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1. 

The vibration and stability of moving media, such as magnetic tapes in computer systems,
are often analyzed by using a translating string as a model. The dynamics of such a model
is similar but not identical to that of a translating Bernoulli-Euler beam, which is a more
accurate model of systems with flexural rigidity. The stability of these kinds of systems
has been investigated by various authors in recent years: Crandall [1], Wickert & Mote
[2], Triantafyllou [3], and Cheng & Perkins [4], among others. In this note, the influence
of moving and stationary damping coefficients on the stability of the moving elastic
medium is investigated. The notation here follows that of Crandall [1].

2.   

The moving medium under analysis is assumed to have the following parameters:
stiffness, EI; axial force, T; elastic foundation stiffness, a; uniform translational velocity,
v; and stationary and moving viscous damping coefficients, bs and bm respectively. The
governing equation of motion in a fixed frame of reference is, after Crandall [1],
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The convective term derivative may be defined in terms of the convective operator, D, as

D=
D
Dt

=
1

1t
+ v

1

1x
c D2 =0 1

1t
+ v

1

1x1
2

. (2)

In solving this problem as a stability problem, it is convenient to use a wave propagation
approach. Assuming that a wave having a spatial wave number k propagates along the
beam at a vibration frequency v, one may write w=w(x, t)=w0 ei(kx−vt), where w0 is the
vibration amplitude, and i is the unit imaginary number. The existence of a differentiable
mapping, f: {Li$R2}:s$C, carrying linear operators Li from R×R to C, is evident.
Functions which are elements of the map f are

f1:
1

1x
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12

1x2:−k2, f3:
14

1x4:k4, f4:
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1t
:−iv,

f5:
12

1t2:−v2, f6: D:−i(v− kv), f7: D2:−(v− kv), (3)
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3.  

A central issue in the dynamics of moving media is the computation of stability
boundaries. Closed form solutions for the desired stability boundaries are readily effected
by making use of certain relatively new ideas from algebraic geometry, such as
transversality, and singularities of plane algebraic curves. These ideas have been introduced
to engineering analysis by Afolabi [5, 6], and the first step in their engineering application
is to derive the characteristic polynomial of the vibrating system.

From equations (1)–(3), one arrives at the characteristic polynomial of the present
system as

p(w; v)=EIk4 +Tk2 + a−ivbs −i(v− kv)bm − rA(v− kv)2 =0. (4)

In the above, v is the indeterminate, whilst v may be regarded as the ‘‘control parameter’’.
The concept of a control parameter is important when making catastrope-theoretic
analyses of stability; see, for instance, Afolabi [5]. By recasting equation (4), one obtains
a quadratic polynomial with complex coefficients:

p(v; v)= a0v
2 + a1v+ a2 =0, (5)

where

a0 = rA, a1 =−2rAkv+i(bs + bm ), a2 = rAk2v2 − (EIk4 +Tk4 + a)− ikvbm .

3.1. Divergence instability
The criterion for finding the divergence boundaries is this: if there exists a divergence

instability, then the constant term in the characteristic polynomial (5) must vanish at the
divergence boundary; see, for instance, reference [7]. Only real values of v are admissible
solutions in this requirement. Separating a2 into its real and imaginary components yields
a2(v, k)= a2r (v, k)+ ia2i (v, k)=0, where

a2r (v, k)= rAk2v2 −EIk4 −Tk2 − a=0, a2i (v, k)= kvbm =0. (6)

Since rA, EI, T, and a do not vanish in the non-trivial case, it is evident from equation
(6) that the principal parameter which inhibits the onset of divergence instabilities is the
moving viscous damping coefficient, bm . Thus, if bm $ 0, then divergence cannot occur.
However, if bm =0 a critical speed of divergence, v*D , is encountered when

v= v*D =z(EIk4 +Tk2 + a)/rAk2 (7)

From the foregoing, one reaches a well-known conclusion that a positive damping
coefficient bm q 0 has a beneficial effect on the system by stabilizing an otherwise
divergence instability. It is remarkable that a negative damping coefficient (bm Q 0) also has
a stabilizing effect with respect to divergence instability, a characteristic that is well known
of gyroscopic systems. The primary condition governing the inhibition of divergence is this:
the constant term of the characteristic polynomial must be a complex number with a non-zero
imaginary part. It is immaterial whether the imaginary part is positive or negative. This
is, however, not the case for flutter, where the sign of the moving damping coefficient is
significant.

3.2. Flutter instability
The flutter criterion is based on the consideration that the root locus of the vibrating

system in the Argand or complex s-plane intersects the imaginary axis transversally.
Consequent on this assumption, it is easy to prove the flutter criterion, namely: at a flutter
boundary, the real and imaginary parts of the characteristic polynomial must vanish
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simultaneously; see, for instance reference [8]. By means of this criterion, one obtains the
critical flutter velocity, v*F , as

v= v*F =(1+ bm /bs )z(EIk4 +Tk2 + a)/rAk2. (8)

For a string having a negligible flexural stiffness, one merely sets EI=0 in equation (8)
to obtain the corresponding expression for the flutter velocity.

4.   

The effect of moving and stationary viscous damping on stability may now be investigated.
When the moving viscous damping is made to vanish by setting bm =0, bs $ 0 in equation
(8), it becomes evident that flutter instability is not inhibited to any great extent by adding
or deleting moving viscous damping. This may be contrasted with the case of divergence
instability, which is inhibited considerably when moving viscous damping is added.
Moreover, unlike in the case of divergence instability where negative moving damping has
a stabilizing effect, a negative bm evidently has an adverse effect on stability, except when
the stationary damping is simultaneously negative.

In the second scenario, if the stationary viscous damping is made to vanish completely,
i.e. bs =0, bm $ 0, then one comes to the remarkable result that the onset of flutter is
completely inhibited. The smaller the stationary viscous damping gets, the further the
flutter speed is pushed beyond normal operating speeds. The same effect may be achieved
by an increase in bm and a simultaneous decrease in bs . However, the dominant factor in
the inhibition of flutter is the reduction of stationary viscous damping.
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