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1. APPROXIMATE ANALYTICAL SOLUTION

Considering the structural systems depicted in Figure 1, it is convenient to define the
dimensionless parameters A = a/b, oy = 2ro/a, 6, = 2ri/a and n = hi/hy. In the case of
Figure 1(a), the thickness variation is defined by

= =\ l’l() ()E,);)E}_)(),
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On the other hand, the plate thickness of the mechanical system, shown in Figure 1(b),
is defined by

ho (x, y)ePo,
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where
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Expressing the flexural rigidity D(¥, ) in the form
hy v - v -
D(x,y) = 0 -% (X, 7) = Dog’(X, ),

the governing functional turns out to be Hamilton’s form of the governing equation of
motion with the temporal variable transformed into the frequency domain,

J(W) = D, JJ LW+ W) = 2(1 = v)(We Wiy — WzJ] dx dy
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F
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Introducing the dimensionless variables x = X/a and y = y/b, equation (3) becomes
w)]dx dy

;L J(W) JVJ‘ (W\\+}2 \l) _2(1 _V)/L‘Z(WV\W\\
“)

— Q? JJ gW*dx dy,
P

where Q* = phya*w?/D.
In the case of the structural system shown in Figure 1(a), one has

— ’ (xa y)EPO»
g0 y) = {n, (x, y)eP;
while in the cases of Figure 1(b), g(x, y) is given by
(xf y)eP(),
—5,
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g(x, ) = 2;(}17 17)\/( 1/2)+< 1/2>+
Q)

The fundamental mode shape will be now expressed in the form [2]
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Figure 1. A mechanical system executing transverse vibrations: (a) step thickness variation; (b) gradual

thickness variation
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where
@i(x, ) = (" X’ + oapx® + o)V 4 By 4 Bay’ 4 Bay),

and where p is the Rayleigh’s optimization parameter, and the o’s and f’s are constants
determined by substituting each co-ordinate function in the governing boundary
conditions at the outer edge.

Substituting equation (5) equation (4) and minimizing with respect to the C;’s, one
obtains

o { J J , ) )
I A & Pree + A0 )(@ies + Apiry)
D, oC, ; gl @) (@ ®

]

— (1 = V)A(@jpPisx + PexPiry — 205y Piy)] dx dy
—@ JJ gpipi dx dy}Cj =0, =123 (6)
R

Equation (6) yields an homogeneous, linear system of equations in the C.’s. The
non-triviality condition yields a determinantal equation the lowest root of which is the
fundamental frequency coefficient Q,. Since

Q= Q(p), @)

by requiring
dQ,/dp =0 @®)

one obtains an optimized value of ©,. The determination of the value of p which yields
a minimum value of €, is accomplished numerically.
All calculations have been performed for a Poisson ratio (v) equal to 0-30.

2. FINITE ELEMENT DETERMINATIONS

The numerical results have been obtained using the SAMCEEF finite element code using
hybrid elements of triangular and rectangular shape (elements type 55 and 56 of the
SAMCEF Library). The number of elements varied in accordance with the ratio 2r/a
(for 2r;/a = 0-1, the mesh of half of the plate contained 661 elements).

3. NUMERICAL RESULTS

The fundamental frequency coefficients of a simply supported square plate are presented
in Table 1.

In general, the finite element results (presumably more accurate) are lower than the
analytical predictions. The maximum differences are of the order of 6-5%, which are
acceptable from a practical viewpoint, especially if one considers the simplicity of the
analytical approach.

The eigenvalues in the case of a square plate, with two opposite edges simply supported
while the remaining ones are clamped, are depicted in Table 2. Similar conclusions as in
the previous case apply, and are also applicable when dealing with the fully clamped square
plate (Table 3).

In the case of a simply supported rectangular plate (a/b = 1-5), the maximum differences
are slightly larger (7%); see Table 4. This is also the case with edges X = 0, a clamped,
while the other two edges are simply supported (Table 5). On the other
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TABLE 1
Case SS-SS, SS-SS, 1 =1

Thickness variation
A

Discontinuous Continuous
r A N A Al

) o n=1 n=08 n=04 n =08 n=04
0-1 02 (Ot 19-83 19-71 19-79 19-76 19-73
) 19-53 19-26 18-96 19-38 19-14

03 (1) 19-83 19-50 19-65 19-67 19-56

) 19-52 19-00 18-47 19-25 1875

0-4 (nH 19-83 19-19 19-34 19-54 19-28

2) 19-50 18-74 1817 - 18-39

02 03 () 20-15 19-93 20:05 20:03 19-96
) 19-28 18-93 18-80 19-07 18-85

0-4 (1) 20-15 19-60 19-81 19-87 19-68

) 19-27 18-67 18-56 - 18-50

03 0-4 (1 20-70 20-35 20-57 20-51 20-43
) 19-48 19-17 19-35 19-29 19-18

+(1) Analytical solution; (2) numerical solution ( finite element method).

hand, the agreement is considerably better when X = 0, @ are simply supported and y = 0,
b are clamped; see Table 6.

The fundamental frequency coefficients for a fully clamped rectangular plate (a/b = 1-5)
are depicted in Table 7. In this case, the maximum difference is of the order of 10%
(discontinuous variation: §; = 0-1; J, = 0-4 and 5 = 0-4).

TABLE 2
Case C-C, SS-SS, 1 =1

Thickness variation
N

r A
Discontinuous Continuous
f A N A )
0 o n= n =08 n=04 n=048 n=04
0-1 02 (Ot 29-18 29-07 29-34 29-11 29-14
) 2870 28-40 2822 28-53 28-29
0-3 () - 2892 29-61 29-02 29-06
) - 28-19 28-16 28-38 27-94
0-4 (1) - 28-74 30-11 28:92 28-96
) - 28-05 28-56 2827 27-73
02 03 (1 30-01 29-88 30-38 29-92 30-00
) 28-89 28-64 28-97 28-73 2865
04 @) - 29-73 31-06 29-82 29-98
) - 28-56 29-59 2862 28-57
03 04 (1 31-63 31-56 32:62 31-55 31-81
) 30-35 30-35 31-36 30-30 30-52

T(1) Analytical solution; (2) numerical solution ( finite element method).
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TABLE 3
Case C-C, C-C, 1=1

Thickness variation
A

Discontinuous Continuous
r A N A Al
) o n=1 n=08 n=04 n =08 n=04
0-1 02 (Ot 36:67 36-24 3668 3628 3635
) 35-67 35-31 35-21 3545 3517
03 (1) - 36:07 3725 3618 36-29
) - 3511 35-50 3529 34-85
0-4 (nH - 3593 3834 36:07 3625
2) - 35-05 36-42 - 34-73
02 03 () 3775 37-63 38-53 3765 37-84
) 36-30 36-11 36-90 3615 36-20
0-4 (1) - 37-56 40-00 37-56 37-99
) - 36-15 38-31 36-08 36-37
03 0-4 (1 40-56 40-69 42-70 40-56 41-15
) 39-14 39-42 41-41 39-22 39-81

+(1) Analytical solution; (2) numerical solution ( finite element method).

Admittedly, the analytical approach (the optimized Rayleigh—Ritz method) constitutes
a classical and well known methodology. On the other hand, it is rather remarkable that
polynomial co-ordinate functions which satisfy the essential boundary conditions at the

TABLE 4
Case SS-SS, SS-SS, 1 =1-5

Thickness variation
N

r A
Discontinuous Continuous
f A N A )
0 o n= n =08 n=04 n=048 n=04
0-1 02 (Ot 32:32 31-99 3210 32:14 32:01
) 31-58 30-94 30-37 31-23 30-70
03 () - 31-40 31-53 31-88 3148
) - 30-37 29-49 30-92 29-88
0-4 (1) - 30:69 30-7 31-55 30-74
) - 29-82 28-93 30-61 29-14
02 03 (1 32:92 32:29 3248 32-57 32-35
) 31-24 30-53 30-50 30-83 30-43
04 @) - 31-53 31-83 3217 31-59
) - 30-00 30-15 30-50 29-79
03 04 (1 34-16 33-37 33-90 33-71 33-52
2) 32-27 31-73 32-41 31-94 31-84

T(1) Analytical solution; (2) numerical solution ( finite element method).
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TABLE 5
Case C-C, SS-SS, 2 =1'5: x =0, a, clamped; y =0, b, simply supported

Thickness variation
A

Discontinuous Continuous
r A N A Al
01 do n= n=038 n=04 n=048 n=04
0-1 02 (Ot 39-63 39-33 39-71 39-46 39-40
) 38-51 37-83 37-39 38-13 37-59
03 (1) - 3879 3972 39-21 39-01
) - 37-32 37-04 37-82 36-84
04 (nH - 3819 39-81 389 38-46
2) - 36-89 37-17 37-53 3627
0-2 0-3 () 41-01 40-49 41-31 40-70 40-71
) 38-80 38-22 38-81 38-44 38-25
0-4 (1) - 3991 41-85 40-37 40-29
) - 37-87 39-54 3818 37-96
03 0-4 (1 44-13 43-72 45-64 43-85 44-18
) 41-74 41-62 43-66 41-61 42-03

+(1) Analytical solution; (2) numerical solution ( finite element method).

outer boundary, and do not possess a singularity at the plate center, turn out to yield
good engineering approximations. The procedure is also applicable when dealing with
orthotropic plates and other polygonal outer boundary shapes.

TABLE 6
Case SS-SS, C-C, 4 =1-5: x =0, a, simply supported; y =0, b, clamped

Thickness variation
A

r A
Discontinuous Continuous
r A N A Al
0 do n=1 n=048 n =04 n =048 n=04
01 0-2 F()T 57-22 57-00 57-79 57-07 57-13
) 55-93 55-44 55-73 55-62 55-33
03 (1) - 56-84 59-19 5691 57-14
) - 55-30 56-85 55-44 55-16
0-4 (1 - 56-82 61-48 56-80 57-36
) - 55-28 5674 55-32 55-25
02 03 (nH 59-67 59-62 6150 59-56 60-02
) 58-01 58-02 59-78 57-94 58-36
04 (1 - 5975 64-48 59-53 60-66
) - 5814 61-11 57-95 58-94
03 0-4 (1) 65-42 65-99 6974 6562 6690
) 63-64 63-96 65-95 63-77 64-46

+(1) Analytical solution; (2) numerical solution ( finite element method).
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TABLE 7
Case C-C, C-C, A=1-5

Thickness variation

A
r Al
Discontinuous Continuous
r A N A Al
0 do n=1 n=038 n=04 n=048 n=04
0-1 02 (Ot 62:04 6178 62:87 61:86 61-96
) 60-27 59-69 60-15 59-90 59-56
03 (1) - 61:56 64-85 61-66 62-:00
) - 59-57 61-77 59-68 59-41
04 (nH - 61-58 6814 61-53 62-33
2) - 59-58 61-39 59-55 59-59
0-2 0-3 () 65-51 65-52 68:29 65-40 66-12
) 63-20 63-35 65-99 63-17 63-85
0-4 (1) - 65-80 7291 65-42 67-17
) - 63-62 68-26 63-24 64-83
03 0-4 (1 74-16 75-34 81:48 74-65 76-81
) 71-64 72-52 76-32 72-03 73-43

+(1) Analytical solution; (2) numerical solution ( finite element method).
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