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An Euler–Bernoulli beam and a concentrated mass on this beam are considered as a
beam–mass system. The beam is supported by immovable end conditions, thus leading to
stretching during the vibrations. This stretching produces cubic non-linearities in the
equations. Forcing and damping terms are added into the equations. The dimensionless
equations are solved for five different set of boundary conditions. Approximate solutions
of the equations are obtained by using the method of multiple scales, a perturbation
technique. The first terms of the perturbation series lead to the linear problem. Natural
frequencies and mode shapes for the linear problem are calculated exactly for different end
conditions. Second order non-linear terms of the perturbation series appear as corrections
to the linear problem. Amplitude and phase modulation equations are obtained. Non-linear
free and forced vibrations are investigated in detail. The effects of the position and
magnitude of the mass, as well as effects of different end conditions on the vibrations, are
determined.
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1. INTRODUCTION

Beam–mass systems are frequently used as design models in engineering. Approximate and
exact analyses have been carried out for calculating the natural frequencies of a beam–mass
system under various end conditions [1–8]. When the amplitudes of vibrations are not
small, a non-linear analysis becomes inevitable. The non-linearities may be inserted in
different ways. In particular, in the case of immovable end conditions, non-linearities arise
due to the axial stretching of the beam during the vibrations. Woinowsky-Krieger [9] and
Burgreen [10] were the first to study the effects of axial stretching on the vibrations of
beams. Srinivasan [11] applied the Ritz–Galerkin technique to analyze the large amplitude
free oscillations of beams and plates with stretching. In addition to stretching, Wrenn and
Mayers [12] included the effects of transverse shear and rotary inertia. The work on
non-linear beam vibrations up to 1979 has been reviewed by Nayfeh and Mook [13]. Hou
and Yuan [14] investigated the design sensitivity of a stretched beam with immovable ends.
McDonald [15] investigated the dynamic mode couplings of a hinged beam with uniformly
distributed loading. Dokainish and Kumar [16] treated a cantilever beam with a tip mass
supported by a non-linear spring. Finally, Pakdemirli and Nayfeh [17] studied the
non-linear vibrations of a beam–spring–mass system. The sources of the non-linearities
include stretching and a non-linear spring supporting the mass.

In this study, we extend the analysis of reference [17] by considering five different set of
boundary conditions. However, we do not include the effects of a non-linear spring, so that
we can analyze the effect of stretching with ease. The different boundary conditions, and the
location and the magnitude of the mass are the control parameters for our problem.
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The method of multiple scales, a perturbation technique, is used to solve the non-linear
equations approximately. The first terms in the expansions lead to the linear problem. The
natural frequencies and mode shapes are calculated exactly and tabulated for different end
conditions, locations of mass and mass ratios. The addition of non-linear terms, then,
introduces corrections to the linear problem. The amplitude and phase modulation
equations are determined from the non-linear analysis. Free vibrations and forced
vibrations with damping are investigated in detail. The effects of mid-plane stretching on
the beam vibrations are studied for different control parameters.

2. EQUATIONS OF MOTION

The system considered is a beam with a concentrated mass located at x= xs , where x
is the spatial co-ordinate along the beam length. Five different cases of support at the ends
of the beam are treated, as shown in Figure 1.

The Lagrangian for the system can be written as

L=(1/2)g
xs

0

rAẇ*2
1 dx*+ (1/2)g

L

xs

rAẇ*2
2 dx*+ (1/2)Mẇ*2

1 (xs , t*)

− (1/2)g
xs

0

EIw0*2
1 dx*− (1/2) g

L

xs

EIw0*2
2 dx*

− (1/2) g
xs

0

EA(u'*1 +1/2w'*2
1 )2 dx*− (1/2) g

L

xs

EA(u'*2
2 +1/2w'*2)2 dx*, (1)

Figure 1. The support end conditions for five different cases. (a) Case I; (b) Case II; (c) Case III; (d)
Case IV; (e) Case V.
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where L is the length, r is the density, A is the cross-sectional area, E is Young’s modulus,
I is the moment of inertia of the beam cross-section with respect to the neutral axis of the
beam, u1 and u2 are the left and right axial displacements and w1 and w2 are the left and
right transverse displacements with respect to the concentrated mass M. (·) denotes
differentiation with respect to time t* and ( )' denotes differentiation with respect to the
spatial variable x*. The first three terms in equation (1) are the kinetic energies of the beam
and concentrated mass, the following two terms are the potential energies due to bending
and the last two terms are the potential energies due to stretching of the beam.

Invoking Hamilton’s principle,

d g
t2

t1

L dt*=0 (2)

and substituting the Lagrangian from equation (1), performing the necessary algebra and
eliminating the axial displacements [17], one finally obtains the following non-linear
coupled integro-differential equations:

rAẅ*1 +EIwiv*1 =
EA
2L $g

xs

0

w'*2
1 dx*+g

L

xs

w'*2
2 dx*%w0*1 − m*ẇ*1 +F*1 cos V*t*, (3)

rAẅ*2 +EIwiv*2 =
EA
2L $g

xs

0

w'*2
1 dx*+g

L

xs

w'*2
2 dx*%w0*2 − m*ẇ*2 +F*2 cos V*t*. (4)

Note that viscous damping with damping coefficient m*, and external excitation with
amplitude F*i and frequency V* are added to the equations. The boundary conditions at
the ends are given in Figure 1 for each case. The boundary conditions at the location of
the concentrated mass, which apply to all cases, are as follows:

w*1 (xs , t*)=w*2 (xs , t*), w'*1 (xs , t*)=w'*2 (xs , t*), w0*1 (xs , t*)=w0*2 (xs , t*), (5)

EIw1*1 (xs , t*)−EIw1*2 (xs , t*)−Mẅ*1 (xs , t*)=0. (6)

The equations are made dimensionless though the definitions

x= x*/L, w1,2 =w*1,2/r, h= xs/L, t=(1/L2)(EI/rA)1/2t*,

a=M/rAL, V=V*L2/(EI/rA)1/2, F�1,2 =F*1,2/EIr, 2m̄=(m*L2)/(rAEI)1/2,

(7)
which, upon substituting into the original equations, yield

ẅ1 +wiv
1 = (1/2)$g

h

0

w'21 dx+g
1

h

w'22 dx%w01 −2m̄ẇ1 +F�1 cos Vt, (8)

ẅ2 +wiv
2 = (1/2)$g

h

0

w'21 dx+g
1

h

w'22 dx%w02 −2m̄ẇ2 +F�2 cos Vt, (9)

w1(h, t)=w2(h, t), w'1(h, t)=w'2(h, t), w01 (h, t)=w02 (h, t), (10)

w11 (h, t)−w12 (h, t)− aẅ1(h, t)=0. (11)
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The end conditions are as in Figure 1, except that all t* will be replaced by t, all L by
1 and w* by w. The term r in equations (7) is the radius of gyration of the beam
cross-section and a is the ratio of the concentrated mass to the beam mass.

3. APPROXIMATE ANALYTICAL SOLUTIONS

In this section, we search for the approximate solutions of equations (8) and (9) with
the associated boundary conditions. We apply the method of multiple scales (a
perturbation technique) [13, 18] to the partial differential system and boundary conditions
irectly. This direct treatment of partial differential systems (the direct perturbation
method) has some advantages over the more common method of discretizing the partial
differential system and then applying perturbations (the discretization perturbation
method) [19]. In our case, however, both methods would yield identical results, since we
are not considering a higher order perturbation scheme.

Due to the absence of quadratic non-linearities, we assume expansions of the forms

w1(x, t; e)= ew11(x, T0, T2)+ e3w13(x, T0, T2)+ . . . , (12)

w2(x, t; e)= ew21(x, T0, T2)+ e3w23(x, T0, T2)+ . . . , (13)

where e is a small book-keeping parameter artifically inserted into the equations. This
parameter can be taken as 1 at the end upon keeping in mind, however, that deflections
are small. We therefore investigate a weakly non-linear system. T0 = t is the fast time scale,
whereas T2 = e2t is the slow time scale. We consider only the primary resonance case and
hence, the forcing and damping terms are ordered so that they counter the effect of
non-linear terms: that is,

m̄= e2m, F�1,2 = e3F1,2. (14)

The time derivatives are written as

(·)=D0 + e2D2, (··)=D2
0 +2e2D0D2, Dn = 1/1Tn . (15)

In reference [20], the equations governing the vibrations of a uniform beam with
stretching and without a concentrated mass were solved by using a version of the
Lindstedt–Poincaré technique. In this technique, periodic steady state solutions are
assumed a priori, whereas in the method of multiple scales the periodic solutions as well
as the transient solutions can be retrieved. As can be seen from our analysis, the expansion
of the integral term (T in equation (4b) [20]) is unnecessary.

Inserting equation (12)–(15) into equation (8)–(11) and equating coefficients of like
powers of e, one obtains, to order e,

D2
0w11 +wiv

11 =0, D2
0w21 +wiv

21 =0, (16, 17)

w11 =w21, w'11 =w'21, w011 =w021, w111 −w121 − aD2
0w11 =0 at x= h, (18)

w11 =w011 =0 at x=0, w21 =w021 =0 at x=1, (19)

and, to order e3,

D2
0w13 +wiv

13 =−2D0D2w11 −2mD0w11 + (1/2)$g
h

0

w'211 dx+g
1

h

w'221 dx%w011 +F1 cos VT0,

(20)
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D2
0w23 +wiv

23 =−2D0D2w21 −2mD0w21 + (1/2)$g
h

0

w'211 dx+g
1

h

w'221 dx%w021 +F2 cos VT0,

(21)

w13 =w23, w'13 =w'23, w013 =w023, w113 −w123 − aD2
0w13 −2aD0D2w11 =0 at x= h,

(22)

w13 =w013 =0 at x=0, w23 =w023 =0 at x=1. (23)

Equations (19) and (23) are the boundary conditions corresponding to Case I. Boundary
conditions for other cases can be written in a similar way.

3.1.  

The problem at order e is linear. We assume a solution of the form

w11 = [A(T2) eivT0 + cc]Y1(x), w21 = [A(T2) eivT0 + cc]Y2(x), (24, 25)

where cc represents the complex conjugate of the preceding terms. Substituting equations
(24) and (25) into equations (16)–(19), one has

Yiv
1 −v2Y1 =0, Yiv

2 −v2Y2 =0, (26, 27)

Y1(h)=Y2(h), Y'1(h)=Y'2(h), Y01 (h)=Y02 (h), (28)

Y11 (h)−Y12 (h)+ av2Y1(h)=0. (29)

The end conditions for the Yi functions are given in Table 1 for each case. Solving
equations (26)–(29) exactly for different end conditions yields the mode shapes Yi and
natural frequencies v. The mode shapes and transcendental frequency equations are listed
in Table 1, where

b=zv. (30)

The transcendental equations were numerically solved for the first five modes. Results
are given in Table 2 for the different supporting conditions. For each case, the natural
frequencies are listed for different a (the ratio of the concentrated mass to the beam mass)
and h (the mass location parameter). Due to the symmetry in Cases I and III, results are
given up to h=0·5.

3.2. - 

Because the homogeneous equations (16)–(19) have a non-trivial solution, the
non-homogeneous problem (20)–(23) will have a solution only if a solvability condition
is satisfied [13, 18]. To determine this condition, we first separate the secular and
nonsecular terms by assuming a solution of the form

w13 =f1(x, T2) eivT0 +W1(x, T0, T2)+ cc, (31)

w23 =f2(x, T2) eivT0 +W2(x, T0, T2)+ cc. (32)

Substituting this solution into (20)–(23), we eliminate the terms producing secularities.
Hence we deal with that part of the equation determining fi as follows:

fiv
1 −v2f1 =−2iv(A'+ mA)Y1 + (3/2)A2A�$g

h

0

Y'21 dx+g
1

h

Y'22 dx%Y01

+ (1/2)F1 eisT2, (33)
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T 2

The first five natural frequencies for different mass ratio, mass location and end conditions
Case I

a h v1 v2 v3 v4 v5

1 0·0 9·8695 39·4784 88·8264 157·9144 246·7413
0·1 8·9962 29·8891 66·0691 127·2135 213·3439
0·2 7·4541 26·9462 73·5140 149·3992 246·7413
0·3 6·3946 29·7503 86·7293 143·2258 209·3172
0·4 5·8468 35·2374 79·9788 132·6574 246·7413
0·5 5·6795 39·4784 67·8883 157·9144 206·7901

10 0·0 9·8695 39·4785 88·8264 157·9144 246·7413
0·1 5·3322 19·8959 59·0995 122·6556 210·0412
0·2 3·2598 22·0545 70·7723 148·0797 246·7413
0·3 2·5279 26·7706 86·1462 139·3226 204·6273
0·4 2·2252 33·6806 77·2690 128·5117 246·7413
0·5 2·1395 39·4785 62·4517 157·9144 200·6472

Case II

a h v1 v2 v3 v4 v5

1 0·0 2·4674 22·2066 61·6850 120·9032 199·8604
0·1 2·4087 18·3454 45·1359 93·4431 167·2211
0·2 2·2578 14·8086 46·3928 108·0103 196·6417
0·3 2·0706 14·2145 54·4452 120·0471 166·6578
0·4 1·8920 15·3836 61·6850 96·2916 188·1808
0·5 1·7415 17·9539 53·0106 107·5473 181·7185
0·6 1·6226 21·2279 45·5640 118·1939 173·8152
0·7 1·5332 21·9816 50·9158 98·6861 193·0932
0·8 1·4706 19·8790 61·6850 106·6180 165·0326
0·9 1·4328 17·8328 55·9844 116·7804 198·9933

10 0·0 2·4674 22·2066 61·6850 120·9032 199·8604
0·1 2·0037 10·0177 36·3461 87·8901 163·3744
0·2 1·4140 8·9553 42·7450 105·9953 196·0784
0·3 1·0683 10·0612 52·6275 119·7514 160·1237
0·4 0·8662 12·2687 61·6850 90·5702 186·2925
0·5 0·7395 15·7970 50·3531 104·6406 178·6633
0·6 0·6560 20·5604 40·8105 117·5013 168·9948
0·7 0·6000 21·8488 46·6505 94·8383 191·9832
0·8 0·5634 19·0091 61·6850 101·5157 159·7266
0·9 0·5421 16·5885 54·8768 116·0683 198·8297

Case III

a h v1 v2 v3 v4 v5

1 0·0 6·9049 31·8900 76·4168 140·6264 224·5502
0·1 7·1089 34·0789 83·5771 155·3912 246·7413
0·2 7·6615 38·3503 85·7404 130·1379 211·7200
0·3 8·4912 37·8853 68·0983 141·5267 246·7413
0·4 9·4084 30·6404 76·1398 154·1645 207·5299
0·5 9·8696 27·6195 88·8265 127·5589 246·7413

10 0·0 5·7774 30·4219 74·8365 138·8365 222·8810
0·1 6·0079 32·8614 82·6412 154·9477 246·7413
0·2 6·6506 37·9387 84·3398 123·4099 207·8470
0·3 7·6992 36·9612 62·5959 139·1055 246·7413
0·4 9·0502 26·9754 73·3548 153·1530 201·8530
0·5 9·8696 23·1098 88·8260 121·6874 246·7413

Table 2—(continued overleaf )
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Table 2—(continued)
Case IV

a h v1 v2 v3 v4 v5

1 0·0 15·4182 49·9648 104·2482 178·2706 272·0322
0·1 13·2773 36·9648 78·9377 146·4463 238·6747
0·2 10·3964 35·8279 89·8535 172·3995 270·5268
0·3 8·9482 41·1580 104·0726 153·4427 237·9214
0·4 8·4780 48·5385 87·0356 158·8255 266·7995
0·5 8·6977 47·2840 84·6891 172·7437 236·1355
0·6 9·0600 38·6505 103·6283 145·8877 263·2084
0·7 11·3683 33·0378 92·2403 178·0890 234·5798
0·8 13·8203 33·2808 77·0176 153·7460 259·8318
0·9 15·2752 45·5767 79·3377 133·4672 217·8576

10 0·0 15·4182 49·9648 104·2482 178·2706 272·0322
0·1 6·7433 27·4534 72·7327 142·2724 235·5979
0·2 4·1459 31·6794 87·4838 171·4502 270·1487
0·3 3·3555 38·8358 104·0176 147·7781 234·1359
0·4 3·1307 47·9812 82·5788 155·8378 265·7259
0·5 3·2408 46·2242 80·2839 171·5340 231·1555
0·6 3·7035 35·5186 103·4187 139·9891 261·8636
0·7 4·7633 27·8717 90·1184 178·0410 228·1671
0·8 7·2861 23·1321 72·2886 151·2088 258·4699
0·9 13·6268 24·7908 60·5566 124·2400 212·1305

Case V

a h v1 v2 v3 v4 v5

1 0·0 2·9545 23·9392 63·4326 122·7165 201·7195
0·1 3·0090 25·3661 69·0642 135·4291 223·2036
0·2 3·1614 28·4668 74·0070 117·3647 187·0877
0·3 3·4075 30·1129 58·3002 118·7904 220·4928
0·4 3·7522 25·7223 59·1356 138·7920 196·5491
0·5 4·1970 20·9093 71·6210 115·0728 216·3253
0·6 4·7130 18·4833 70·3074 122·8417 195·9552
0·7 5·1950 18·7343 57·8091 134·4440 208·7476
0·8 5·4925 22·7446 50·6636 111·6425 203·5245
0·9 5·5858 59·2073 61·9712 102·3233 172·2446

10 0·0 1·0756 22·5620 61·8705 121·1012 200·0584
0·1 1·1036 24·1652 68·0335 134·8478 222·3767
0·2 1·1831 27·8389 73·7213 110·9462 182·5687
0·3 1·3190 30·0441 52·9205 115·6980 220·0772
0·4 1·5302 23·4686 55·4268 138·7920 180·4132
0·5 1·8570 17·0896 70·6208 110·4096 215·0827
0·6 2·3796 13·1964 69·0978 119·2071 192·3353
0·7 3·2543 11·0367 54·4383 133·5758 205·5496
0·8 4·5913 9·8339 43·9142 108·0872 201·4753
0·9 5·5150 19·3652 38·3650 89·3286 165·1867

fiv
2 −v2f2 =−2iv(A'+ mA)Y2 + (3/2)A2A�$g

h

0

Y'21 dx+g
1

h

Y'22 dx%Y02

+ (1/2)F2 eisT2, (34)

f1 =f2, f'1 =f'2 , f01 =f02 , f11 −f12 + av2f1 −2aivA'Y1 =0 at x= h, (35)

f1 =f01 =0 at x=0, f2 =f02 =0 at x=1. (36)
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In obtaining these equations, we substituted the first order solutions (24) and (25) into
equations (20)–(23). We also assumed that the external excitation frequency is close to one
of the natural frequencies of the system; that is,

V=v+ e2s, (37)

where s is a detuning parameter of order 1. After some algebraic manipulations, one
obtains the solvability condition for equations (33)–(36) as

2iv(A'+ mA)+ (3/2)b2A2A�+2aivA'Y 2
1(h)− (1/2)f eisT2 =0, (38)

T 3

The non-linear frequency correction coefficients

h l

Case I a=1 0·1 1·6738
0·3 1·1764
0·5 1·0593

a=10 0·1 0·8915
0·3 0·4528
0·5 0·3968

Case II a=1 0·2 0·4224
0·4 0·3531
0·6 0·3038
0·8 0·2753

a=10 0·2 0·2552
0·4 0·1591
0·6 0·1226
0·8 0·1052

Case III a=1 0·1 0·8969
0·3 1·3469
0·5 0·00137

a=10 0·1 0·4222
0·3 0·9037
0·5 0·000286

Case IV a=1 0·2 1·1565
0·4 0·9130
0·6 0·9546
0·8 1·2843

a=10 0·2 0·4663
0·4 0·3395
0·6 0·3260
0·8 0·4315

Case V a=1 0·2 0·1847
0·4 0·2035
0·6 0·2437
0·8 0·3046

a=10 0·2 0·0698
0·4 0·0801
0·6 0·1003
0·8 0·2015
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Figure 2. Non-linear frequency versus amplitude for different mass location values; first mode, Case II, a=1.
- - - - , h=0·2; – – –, h=0·4; — —, h=0·6; ——, h=0·8.

where the equations are normalized by requiring

g
h

0

Y 2
1 dx+g

1

h

Y 2
2 dx=1 (39)

and the coefficients are defined as follows:

b=g
h

0

Y'21 dx+g
1

h

Y'22 dx, f=g
h

0

F1Y1 dx+g
1

h

F2Y2 dx. (40, 41)

Figure 3. As Figure 2, but Case III. - - - - -, h=0·1; – – – – , h=0·3; ———, h=0·5.
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Figure 4. As Figure 2, but Case V. - - - - , h=0·2; – – –, h=0·4; — — —. h=0·6; ——, h=0·8.

Note that condition (38) is valid for all Cases I–V but, of course, the numerical values of
b and Y1(h) differ for each case.

Equation (38) determines the modulations in the complex amplitudes. We use the polar
form to calculate real amplitudes and phases:

A=(1/2)a(T2) eiu(T2). (42)

Substituting equation (42) into equation (38), and separating real and imaginary parts, one
finally obtains

vka'=−vma+1/2f sin g, vkag'=vkas−3/16b2a3 +1/2f cos g, (43, 44)

Figure 5. Non-linear frequency versus amplitude for different mass ratio values; first mode, Case III, h=0·1.
- - - - , a=1; – – – – –, a=10.
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Figure 6. Non-linear frequency versus amplitude for different boundary conditions; first mode, a=1, h=0·2
· · · · , Case I; – – – – , Case II; — — —, Case III; — · — · , Case IV; ———, Case V.

where g and k are defined by

g= sT2 − u, k=1+ aY2
1(h). (45)

To the first approximation, the beam deflections are given by

w1 = ea cos(Vt− g)Y1(x)+O(e3), w2 = ea cos(Vt− g)Y2(x)+O(e3), (46, 47)

and the amplitudes and phases are governed by equations (43) and (44). Note that
equations (43) and (44) allow for finding steady state as well as the transient solutions,

Figure 7. Frequency–response curves for different mass locations; first mode, Case I, a=1. - - - - - , h=0·1;
– – – – , h=0·3, ——, h=0·5.
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Figure 8. As Figure 7, but a=10.

an advantage of the method used over some other perturbation techniques, such as the
harmonic balance or the Lindstedt–Poincaré technique.

4. NUMERICAL RESULTS

We first found the linear natural frequencies for each end conditions (Cases I–V) for
various a and h values (Table 2). h=0 corresponds to the case of beam without mass.
Due to symmetry in Cases I and III, natural frequencies were calculated up to the
mid-point. When a (the ratio of the concentrated mass to the beam mass) increases,
regardless of the supporting conditions, the frequencies are lower. For Case I, due to
symmetric support, h=0·5 becomes a node for the second frequency and one observes
no change in the natural frequency as a becomes larger. In reference [8], for a=1 (f in
that reference) and h=0, 0·1, 0·2, 0·3, 0·4 and 0·5 (l in that reference), the fundamental
frequency coefficients are given for an Euler–Bernoulli beam which, when squared, are
exactly same as our results for Case I.

We next calculated the non-linear frequencies for free undamped vibrations. In
equations (43) and (44), we took m= f= s=0 and obtained

a'=0, u'= (3/16)(b2/vk) a2. (48, 49)

From equation (48), a= a0 (a constant) and hence the non-linear frequency is

vnl =v+ u'=v+ la2
0, (50)

where

l=(3/16)(b2/vk). (51)

To this order of approximation, then, the non-linear frequencies have a parabolic relation
with the maximum amplitude of vibration. l can be defined as the non-linear correction
coefficient. For different a and h, the non-linear correction coefficients are listed in Table
3 for the first fundamental frequency corresponding to different cases. l is a measure of
the effect of stretching. The non-linearities are of hardening type. One sees from Table 3
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Figure 9. Frequency–response, curves for different mass locations; first mode, Case II, a=1. - - - - , h=0·2;
– – –, h=0·4; — — — , h=0·6; ——, h=0·8.

that the effect of stretching decreases as a increases for all cases. For Cases I and IV, as
h shifts to the mid-point, the effect of stretching decreases. For Case II, as h increases,
there is a continuous decrease in the effect of stretching. On the other hand, the reverse
is true for Case V. For Case III, the effect of stretching is very small for a centre-loaded
beam. Some of the above conclusions are shown in Figures 2–6. Figure 2, for Case II,
shows the variation of non-linear frequencies with amplitude. As h increases, the natural
frequencies (vnl at a0 =0) and the effects of stretching decrease. For Case III, as the mass
shifts to the centre, the natural frequencies increase. The stretching effects first increase
and then decrease to a negligible value at the centre (Figure 3). For Case V, as h increases,

Figure 10. As Figure 9, but a=10.
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Figure 11. Frequency–response curves for different mass locations; first mode, Case III, a=1. - - - - - , h=0·1;
– – – –, h=0·3; ———, h=0·5.

the natural frequencies and the stretching effects both increase (Figure 4). For all cases,
the natural frequencies and the stretching effect decrease as a increases. An extreme
example of this result is given in Figure 5. For h=0·2 and a=1, the non-linear frequencies
for all cases are shown in Figure 6.

Before considering the forced vibrations, it is worth mentioning two of the recent studies
on centre-loaded beams with different boundary conditions from the ones we have treated.
In the work of Low et al. [21], a theoretical linear analysis was used and it was found that
the results of experiments and the theory did not match well for beams of large slenderness
ratio. In a later paper by the same authors [22], when stretching effects were included, the

Figure 12. As Figure 11, but a=10.
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Figure 13. Frequency–response curves for different end conditions; first mode, a=1, h=0·2. - - - - , Case I;
– – – –, Case II; — — — , Case III; — · — · — , Case IV; ———, Case V.

correlation between theory and experiments was much improved. They observed that the
frequencies are higher for a beam under tensile effects due to the immovable boundary
conditions, in agreement with what we have found. The tensile effects were calculated
approximately using a Ritz procedure.

We now consider the case in which there is damping and external excitation. In
equations (43) and (44), when the system reaches the steady state region, a' and g' vanish
and hence one obtains

vma= 1
2 f sin g, −vkas+ 3

16b
2a3 = 1

2 f cos g. (52, 53)

Squaring and adding both equations and solving for the detuning parameter s yield

s= la2 3z(f	 2/4v2a2)− m̃2, (54)

where

f	 = f/k, m̃= m/k (55)

and l is defined in equation (51). The detuning parameter shows the nearness of the
external excitation frequency to the natural frequency of the system. Several figures have
been drawn by using equation (54). In Figure 7, the frequency–response curves for Case
I are shown for different h values (a=1). The effect of stretching bends the curves to the
right causing multi-valued regions of solution. This phenomena is the well-known jump
phenomena. Note that the amplitudes are greater as one shifts to the middle for Case I.
For this case, when a is increased, and other parameters kept constant, the multi-valued
regions increase drastically, as shown in Figure 8. This same result can be seen from the
comparison of Figures 9 and 10, which were drawn for Case II. However, the change is
negligible for Case III, as shown in Figures 11 and 12. Case IV is similar to Cases I and
II. In Figure 13, for fixed a and h (a=1, h=0·2) frequency response curves for Case I–V
are shown on the same plot.
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5. SUMMARY AND CONCLUSIONS

The non-linear response of a beam–mass system supported by five different end
conditions has been investigated. The ends are immovable so that mid-plane stretching
occurs during the vibrations, which produces non-linearities in the equations. Approximate
solutions were sought by applying the method of multiple scales directly to the partial
differential system. The first terms lead to the linear problem. Mode shapes and natural
frequencies were calculated for different mass ratios, mass locations and end conditions.
The second terms provide the non-linear corrections to the linear problem. Free and forced
vibration with damping were investigated. Non-linear frequency–amplitude variation and
frequency response curves have been presented.

As the mass ratio is increased, the natural and non-linear frequencies decrease. If the
mass is located at a node, however, the frequencies may remain unchanged. One can
observe that the stretching caused a non-linearity of the hardening type. When the mass
is increased (a), the effect of stretching on the non-linear frequencies decreases for all cases.
When the mass is shifted to the middle, the effect of stretching decreases for Cases I and
IV. However, the situation is different for Cases II and V. When the mass is shifted from
left to right, there is a continuous increase in stretching effects for Case V, whereas there
is a continuous decrease for Case II. Negligible effects of stretching were found for the
centre mass position of Case III. For forced and damped vibrations, since the non-linearity
is of hardening type, the frequency–response curves are bent to the right, causing an
increase in the multi-valued regions. When the mass ratio is increased, the multi-valued
regions increase for Cases I, II and IV.
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