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This paper presents a theoretical and experimental study of the transmission of vibration
through a two element structure which consists of a cylindrical shell coupled to an end
plate. The first part of this paper deals with the derivation of coupling loss factor (CLF)
for the study of vibration transmission using Statistical Energy Analysis (SEA). The
derivation is based on travelling wave analysis and the assumption of equipartition of
energy amongst resonant modes. Numerical results for three examples of cylinder/plate
structures are presented and compared with those of their equivalent plate/plate structures.
The results show that the CLF values of the cylinder/plate structures asymptote to their
equivalent plate/plate structures above the ring frequency of the cylinder. In the second part
of this paper, an experimental program for measuring the CLF of an example cylinder/plate
structure is described. Experimental results of the cylinder/plate structure show good
agreement with theoretical predictions and confirm the validity of the present formulation
of CLF.
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1. INTRODUCTION

The analysis of noise transmission through complex systems often requires the prediction
of structural vibration levels at high frequencies. Such predictions may be approached by
using Statistical Energy Analysis (SEA) [1] which is a theoretical framework for analysing
the average vibration levels of interconnecting subsystems based on energy flow
relationships. The mean energy of the subsystems may be related to the input power by
SEA parameters known as coupling loss factors (CLFs), internal loss factors and modal
densities to form a set of linear, power balance equations. Solution of the power balance
equations leads to the mean energy level of the individual subsystems.

Structures which consist of a number of coupled plate elements have been studied
extensively using this approach [1–5] and good agreement between experimental results and
SEA predictions reported. In contrast, the study of vibration transmission through coupled
cylinder/plate structures has been less successful. Hwang and Pi [2] conducted an
experimental investigation on a cylindrical shell welded onto a base plate and concluded
that the SEA method was not capable of reaching any intelligent prediction of the coupling
loss factor due to the strong interaction at the cylinder/plate interface. Blakemore et al.
[6] studied a test structure which consisted of a number of flange-connected cylindrical
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shells and found considerable discrepancy between measurements and SEA predictions.
They attributed the discrepancy to internal acoustic coupling, non-equipartition of energy
between modes in a cylindrical shell element and low modal overlap. An experimental
investigation of the CLFs of two cylinder/plate structures (one with a long thin cylinder
and the other with a short squat cylinder) has been reported by Pollard [7] where he found
conflicting results for the long cylinder although the short cylinder showed good agreement
between the theoretical and experimental results. Recently, Schlesinger [8] presented a
theoretical analysis of the transmission of vibration through a cylinder/plate coupled
structure based on the distribution of wave energies in the radial, longitudinal and
circumferential directions. The theory is supported by a limited amount of experimental
data but further work is needed (both theoretical and experimental) to show that this
method satisfies the reciprocity requirement of SEA.

The foregoing discussion indicates that a number of issues concerning the CLF of
cylinder/plate structures have to be addressed. Reference [6] mentioned the use of wave
transmission analysis to derive the CLF and presented theoretical predictions but no
detailed derivation was given. Furthermore, reference [6] showed a considerable
discrepancy between experimental results and theoretical predictions while results from
references [2] and [7] were inconsistent with the principles of SEA. It should also be noted
that the theoretical model presented in reference [8] requires further validation. Thus there
is a need for a more detailed analysis, both theoretical and experimental, of the
transmission of vibration through cylinder/plate coupled structures which are
representative of many engineering structures.

This paper presents a theoretical analysis of the CLF for a thin cylindrical shell coupled
to an end plate. The analysis is an extension of earlier work reported by the authors [9]
which deals with the wave transmission properties of a number of cylinder/plate junctions.
The formulation of CLF is based on the method of travelling wave analysis and the
assumption of equipartition of energy amongst resonant modes. It should be noted that
the concept of equipartition of modal energy is equivalent to a diffuse wave field for
isotropic elements such as uniform plates [10] and a number of studies on coupled plate
structures have been conducted to verify this assumption (see, for example, references [2],
[3] and [5]). Thus the present study builds on the foundation of earlier work on coupled
plate structures. Particular attention is paid to the reciprocity requirement in the derivation
of CLF which is a fundamental principle of SEA. To verify the present formulation of
CLF for a coupled cylinder/plate structure, an experimental program was conducted on
a test structure to determine the distribution of vibrational energy due to a random input
excitation. The power balance equations were then inverted to determine the CLF for
comparison with theoretical predictions.

2. EVALUATION OF THE COUPLING LOSS FACTOR

2.1.   

The CLF relates the amount of energy flow from one subsystem to another and may
be derived from travelling wave analysis on the assumption that the wave field in each
subsystem is diffuse [1]. The concept of a diffuse wave field poses no difficulty for isotropic
elements like uniform flat plates but is less clear from an SEA point of view for
non-isotropic elements like curved plates and cylinders. Langley [10] pointed out that the
assumption of a diffuse wave field is equivalent to the equipartition of energy amongst the
resonant modes for an isotropic element. He then derived the CLFs for structural junctions
between curved plates based on the modal concept of equipartition of energy. In this
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section, the modal concept is extended to a cylindrical shell coupled to an end plate. The
plate is assumed to have a hole cut out to accept the cylinder. This arrangement enables
the results to be compared with those of an equivalent plate/plate structure.

Before proceeding to formulate the CLF, it is perhaps worthwhile to review briefly the
wave propagation characteristics of a cylindrical shell. A cylindrical shell is subjected to
three types of waves, often classified as Type I, II and III [11], and the behaviour of these
waves depends strongly on the frequency of vibration. Above the ring frequency (the ring
frequency is the frequency at which the wavelength of an extensional wave equals the mean
circumference of the cylinder), the response of the cylinder is similar to that of a flat plate
and the three types of waves in the cylinder (i.e., Type I, II and III) are therefore similar
to the bending, shear and longitudinal waves respectively in a flat plate. However, the
response of a cylinder below the ring frequency is strongly influenced by the effect of
curvature which couples the cylinder displacements in the radial, circumferential and
longitudinal directions. A measure of the degree of coupling of cylinder displacements is
given by the amplitude ratios U/W and V/W, where U, V and W are the displacement
amplitudes in the longitudinal, circumferential and radial directions. The amplitude ratios
are functions of the frequency and the circumferential mode number n. A detailed
discussion of the displacement characteristics of propagating waves in a cylindrical shell
is given by Smith [11] where he shows that the Type I wave cuts on at a progressively higher
frequency as the circumferential mode number is increased, together with lower amplitude
ratios U/W and V/W. Thus the Type I wave has a higher radial component as the
circumferential mode number is increased. Since the response of a cylinder may be
considered as a superposition of each of the allowable circumferential modes at a particular
frequency, it is argued that for a cylindrical shell having a response dominated by high
order circumferential modes, the total response due to a Type I wave is dominated by the
out-of-plane motion. The response of a thin cylindrical shell will be further discussed in
section 3.2 where different methods for the measurement of loss factor are investigated.

When a cylindrical shell is coupled to an end plate, a Type I wave will generate bending
and in-plane waves in the plate element. The significance of in-plane waves in the
transmission of vibration has been investigated by Tratch [5] where he studied a number
of coupled plate structures with different levels of complexity (from two to twelve coupled
plates). He found that the in-plane waves act as ‘flanking paths’ for the bending motion
and increase the energy transmission for complex structures which consist of more than
two structural elements. However, for a simple structure with only two structural elements,
as in the case for the present study, the in-plane waves generated in the elements have little
effect on the flexural energy level.

It follows from the preceding discussion that the transmission of vibration through a
cylinder/plate coupled structure is dominated by the out-of-plane motion and as a result,
only such motion is considered in the present study. By modelling the cylindrical shell as
a number of wave components representing each of the circumferential modes, the power
loss by the cylinder due to coupling to the plate may be expressed as [12];

Pcp =(Lc/Ac) s
N

n=0

Ecncgcntcpn , (1)

where Lc =coupling line length, Ac =surface area of cylinder, n=circumferential mode
number, N=number of modes, Ecn =energy of the cylinder for the nth mode, cgcn =group
velocity of the cylinder for the nth mode and tcpn =transmission efficiency between the
cylinder and plate for the nth mode when the cylinder is subjected to a Type I incident
wave. Subscripts p and c refer to the plate and cylinder respectively. It should be noted
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that in-plane and out-of-plane waves with an angular dependency of the form cos (nu) (u
is the polar co-ordinate of the plate) are generated in the plate due to an incident wave
in the cylindrical shell.

The equipartition of subsystem energy amongst resonant modes implies that:

Ecn =Ecn(v)cn/n(v)c , (2)

where Ec =total energy of the cylinder, n(v)c =modal density of the cylinder and
n(v)cn =modal density of the cylinder for the nth circumferential mode.

Substituting equation (2) into (1) gives

Pcp =[LcEc/Acn(v)c ] s
N

n=0

cgcnn(v)cntcpn . (3)

The transmitted power Pcp may be expressed in standard SEA form as:

Pcp =vhcpEc , (4)

where hcp is the CLF between the cylinder and plate. It follows from equations (3) and
(4) that

hcp =[Lc/vAcn(v)c ] s
N

n=0

cgcnn(v)cntcpn . (5)

For a given circumferential mode, the number of resonance frequencies for a cylinder
of length L is given by [13]:

N(v)cn =Lkcn/p, (6)

and hence the modal density

n(v)cn = 1N(v)cn/1v=(L/p) 1kcn/1v=L/pcgcn , (7)

where kcn is the axial wave number of the cylinder for the nth mode.
From equations (5) and (7), the CLF may now be expressed as:

hcp =[1/vpn(v)c ] s
N

n=0

tcpn . (8)

The transmission efficiency for a range of cylinder/plate coupled junctions tcpn has been
evaluated by Tso and Hansen [9] and expressions for modal density of a cylindrical shell
n(v)c may be obtained from the published literature (see, for example, reference [13]).

The concept of equipartition of energy amongst resonant modes in a subsystem
presented in the preceding derivation of CLF may be shown to be equivalent to the
assumption of a diffuse wave field in an isotropic system as follows. Consider two plates
i and j coupled at right angles and subjected to a diffuse vibration field; the CLF of the
structure is given by [12]:

hij =[cgiLc/vAi2p] g
p/2

−p/2

tij cos a da=[cgiLc/vAip] g
1

0

tij d (sin a), (9)

where a is the incident wave angle. If plate i is now simply supported along two parallel
edges Lc apart (see Figure 1), the incident wave will consist of a component ‘standing’ in
the y-direction (analogous to the circumferential mode) and a component ‘propagating’
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in the x-direction (analogous to the axial mode of a cylinder). The incident wave angle
may be expressed in terms of the wave number as

sin a=2pn/Lcki (10)

and equation (9) may now be written as:

hij =[cgiLc/vAip][2p/Lcki ] s
N

n=0

tijn . (11)

By noting that the modal density for a two-dimensional system is given by:

n(v)i = kiAi/2pcgi (12)

and substituting the modal density expression into equation (11) gives:

hij =[1/vpn(v)i ] s
N

n=0

tijn , (13)

which is identical to equation (8) for a cylinder/plate coupled structure derived under the
assumption of equipartition of modal energy. A detailed discussion of this concept is
presented in reference [1].

2.2. 

One of the fundamental principles of SEA is that the CLFs must satisfy the requirement
of reciprocity as stated below [1]:

n(v)phpc = n(v)chcp . (14)

Consider a cylindrical shell coupled to an annular plate with the latter subjected to an
out-of-plane incident wave with a circumferential dependency of cos (nu) propagating
radially towards the cylinder/plate interface. It can be shown from the asymptotic
expansion of the Bessel functions (see, for example, reference [14]) that the wave amplitude
is inversely proportional to the square root of the radius. Since the energy is proportional

Figure 1. Plate/plate junction.
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to the square of the wave amplitude, the energy density of the plate for a given
circumferential mode number n may be expressed as:

enA1/r, or en =K/r, (15)

where K is a constant and r is the radius. The energy of the plate can be obtained by
integrating the energy density over the entire plate area:

Epn =g
b

a

(K/r)2pr dr=2pK(b− a), (16)

where b and a are the outer and inner radii of the plate respectively. From equations (15)
and (16), the energy density of the plate at the plate/cylinder interface is given by:

en =Epn/[2pa(b− a)]. (17)

The wave number of the incident wave propagating in the radial direction at a
circumferential mode number n may be obtained from the asymptotic expansion of the
Bessel functions [14]:

kpn = kp − np/2r− p/4r, (18)

for kpr�1 and kpr�n2; where kp is the wave number of the plate. It follows from equation
(18) that the group velocity of this wave may be expressed as:

cgpn =1/[1kpn/1v]. (19)

The power transmitted from the plate to the cylinder may now be expressed in terms
of the energy density of the plate as:

Ppc =Lc s
N

n=0

entpcncgpn , (20)

From equations (17) and (20)

Ppc =[1/(b− a)] s
N

n=0

Epntpcncgpn . (21)

By using the assumption of equipartition of energy and the standard SEA expression
for CLF (see equations (2) and (4)), the CLF between the plate and cylinder is given by:

hpc =[1/vn(v)p(b− a)] s
N

n=0

cgpnn(v)pntpcn . (22)

For a given order of nodal diameter n, the modal density of the plate may be written
as [13]:

n(v)pn = 1N(v)pn/1v=[(b− a)/p] 1kpn/1v=(b− a)/pcgpn . (23)

Substituting equation (23) into (22) leads to the following expression for CLF:

hpc =[1/vpn(v)p ] s
N

n=0

tpcn . (24)
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Figure 2. Coupling loss factor for different cylinder/source plate thicknesses. ——, cylinder/plate;
– – –, plate/plate.

By comparing equation (8) with equation (24) and noting that the transmission efficiency
is symmetric (tcpn = tpcn), it can be seen that the reciprocity requirement is satisfied.

2.3.  

Calculations were performed on the CLFs of three steel cylinders each coupled to a
2 mm thick steel end plate. The shell thicknesses of the three cylinders were 0·5, 1·0 and
2·0 mm respectively. The length and mean diameter of all cylinders were chosen to be 0·8 m
and 0·45 m respectively to coincide with an example structure for an experimental
investigation described in section 3. Figure 2 shows the CLFs of the three cylinder/plate
structures. The CLFs of their corresponding equivalent plate/plate structure based on a
diffuse bending wave field are also plotted in Figure 2 for comparison. The source plates
are assumed to have the same surface area and thickness as those of their corresponding
cylindrical shells.

It can be seen from Figure 2 that all of the cylinder/plate structures show a dip in the
CLF at around the ring frequency of 3730 Hz, presumably caused by the increase in modal
density of the cylinder around the ring frequency region. Thereafter the CLFs asymptote
to the values of their equivalent plate/plate structures as the frequency increases. This
finding is consistent with the well established fact that the response of a cylinder
approaches that of a flat plate at high frequencies (above the ring frequency). Below the
ring frequency, the response of a cylinder is dominated by the membrane effects and as
a result, the CLFs of the cylinder/plate structures differ considerably from their equivalent
plate/plate structures.

3. EXPERIMENTAL INVESTIGATION

3.1.  

An experimental program has been designed to verify the CLF for a cylinder/plate
coupled structure developed in section 2.1. The test structure consists of a thin cylinder
and an end plate as shown in Figure 3. Steady state power balance measurements [3] and
reverberation time measurements were conducted on the individual cylinder and plate
elements to determine their internal loss factors. The elements were then welded together
to form a rigid connection and further tests conducted to determine the distribution of
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vibrational energy due to a random input excitation. The application of welding to form
a rigid connection between the structural elements is consistent with previous experimental
studies on the transmission of vibration in coupled structures (see, for example, references
[5] and [7]). To control the dissipation of heat during the welding process, it was decided
to run a small section of weld at a time and alternate the process at different parts of the
joint in order to maintain an even distribution of heat across the plate and shell elements.
These measures minimise the distortion of the elements and the effect of heat on the
damping material. The effect of welding on the response and damping of the structural
elements is investigated in section 3.2, where the internal loss factors of the individual
elements are compared with in-situ measurements.

The frequency range of the experiment was selected to be 500–8000 Hz, corresponding
to a ring frequency ratio V of 0·11–2·14. This enabled the effects of cylinder curvature on
vibratory power transmission to be investigated at low frequencies (V�1). Also, at the
higher end of the frequency spectrum (Vq 2), the cylinder is expected to behave
approximately as a flat plate and well established results on plate/plate structures may be
used to check against the present theory. In line with previous research work on the
transmission of vibration through coupled cylindrical structures [2, 6, 7] and the discussion
presented in section 2.1, the present experimental investigation is limited to the
out-of-plane motion of the cylinder and plate. To check that the in-plane motion has no
significant effect on the flexural energy level, the modal density of the plate element
subjected to an in-plane motion was calculated and compared with the out-of-plane modal
density. The in-plane modal density was found to be 4·02×10−5 and 6·43×10−4 s/rad at
a frequency of 500 and 8000 Hz respectively, compared with an out-of-plane modal density
of 1·52×10−2 s/rad (independent of frequency). Thus the plate energy is dominated by
the out-of-plane motion. Both the cylinder and plate have more than 10 resonant modes
(out-of-plane) in the lowest third octave band. Calculations performed on the dispersion
equation of the cylindrical shell show that 10 circumferential modes exist at a frequency
of 500 Hz.

Consideration was given to the damping requirement for the cylinder and plate. If the
cylinder/plate structure has a CLF very much greater than the internal loss factor of the
individual structural elements, then the modal energy of the elements would be
approximately equal and insensitive to variations in the CLF. To determine the CLF from
energy and power measurements, it is therefore desirable to have the internal loss factors

Figure 3. Cylinder and plate elements. All dimensions in mm.
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Figure 4. Experimental setup for steady state power balance measurement.

at least the same order of magnitude as that of the CLF. For the present study, this was
achieved by adding self-adhesive damping strips to the cylinder and plate (see Figure 3).

Figure 4 shows the set-up of the experiment for steady state power balance
measurements. The structure was suspended by strings and driven by an electromagnetic
shaker through an impedance head. Care was taken to align the shaker axis normal to the
test structure and a thin stinger was used to connect the shaker to the impedance head
to minimise the input of bending moment and in-plane force. Band limited random signals
were used as the excitation source.

Another point of consideration for the present experimental study was the excitation
source. Fahy [15] has suggested that the injection of power to a structure with point
excitation will result in modes which are not statistically independent (i.e., coherent modes)
and violate a basic assumption used in SEA modelling. Bies and Hamid [3] have studied
this problem and showed that modal incoherence can be achieved by averaging the results
over three randomly chosen excitation points. The present study followed this approach
in the measurement of internal loss factor using the steady state power balance method
and the distribution of vibrational energy for the coupled structure. In the latter
measurement, the cylinder was first excited and measurements taken to determine the input
power and vibrational energy of the cylinder and plate. The experiment was then repeated
by injecting power into the plate element to check for reciprocity. To determine the power
injected into the structural element, the force and acceleration signals from the impedance
head were processed using the following expression:

P=1/2 Re {F×(A/jv)*}, (25)

where F and A are the complex amplitudes of the force and acceleration respectively, and
* denotes the complex conjugate. The vibrational energy was determined from the spatial
average of the acceleration signals from a number of randomly chosen points on each
element. To determine the number of measurement points necessary for an accurate
estimation of the spatially averaged response, preliminary tests were conducted on each
element by using six and eight accelerometers in turn for spatial averaging. It was found
that both test configurations resulted in approximately the same value of spatially averaged
acceleration and henceforth six accelerometers were used to evaluate the vibrational energy
of each of the elements.
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Before calculating the vibrational energy, the acceleration signals were corrected to allow
for the effect of mass loading using the following expression [16]:

=A0/Am =2 =1+ =vMa/Z=2, (26)

where A0 = complex amplitude of the acceleration of the unloaded structure, Am =complex
amplitude of the acceleration measured by the accelerometer, Ma =accelerometer mass and
Z=impedance of the test structure.

The vibrational energy is then given by:

E=1/2M=A0/jv=2, (27)

where M is the mass of the structural element and − denotes the spatial average.

3.2. 

The internal loss factor of a structural element is related to the input power Pi and
vibrational energy Ei through the expression

hi =Pi/Eiv. (28)

Alternatively, the internal loss factor may be determined from the reverberation time
method using the expression:

hi =2·2/f T60, (29)

where f is the frequency and T60 the reverberation time.
Experiments were carried out on the cylinder and plate using both methods of

measurement. In the steady state power balance method as described in section 3.1 above,
the results were averaged over three randomly chosen excitation points. A hammer impact
was used as the excitation for the reverberation time method. The time history of the
acceleration signal was recorded after passing through a third octave filter and subsequently
processed to obtain a complex signal with the real and imaginary parts given by the
measured acceleration and its Hilbert Transform [17] respectively. The magnitude of this
complex signal was then calculated and plotted on a logarithmic scale for the estimation
of reverberation time. Five averages of the time history were taken for each measurement
point and the internal loss factor was averaged over three randomly chosen measurement
points. A typical envelope of the acceleration time history is shown in Figure 5.

Figures 6 and 7 show the internal loss factor of the cylinder and plate respectively. It
can be seen that the results given by these two methods are in reasonable agreement.
However, due to the coupling of in-plane and out-of-plane motions in the cylinder, the
results for the cylinder internal loss factor have to be interpreted carefully. For the
reverberation time method, the internal loss factor is related to the decay of the out-of-plane
motion. This is not the case for the steady state power balance method since the energy
dissipated includes both in-plane and out-of-plane motions. Coupling these two types of
motion will result in in-plane motion which is not measured by the accelerometer at the
power injection point. However, there is no in-plane external power input into the cylinder
provided that the external excitation transmits no in-plane force or moment into the
cylinder. This condition was met in the present experimental study by mounting the axis
of the shaker normal to the cylinder and using a thin stinger (1 mm in diameter by 40 mm
in length) to attach the shaker to the impedance head which in turn was bonded directly
to the cylinder. On the other hand, the energy in the cylinder is distributed into com-
ponents associated with both in-plane and out-of-plane motions. The latter motion
was damped in the present experiment by self-adhesive damping strips which were
arranged to give an effective damping for both the circumferential and axial modes.
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Figure 5. Typical decay record for cylindrical shell. Third octave band at a band centre frequency of 1·25 kHz.

Referring back to Figure 6 which shows the internal loss factor of the cylinder using the
steady state power balance method and the reverberation time method, an agreement
between these two methods of measurement suggests that the input power to the cylinder
is predominantly dissipated by the out-of-plane motion and justifies the present
experimental investigation where only such motion is considered. This is expected from
the theoretical consideration in section 2.1 since the cylindrical shell has a high order of
circumferential modes.

Subsequent to the joining of the cylinder to the end plate, measurements were carried
out to determine the input power and the vibrational energy distribution by first exciting
the cylinder and then repeating the experiment by exciting the plate. Before determining
the CLF from the power and energy measurements of the coupled structure, the results
were checked for reciprocity. Clarkson and Ranky [4] have shown that the reciprocity
requirement is satisfied when

[Eij/Pjn(v)i ]/[Eji/Pin(v)j ]=1, (30)

where Eij is the energy of element i due to an input excitation at element j.

Figure 6. Internal loss factor of cylinder. ——, steady state power balance method; – – –, reverberation decay
technique.
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Figure 7. Internal loss factor of plate. Key as Figure 6.

The left hand side of equation (30) representing the energy ratio is plotted in Figure 8.
It can be seen that the energy ratio is reasonably close to unity, and thus the results satisfy
the requirement for reciprocity. A matrix inversion routine based on the minimisation of
the sum of the squared errors [3] was used to determine the internal loss factors of the
cylinder and plate, as well as the CLF of the structure. This method involves a
re-arrangement of the energy balance equations in the following form:

D1 = h1E11 + h12E11 − h21E12 −P1/v, (31)

where D1 denotes the experimental errors in determining the power and vibrational energy.
Similar equations may be formulated for other subsystems and for the present
experimental set up, a total of four equations were formulated (two subsystems for each
configuration of input excitation). The sum of the squared errors may then be expressed
as:

S= s
4

i=1

D2
i . (32)

Following the least square procedure, the sum of the squared errors may be minimised
with respect to the internal loss factors and CLFs:

1S/1h=0. (33)

Figure 8. Energy ratio of the coupled cylinder/plate structure.
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Figure 9. Internal loss factor of cylinder. ——, steady state power balance method; – – –, in-situ method;
, reverberation decay technique.

By using the reciprocity condition (i.e., n(v)phpc = n(v)chcp), equation (33) constituted three
linear algebraic equations and the internal loss factors and CLF were determined by
standard matrix inversion of these equations.

Figures 9 and 10 show the internal loss factor of the cylinder and plate respectively. The
results given by the in situ method (inversion of matrix) are in close agreement with the
steady state power balance method. This finding is consistent with earlier work reported
by Bies and Hamid [3] for the case of flat plates and supports the present experimental
approach in determining the CLF. It also suggests that the coupled modal energies of the
elements are approximately equal to the uncoupled modal energies. Furthermore, the
welding process has little effect on the damping of the structural elements. Figure 11 shows
the CLFs of the cylinder/plate structure obtained by equation (8) and measurement. The
experimental results are fairly well predicted by the theory presented in section 2.1
although the theoretical values are slightly higher than the measured values in the
frequency range of 800–2500 Hz. The dip in CLF which is predicted in the theoretical
analysis can be observed in the experimental data. It occurs at a frequency of around
2500 Hz compared with a predicted value of 3730 Hz which corresponds to the ring
frequency of the cylinder. The experimental data also shows some discrepancy with the
predicted CLF above a frequency of 6300 Hz. An attempt to conduct further tests (above
8000 Hz) to confirm the convergence of the experimental results to the theoretical CLF
of a plate/plate structure was hampered by the limitation in sampling rate of the data
acquisition system. However, further examination of the results reveals that the

Figure 10. Internal loss factor of plate. Key as Figure 9.
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Figure 11. Coupling loss factor of cylinder/plate structure. ——, theory; – – –, experiment.

discrepancy is consistent with previous work on the experimental investigation of CLF
(see, for example, references [3] and [4]) and may be partially attributed to the random
nature of the experiment as well as the assumptions involved in the derivation of CLF (for
example, the equipartition of energy amongst circumferential modes). Overall, the
calculated CLF is considered to be satisfactory as an SEA parameter for the estimation
of response levels in a cylinder/plate structure.

4. CONCLUSIONS

A theoretical model for evaluating the CLF of a cylindrical shell coupled to an end
plate has been presented. It has been demonstrated that the condition of reciprocity is
satisfied by using a cylinder/annular plate coupled structure. From calculations of the
CLFs of three cylinder/plate structures, it was found that the CLF values asymptote to
those of their equivalent plate/plate structures above the ring frequency. The calculated
CLF has been verified by experiment and considered to be satisfactory as an SEA
parameter.
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