) = —as,
ag = J,1(bb) = —ags, ae = Y+ 1(bb) = — ags,
gy = —L,1(bb) = —ag, ag = K, 1 1(bb) = —ags,
ars = o’ (aa) — (n + 2)(o — 1)’Crp2l, , (aa) + plo®],  (aa),
az = o*Y,(aa) — (n + 2)(o« — 1)’Cip2Y ., 1 2(aa) + pia®°Y,  s(aa),
an = o*l,(aa) — (n + 2)(a — 1’Cep2l, , (aa) — pia®1,, s(aa),
ars = 'K, (aa) — (n + 2)(« — 1)'CrpiK, 1 o(aa) + p;a”°K,  s(aa),
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ass = —a”’J, . 1(aa) + Crpl, s :(aa), ass = — oY, 1 1(aa) + CrpY, 4 2(aa),
ag; = 0”°L, . (aa) + Crpl, i 2(aa), ags = —a”°K, 1(aa) + CrpK, 1 2(aa),
an = ag = 0, i=1,...,4
Here it is assumed that
a=2p., aa = 2p,o"°, b=1+ (a«— 1), bb = 2p,b°?
0=+ 2)b" (o — 1), 0, = pk*vib=" 17,



