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The estimation of material and patch parameters for a system involving a circular plate,
to which piezoceramic patches are bonded, is considered. A partial differential equation
(PDE) model for the thin circular plate is used, with the passive and active contributions
from the patches included in the internal and external bending moments. This model
contains piecewise constant parameters describing the density, flexural rigidity, Poisson
ratio and Kelvin—Voigt damping for the system, as well as patch constants and a coefficient
for viscous air damping. Examples demonstrating the estimation of these parameters with
experimental acceleration data and a variety of inputs to the experimental plate are
presented. By using a physically derived PDE model to describe the system, parameter sets
consistent across experiments are obtained, even when phenomena such as damping due

to electric circuits affect the system dynamics.
© 1997 Academic Press Limited

1. INTRODUCTION

In many applications involving vibrating structures, it is both feasible and advantageous
to start with basic physical principles and, from them, derive a PDE model describing the
system dynamics. Such models can directly incorporate the effects of non-homogeneities,
actuators or sensors bonded to or embedded in the structure (e.g., piezoceramic patches),
coupling with adjacent acoustic or fluid fields if they exist, and contributions due to
multiple components, inexact boundary conditions, and any other influences which may
affect the system dynamics. General constitutive laws, moment and force relations, and
electromechanical laws are used when deriving these models. This then leads to PDE
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models having physical parameters which must be estimated through fit-to-data
techniques.

Consider, for example, a structural system with surface-mounted piezoelectric actuators
and sensors. Physical parameters include density, stiffness, damping and Poisson ratios for
the structure and electromechanical coefficients describing the strain generated and sensed
by the piezoelectric elements. These parameters must be determined for the experimental
system under consideration before the PDE models can be used with any accuracy in
model-based applications such as simulation or control. In simulations, the use of inexact
parameters can lead to spurious results, whereas controllers will be degraded or even
potentially destabilized by the use of inexact parameter values.

While “handbook’ values often exist for the density, stiffness and Poisson coefficients
for the material in a uniform and homogeneous structure, they usually cannot be used with
certainty or reliability in the models describing actual experimental structures due to
non-homogeneities in materials, and differing geometries and material properties in the
regions of actuators and sensors. Similarly, while electromechanical constants for actuators
and sensors can often be found in manufacturer specifications, variability in actual
experimental conditions necessitates the estimation of these parameters before PDE
models can be employed in simulation and control applications. Finally, the estimation
of damping coefficients using experimental data is crucial since accurate compilations of
damping coefficients for various materials do not exist.

Several studies regarding the estimation of parameters in PDE models for homogeneous
beams [11, 12], plates [5] and grid structures [3, 4] have been reported. Furthermore, results
pertaining to parameter estimation issues which arise when piezoceramic patches are used
as sensors and actuators on a beam can be found in references [13, 14]. There, it was
demonstrated that the stiffness, density and damping parameters for a beam with
surface-mounted piezoceramic actuators and sensors must be taken to be piecewise-
constant to account for the differing geometry and material properties of the patches.
When this was done, consistency across experiments with a variety of inputs and outputs
was obtained, thus validating the applicability of the PDE model for the system.

In this work, we extend the PDE-based parameter estimation methods of reference [14]
to a clamped circular plate with surface-mounted piezoceramic patches. The dynamics of
the plate differ from those of a beam in that Poisson effects provide a coupling between
the radial and tangential vibrations. Hence, when estimating parameters for the plate, one
must work with data containing significantly more frequencies than is typically the case
with the beams. The results reported here differ from those in references [3-5] in that the
emphasis here is on the consistent estimation of physical parameters for a plate, the
dynamics of which are influenced by the presence and excitation of piezoceramic patches.

In addition to issues regarding the estimation of the density, stiffness, Poisson and
material and air damping parameters, questions concerning the passive damping due to
the patches are addressed. It is well-known among experimentalists that significant passive
damping is provided when the circuit for the piezoceramic patch is closed or shunted [16].
This general phenomenon for structures is investigated in the context of the circular plate
with its corresponding PDE-based model.

By using PDE models and estimating parameters through fit-to-data techniques, model
fits to data that are consistent across experiments are obtained, even in the presence of
passive patch damping. Up to six axisymmetric and eight non-axisymmetric frequencies
are matched through time-domain optimization, thus demonstrating that the effectiveness
of the model is not dependent upon the number of excited frequencies. The distributed
nature of the model is further demonstrated by examples illustrating the match of the
model response with data measured at plate points not used in the optimization process.
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As discussed in reference [1], the model, with parameters estimated from experimental data,
is sufficiently accurate so as to be very effective when incorporated in PDE-based control
methods for reducing plate vibrations.

We note that throughout this work, fixed-edge (zero displacement and slope) boundary
conditions are assumed. This assumption was made after tests indicated minimal energy
loss through the boundary clamps. In many structures, however, boundary movement
makes this assumption inappropriate. In such cases, a boundary moment model of the type
discussed in reference [9] and experimentally investigated in reference [2] may provide a
more accurate description of the boundary physics.

In section 2, the strong and weak forms of the PDE model for a thin circular plate with
fixed-edge boundary conditions are discussed. Care is taken to include both the passive
and active contributions due to the piezoceramic patches when developing this model. A
Fourier—Galerkin approximation method and the parameter estimation problem are
outlined in section 3. A modified cubic spline basis in the radial direction provides accurate
approximates and facilitates the incorporation of patch effects. The final section of the
paper contains a repertoire of examples demonstrating the model fits when parameters are
estimated in a variety of experiments. These examples demonstrate the accuracy of the
PDE model for describing the plate dynamics and the effects of passive damping due to
the shunted patches.

2. PLATE MODEL

The structure under consideration consists of a thin circular plate mounted to a frame
with a heavy metal collar. Bonded to the plate are piezoceramic patches which are mounted
either individually or in pairs, as illustrated in Figure 1. As discussed in reference [8], the
free patches generate strains in response to an applied voltage. When bonded to an
underlying structure, these strains lead to the generation of in-plane forces and/or bending
moments, as depicted in Figure 2. In this paper, we will consider only the bending moments
which are generated by the patches and will consider them as an input to a model
describing the transverse vibrations of a plate.

2.1. STRONG FORM OF THE PLATE EQUATION

For this discussion, we will consider a plate of radius ¢ and thickness /, as shown in
Figure 1. The radial and circumferential co-ordinates are denoted by r and 0, respectively.
Bonded to the plate are patches of thickness 7', with a bonding layer that is assumed to
have uniform thickness T}, (see Figure 2). The Young’s modulus, density coefficient,
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Figure 1. A thin circular plate with piezoceramic patches bonded individually or in pairs to its surface.
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Figure 2. The strain distribution resulting from voltages applied to (a) a patch pair and (b) a single
piezoceramic patch. In both cases, in-plane forces and/or bending moments can be generated.

Poisson ratio and Kelvin—Voigt damping coefficient for the plate are denoted by E,, p,,
v, and ¢p,, respectively, while similar parameters for the patches and bonding layer are
denoted by E,., pPpes Vpe, Cn,, and Ey, pw, Vu, Cp,, respectively. We point out that the
assumption that all the patches (and respectively, bonding layers) have the same Young’s
modulus and Poisson ratio is made only for ease of exposition, and analogous formulations
result when differing values are assumed for the individual patches and bonding layers (see,
for example, reference [§]).

Letting w, y, p and f denote, respectively, the transverse plate displacement, viscous air
damping coefficient, density for the combined structure, and external surface force, the
strong form of the equations modelling the transverse motion is

Fw  dw DM, 20, 13y 28Mn 20My | EMe
Phar ¥V = “ror Tror roroe P oo roe SO D
with initial conditions

w(O.r, 0) = w(r.0).  2L0.r.0) = w(r. 0),

The general moments are given by
%r:Mr_(Mr)pea ﬂ(): M(l_(MU)pea ﬂr():Mr();

where M,, M, and M,, are internal plate moments, and (M,),. and (M,),. are the external
moments generated by the patches. The internal moments for the circular plate with s pairs
of surface-mounted piezoceramic patches are

M, = DK, + DK, + cpK, + é» Ky, M, = DK, + DK, + cpK, + &K,

vy D D . .
MI'U_MUI'_z‘L- Tt t—51 2)
where
0*w low 10w 2 0*w 2 ow
K=—Gm K=—2% 75> = raatro

The global flexural rigidity parameters D and D and the Kelvin—Voigt damping parameters
¢p and ¢p are given by

_ Eﬂh3 z : EpeaSpe Eb/a3b[
D(r’e)_12(1—vﬁ)+3 Z|: 2+1—V,2,, Xi(rae),
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Here asy = (h/2 + Tw)* — (h)2), aspe = (0)2 + Ty + T)* — (h)2 + Ty)* and y:(r, 0) denotes
the characteristic function which has a value of 1 in the region covered by the ith patch
and is 0 elsewhere. A similar definition is used for the density which also exhibits a
piecewise constant nature due to the presence of the patches. These definitions can be
adapted to the case of a single patch that is bonded to the plate by replacing the % by 1.
We point out that if the plate, patches and bonding layers have the same Poisson ratios
(v, = vpe = vy = v), then the internal moment expressions reduce to the familiar relations
for a thin plate. For example, M, in this case is given by

M——D 52w+v5w+v6 B *w _,_X 0w +1 0*w
TR\ Trar TRaer) T N\ara T raran T R0 o

with D and ¢, defined in equation (3).
The external moments generated by the patches in response to an applied voltage
(out-of-phase for the patch pair) are given by

SEY

(M = (Mo = — 3 A Pu(0)7(r. 0), @)

where u,(¢) is the voltage into the ith patch (or patch pair) and 4% is a parameter
given by
1 E,,L
2

d31(h +2Tu+ 1), active single patch

1 —
: ©)

E,

1 l’

ds(h + 2Ty + T), active patch pair

(see reference [8] for details). In these expressions, the piezoelectric strain constant d,
relates the input voltage to the free strain generated in the patch.

In the case of perfectly clamped edges, zero displacement and slope are maintained at
the plate perimeter and the boundary conditions are taken to be

w(t, a,0) = <6av:>(t’ a,0)=0. (6)

For the experiments discussed here, this fixed-edge boundary condition adequately
modelled the edge dynamics and hence it is used throughout this work. In many
applications, however, perfect clamps modelled by fixed-edge boundary conditions are
difficult to attain, thus resulting in frequencies that are lower than expected [17, 18, 21, 22].
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In such cases, boundary moment models of the type discussed in references [9, 10] can be
employed.

We point out that the piezoceramic material parameters #°7, i=1,...,s, and the
plate parameters p, D, v, ¢p and y should be considered as unknown and in applications
must be estimated using the fit-to-data techniques to be discussed in the next section (D
and ¢, can be constructed using components of D, ¢, and v). One might argue that in
regions of the plate not covered by patches, “handbook’ values of p, D and v for the
aluminum plate material can be used and parameter estimation avoided. As
demonstrated by the examples, however, there exists sufficient variation in material
properties (and boundary conditions) so as to yield plate parameters which vary
significantly from the “handbook’ values. Similarly, manufacturer specified values for
dy can be found for various piezoceramic materials and hence the analytic moments
generated by the patches can be obtained from equation (4). The specified values for d,
can vary by batch, however, and the static values listed by manufacturers are often
significantly larger than the actual values obtained in dynamic experiments [15, 19, 20].
Finally, the strain output for the patches often decays over time, which is manifested
in the moment expression (4) by a decrease in . Hence, all of the parameters listed
above must be estimated before an accurate fit of the model to the experimental system
can be expected.

2.2. WEAK FORM OF THE PLATE EQUATIONS

Due to the piecewise constant nature of the physical parameters D, v and cp, one is
forced to differentiate discontinuous functions when considering the strong form of the
plate equations (1). Moreover, the input due to the excitation of the patches is spatially
discontinuous, since it is defined only in the regions of the active patches. Since this input
acts as a bending moment on the plate, it too is twice differentiated when considering the
strong form of the plate equations, thus yielding a distribution having the regularity of
a differential Dirac delta “function”. To avoid these difficulties as well as lower smoothness
requirements for approximating elements, we will consider a weak form of the modelling
plate equations.

We begin by defining appropriate spaces in which to consider the evolution and
approximation of the plate dynamics. For a plate having perfectly clamped edges and
hence boundary conditions (6), the state for the problem is taken to be the transverse
displacement w in the state space H = L*I,), where I'y denotes the region occupied
by the wunstrained neutral surface of the plate. Motivated by the energy
considerations discussed in reference [7], we also define the space of test functions

V= HYI) = {neH ) | n(a. 0) = (?})(a, 0)=0}.

A weak or variational form of the equation describing the transverse motion of a
damped thin circular plate having perfectly clamped edges and s surface-mounted
piezoceramic patches or patch pairs is then

Fw o P [ Ll 0P
Lph az2’7dw+£‘n/az”d‘“ LM'aﬁd‘” ﬁ rzM"[’ ar T a0 |9

I 0

1 Pn o anly B (.. OV -
_ZLOVZMW[V&‘(?H_EBH} do = —J; Y A Pui(t)yi(r, 0)Vn do + roﬁ] do (7)

pi=1
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for all test functions nel. The overbar here denotes complex conjugation and the
differential is dw = r d6 dr.

We point out that in the weak form, the derivatives are transferred from the moments
on to the test functions, thus eliminating the difficulties associated with the differentiation
of discontinuous physical parameters and patch input terms. This is then an appropriate
form in which to approximate the plate dynamics and consider parameter identification
techniques to estimate the unknown physical parameters. For the interested reader, further
details concerning the development and well-posedness of this model can be found in
references [6, 7].

3. SYSTEM APPROXIMATION AND PARAMETER ESTIMATION

In order to develop techniques for numerically simulating plate dynamics, estimating
parameters and implementing control schemes, one must approximate the infinite-
dimensional states and test functions in equation (7). In so doing, care must be taken at
the origin to avoid numerical instabilities and decreased convergence rates due to the
co-ordinate singularity (as manifested by the 1/r and 1/r* terms in the moment expressions).
The approach used here follows that described in references [7, 23].

3.1. APPROXIMATE PLATE SOLUTION AND RESULTING MATRIX SYSTEM

As discussed in references [7,23], an appropriate choice for the basis and
Fourier—Galerkin expansion of the plate displacement is By (r, 8) = r'""B(r) "’ and

Nm VA

w'(t,r,0) = i Y WO By (r) e = Y wi (t)Bi (r, 0). (8)

m=—-Mn=1 k=1

Here B)'(r) is the nth modified cubic spline satisfying
ey - 4B (@) _
Bn (a) - dr - O

with the condition

dB(0) _

dr 0

being enforced when m = 0 (this latter condition guarantees differentiability at the origin
and implies that

N, m=0,
N_{N+1, m#0,

where N denotes the number of modified cubic splines). The total number of plate basis

functions is A" = (2M + 1)(N + 1) — 1. As discussed in references [7, 23], the inclusion of
the weighting term ", with

i = 0, m=0,
T, m#0,

is motivated by the asymptotic behavior of the of the Bessel functions (which make up
the analytic plate solution) as r—0. It also serves to ensure the uniqueness of the solution
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at the origin. The Fourier coefficient in the weight is truncated to control the conditioning
of the mass and stiffness matrices (see the examples in reference [7]).

To obtain a matrix system, the ./"-dimensional approximating subspace is taken to be
H" = span{B;"} and the product space for the first order system is H" x H". The
restriction of the infinite-dimensional system (7) to the space H" x H"' then yields a matrix
system of the form

PO = AT O+ B U+ P, r0) = w, ©)

where (1) = [wi(t), ..., wi(t), wi(?), ..., w,(¢)] denotes the 2.4 column vector
containing the generalized Fourier coefficients for the approximate displacement and
velocity. Details concerning the construction of the component vectors and matrices in
equation (9) can be found in references [7,23]. In this form, the finite-dimensional
parameter estimation problem can be readily discussed.

3.2. PARAMETER ESTIMATION

The parameter estimation problem is posed as the problem of determining estimates of
the “true” physical parameters p, D, v, ¢p, 7, A}, ..., A% given data measurements z.
In the experimental results reported here, this data consisted of time histories of the
transverse plate acceleration which were obtained from accelerometers located at various
co-ordinates on the plate.

As discussed previously, the parameters p, D, v and ¢, are assumed to be piecewise
constants in order to account for the presence and differing material properties of the
piezoceramic patches. For the case in which s patches or patch pairs are bonded to the
plate, these parameters can then be expressed as

s+ 1 s+ 1

p(r,0) = Z Cigi(r, 0), D(r,0) = z coiyi(r, 0),

i=1 i=1

(10)
s+ 1 s+1
V(}’, 0) = Z Cvin(”> 0)3 CD(F, 9) = Z Cva:‘(”: 0)’
i=1 i=1
where, again, y,(r,0), i=1,...,s, are the characteristic functions over the ith patch or

patch pair and y, ., is the characteristic function over the portion of the plate not covered
with patches. The damping due to air is assumed to be uniform over the entire surface;
hence y is taken to be constant. Moreover, we recall from the definition (5) that the patch
parameters A'f, ..., #F are constants which depend on piezoelectric properties, the
geometry and size of the patch, and bonding layer and patch properties.

To formulate the problem in an optimization setting, we let ¢ = (p, D, v, ¢p, 7y,

b ..., A%) and assume that geQ, where Q is an admissible parameter space in which
the constraints (10), smoothness criteria and physical constraints on the parameters are
satisfied. The finite-dimensional parameter estimation problem is then to seek geQ that

minimizes

) 2w o 2
@)=Y G 50 0) 5 (11)

J

subject to w' satisfying the approximate plate equations (hence the coefficients {w; } of
w” must satisfy equation (9)). Here z; is an observation of acceleration taken at time ¢
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Accelerometer at A,
Accelerometer at A, |<— Centered hammer impact
Accelerometer at A;

<¢— Off-center hammer impact

Figure 3. A clamped circular plate with a single centered piezoceramic patch. Accelerometers are located at
A;=(21in,0), A. = (0,0) and 4, = (2in, n). Centered hammer impact at (0, 0); offcenter hammer impact at
(7-27 in, 0).

at the point (7, f) on the plate. Details regarding the convergence of the parameter
estimates for general problems of this type can be found in reference [14].

In the results in the examples of the next section, minimization of the functional (11)
was accomplished via a Levenberg—Marquardt routine with a stiff ODE solver being used
to integrate the system (9) in order to obtain the model response at the sample points. The
minimization can also be performed with various constrained optimization routines, in
which case parameter constraints such as positivity can be enforced.

4. EXPERIMENTAL RESULTS

In the experimental results reported here, a circular aluminum plate with a single
centered circular patch was considered (see Figure 3). The dimensions of the plate and
piezoceramic patches are summarized in Table 1. We note that the patch has a radius that
is 55 that of the plate and a thickness that is approximately 1 of the plate thickness; hence
it is quite small in relation to the plate. “Handbook™ values of the density, Young’s
modulus and Poisson ratio for the plate are also contained in Table 1. We reiterate that
while these values provide a starting point in the parameter estimation routine, they usually
cannot be used in the final system model with any accuracy due to non-uniformities in
the plate or boundary conditions, variations in materials and the contributions due to the
presence of the patches (this fact is illustrated in the examples).

To provide a basis for comparison between measured experimental natural frequencies
and the analytic frequencies for a plate of this size to which no patches are bonded, analytic
values were calculated using the plate dimensions and ‘“handbook” parameter values
summarized in Table 1. These analytic values are compiled in Table 2. In this latter table,

TABLE 1

Dimensions and ““handbook™ characteristics of the plate and PZT piezoceramic patch

Plate properties Patch properties
Radius a=02286 m (9in) rad = 0-01905 m (0-75 in)
Thickness h =0-00127 m (0-05 in) T = 00001778 m (0-007 in)
Young’s modulus E, =71 x 10" N/m? E,. = 63 x 10" N/m?
Density 0, = 2700 kg/m’ 0y = 7600 kg/m?
Poisson ratio v, =033 Vpe = 0-31

Strain coefficient d; =190 x 10~ m/V
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TABLE 2

Plate frequencies calculated using ‘“handbook™ dimensions and parameters under the
assumption of a thin plate model with fixed boundary conditions

n m=0 m=1 m=2 m=3 m=4 m=>5 m==6
0 619 129-0 211-6 309-6 422-6 550-4 692-8
1 2412 3689 5130 673-3 849-8

2 540-5 7283 9329

3 959-5

m refers to the Fourier number and n denotes the order of the root to the Bessel functions
that comprise the analytic solutions. Hence the analytic frequencies of the first four
axisymmetric modes are 61-9, 241-2, 540-5 and 959-5 Hz, corresponding to m = 0 and
n =0, 1,2and 3, respectively. The Fourier number m can also be interpreted as the number
of nodal diameters, while n is the number of nodal circles, not including the boundary.
As will be seen in the examples, the experimental frequencies are, in many cases,
significantly lower than the corresponding analytic values due to variations in material
properties.

Time domain data was collected using accelerometers located at the points 4, = (2 in, 0),
A. = (0,0) and 4, = (2in, ), as depicted in Figure 3 (thus specifying (7, §) in equations
(11)). This orientation of accelerometers permitted the collection of both axisymmetric and
non-axisymmetric data with the location chosen to avoid low order nodal lines and circles.
In all cases, data was obtained at a 12 kHz sample rate so as to resolve any high frequency
responses.

In the examples, both axisymmetric and general non-axisymmetric responses are
considered with input provided by various impact hammers as well as from the patches
themselves. The damping effects due to the electric circuit containing the patch are also
investigated. In each experiment, the goal is the estimation of the various physical
parameters and the results from all experiments discussed here are summarized in Table
3. The consistency and/or variability of these estimates will be discussed in the examples
presented below.

TABLE 3

Analytic and experimental parameter values obtained in Examples 1-5

Analytic Example 1 Example 2 Example 3 Example 4 Example 5
p (kg/m?) Plate 3429 3-107 3123 3114 3170 3-165
Plate + PZT 3-131 3-230 2-993 3216 3179
D (N'm) Plate 13-601 11-310 11:270 11-205 11-151 11-361
Plate + PZT 11-381 11-302 11-674 11-506 11-783
cp (Nms) Plate 1-161 x 10-* 1-443 x 10-* 9-358 x 10-¢ 2-816 x 10-° 2:598 x 10-*
Plate + PZT 1290 x 10-# 2:031 x 10-* 9:392 x 10-° 3211 x 103 2:693 x 10~
v Plate 0-33 0-331 0-331 0-330 0-326 0-330
Plate + PZT 0-326 0-325 0-327 0-325 0-328
y (s N/m?) 11-57 17-02 58:57 5897 4571
H'E (N/V) 0-006074
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4.1. EXAMPLE 1: AXISYMMETRIC EXCITATION WITH LARGE HAMMER—OPEN CIRCUIT

In the first set of experiments, the plate was excited through an impulse delivered by
a large impact hammer having a plastic tip (the force transducer on the hammer delivered
50 mV/Ib). The impact was delivered to the center of the plate and data was collected
from accelerometers located at the points 4, = (2 in, 0), A. = (0, 0) and A, = (2in, ©) (see
Figure 3). The excitation of the structure in this manner provided a primarily axisymmetric
response, with the purely axisymmetric component being measured by the centered
accelerometer. Data obtained from off-center accelerometers indicated that while slight
non-axisymmetric vibrations were present, their effect was minimal.

During the collection of this data, the circuit involving the piezoceramic patch was left
open to minimize piezoelectric effects due to the bending patch (with a closed circuit, the
voltage produced when the patch vibrates is fed back to the patch which, in turn, produces
a bending moment; the damping and stiffening effects which occur in this case are
investigated in the next example).

Minimization of the function (11) was performed using the time history of the
acceleration obtained from the centered accelerometer (at A, = (0, 0)). For this experiment,
fixed-edge boundary conditions were assumed and hence the optimization was performed
subject to w" satisfying the discretization of equation (7). The estimated parameters
0,7, D, vand ¢p (" was not estimated here since there is no patch input) are recorded
in Table 3, while model-based results obtained with these values are plotted against
experimental results in Figures 4 and 5. We reiterate that, in these plots, both the data
and calculated model response were obtained at the center point of the plate.

As indicated by the frequency results in Figure 5, four axisymmetric modes, having
frequencies of 59-3, 227-8, 516-4 and 917-7 Hz, were excited in this experiment. The results
in both figures demonstrate that the parameter estimates in Table 3 lead to a very close
matching of the first two frequencies. The overdamping of the higher frequency modes is
characteristic of the Kelvin—Voigt damping model and this leads to the very slight variation
seen in the time history when comparing the experimental data and model response.

To demonstrate the distributed nature of the model, the parameters obtained using

200

_50 ‘ b

Acceleration (m/sz)
o

-100

—150 |-

~9200 1 | 1 | 1 | 1
0.0 0.1 0.2 0.3 0.4

Time (s)

Figure 4. The time history of the Experiment 1 data measured at 4. = (0, 0) and for the model response with
estimated parameters. , Experimental data; ———, model response.
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Figure 5. The frequency content (for time interval (0, 0-2)) of the Experiment 1 data measured at 4. = (0, 0)
and for the thin plate model with estimated parameters. x ——, Experimental data; O———, model response.

data from the centered accelerometer, as summarized in Table 3, were used to calculate
the model response at the off-center point A, = (2 in, ©). The results are plotted along
with the experimental data at that point in Figures 6 and 7. From the frequency results
in Figure 7, it can be seen that the primary response at that point is in the first two
axisymmetric modes, and while the model response in the first mode is slightly larger than
the corresponding experimental result, the agreement is very close in light of the fact that
experimental data from this accelerometer was not used when determining the physical
parameters. Similar results were found at the point 4; = (2 in, 0), thus demonstrating the
distributed nature of the model.

Acceleration (m/sz)

100
; .
50 h { t
! Wt
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Figure 6. The time history of the Experiment 1 data measured at 4, = (2, n) and for the model response with

estimated parameters.

, Experimental data; ———, model response.
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and for the thin plate model with estimated parameters. x ——, Experimental data; O———, model response.

4.2. EXAMPLE 2: AXISYMMETRIC EXCITATION WITH LARGE HAMMER—CLOSED CIRCUIT

As discussed previously, the piezoelectric effect is manifested in two ways in the patches.
In one case, vibrations in the plate and hence the patch lead to generated strains which
in turn produce voltages, whereas the converse effect leads to generated strains in response
to an input voltage. The completion of the circuit involving the piezoceramic patch leads
to a strong interaction between these effects and, indeed, the shunting of the patch by
simply connecting the leads is a recognized means of increasing system damping and
changing stiffness properties [16].

In this example, the effects of closing the circuit on the estimated parameters are
investigated. The experimental set-up is identical to that described in the previous example
except that, in this case, the circuit involving the piezoceramic patch was closed. For
experiments in which input to a piezoceramic actuator is used to control the system, this

TABLE 4

Analytic and experimental values of the physical parameters: the estimated parameters in
column 3 were obtained using data from Experiment 2

Estimated Example 1 Analytical

parameters parameters parameters
p x thickness Plate 3-123 3-107 3-429
(kg/m?) Plate + PZT 3:230 3-131 3-429
D (Nm) Plate 11-270 11-310 13-601
Plate + PZT 11-302 11-381 13-601

¢p (Nms) Plate 1443 x 10~ 1-161 x 10~* 1-161 x 10~

Plate + PZT 2031 x 10~* 1-290 x 10~ 1-290 x 10~
v Plate 0-331 0-331 0-330
Plate + PZT 0-325 0-326 0-330
7 (s N/m) 17-021 11-569 11-569
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is a more realistic scenario, since the circuits must be complete in any control set-up. As
in the previous example, an impact hammer hit to the plate center was used to obtain an
axisymmetric response and data was obtained from accelerometers located at the points
A., A, and A4, depicted in Figure 3.

(a)

\;ﬁql‘\

© H N WA OO NI X ©
I

(b)
12

10 —
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Linear amplitude
o
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= N W A U1 G =1 0 ©
|

<

400 600 800 1000

Time (s) Frequency (Hz)

Figure 8. The Experiment 2 data (in time and frequency domains) measured at 4. = (0, 0) and for the model
response with (a) estimated parameters, (b) parameters from Example 1 and (c) analytic parameters. x ——,
Experimental data; O———, model response.
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To obtain model responses for this case, three sets of parameters, as summarized in
Table 4, were used. The first set of parameters was obtained by minimizing the functional
(11) using data from the centered accelerometer. These parameters can be compared with
those in the second set which were obtained in the first experiment. To obtain the third
set, the analytic values for the density, flexural rigidity and Poisson ratio for the plate were
used throughout the structure, while y and ¢, from the first data set were used as damping
values. The use of the third data set simulates the results that are obtained if one simply
uses “handbook” values for the density, flexural rigidity and Poisson ratio.

As demonstrated by the time history and corresponding frequency plots in Figure 8(a),
results comparable to those obtained in Example 1 can be obtained when the physical
parameters are obtained using fit-to-data techniques. By comparing the parameters
obtained here with those of the first experiment, however, one sees some variation due to
the circuit effects on the piezoceramic patches. The most marked difference is an increase
in damping which results when the system is closed. Since the damping effects due to the
circuit are not included in the model, the optimization routine increased the viscous
damping coefficient y and the Kelvin—Voigt parameter ¢,. As noted in the plots of
Figure 8(a), this compensation for the damping leads to a good model fit to the data
even though the mechanism for the unmodelled circuit damping differs from the internal
and viscous damping included in the model. While some differences in density and stiffness
also occur, these effects are less pronounced due to the small size of the patch in relation
to the plate.

The experimental data and model response obtained with parameters from
Experiment 1 (open circuit) are plotted in Figure 8(b). As noted in these plots, the model
response is significantly underdamped, since the effects of damping due to the closed
circuit were not considered in Example 1. Moreover, a slight shift in frequency due to
changes in p, D and v can also be noted. This illustrates some of the variations that
result from changing the configuration of the electric circuit and highlights the fact
that identification procedures should be performed in the setting in which applications
or control are to be considered.

Finally, the experimental data and model response obtained with the third set of
parameters (analytic values of p, D and v) are plotted in Figure 8(c). As noted in both
time domain and frequency plots, the frequency of the model response is much too large
in this case, due to the fact that the analytic value of the flexural rigidity is approximately
17% larger than the estimated values. This illustrates the fact that even those parameters
for which “handbook” values exist must be estimated through parameter identification
techniques in order to guarantee an accurate model.

4.3. EXAMPLE 3: AXISYMMETRIC EXCITATION WITH SMALL HAMMER

In the previous two experiments, the plate was excited through impacts from a large
hammer having a soft tip. This resulted in the excitation of four axisymmetric modes
having frequencies ranging from approximately 60 Hz to 920 Hz. To investigate the
suitability of the model when a wider range of frequencies are excited, a small impact
hammer (with a force transducer delivering 100 mV/Ib) having a metal tip was also used,
with the results being reported in this example.

As in the previous example, a centered hit was used to evoke an axisymmetric response,
with data being obtained from accelerometers located at 4., 4, and A,. The leads to the
piezoceramic patches were left disconnected, thus minimizing the damping effects due to
the circuit and patch. The minimization of the functional (11) was performed with data
from the centered accelerometer and the resulting estimated parameters are summarized
in Table 3. The model response and experimental data from the centered accelerometer
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Figure 9. The time history of the Experiment 3 data measured at 4. = (0, 0) and for the model response with
estimated parameters. ——, Experimental data; ——, model response.

are plotted in Figures 9 and 10. As indicated by the frequency plots in Figure 10, six
modes were accurately matched with these estimated parameter values with expected
overdamping of the high frequency 2814 and 3661 Hz modes.

In comparing the parameter estimates of Examples 1 and 2 in Table 3, it can be seen
that while little change occurs in p, D and v, there is some variation in the viscous damping
constant y and the internal Kelvin—Voigt parameter c¢p. This is due to the different
frequency responses in the two experiments and again reflects some limitations in the
damping model. When the large hammer was used to excite the plate, the primary response
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Figure 10. The frequency content of the Experiment 3 data (for time interval (0, 0-1)) measured at 4. = (0, 0)
and for the thin plate model with estimated parameters. x , Experimental data; O———, model response.
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was in the lower frequency modes and the parameters obtained from the minimization of
equation (11) yielded a model which matched the lower frequencies but overdamped the
higher frequencies having less energy. The use of the small hammer with a metal head
resulted in data in which the primary response was in the 918 Hz mode with very little
energy in the 60 Hz mode. This shift in the excited frequencies generally leads to a
reduction in the estimated values of ¢, and an increase in y (see also Examples 4 and 95).

4.4. EXAMPLE 4: AXISYMMETRIC EXCITATION—VOLTAGE SPIKE TO PATCH

A second means of exciting the plate is through a voltage spike to the piezoceramic patch
and results obtained in that manner are reported here. Because the active patch was
centered on the plate, this yielded an axisymmetric response and data from the centered
accelerometer was used when minimizing the functional (11).

The estimated physical parameters p, D, v, ¢p and y, as well as the patch input parameter
A8, are summarized in Table 3 and the resulting model response is plotted along with the
experimental data from the centered accelerometer in Figures 11 and 12. As indicated by
the time and frequency plots in the figures, the plate response obtained in this manner is
quite similar to that obtained by exciting the plate with the small metal-tipped hammer.
In comparing the estimated parameters from Examples 3 and 4, it is noted that there is
very little variation in either p, D, v or ¢p, 7, despite the differing mechanisms for exciting
the system.

The estimated value 0-006074 for the patch parameter 7% is seen to be approximately
48% of the value of 0-0126 predicted by the model (5) with the values of E,., v,., h, T
and d specified in Table 1 and 7, taken to be 0. Some of this variation can be
attributed to patch material values which differ slightly from those summarized in
Table 1. While differences occur between the “handbook” values of the Young’s
modulus and Poisson ratio and the “true” parameters for the experimental patch,
perhaps the largest source of variation occurs in the values for the strain constant d;.
The value reported in the product literature (and given in Table 1) was obtained
through static tests, while the estimated value is obtained in a dynamic setting which
tends to decrease the realized values of strain parameters such as d;; [15, 19, 20].
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Figure 11. The time history of the Experiment 4 data measured at 4. = (0, 0) and for the model response with
estimated parameters. , Experimental data; ———, model response.
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Figure 12. The frequency content of the Experiment 4 data (for time interval (0, 0-1)) measured at 4. = (0, 0)
and for the thin plate model with estimated parameters. x ——, Experimental data; O———, model response.

Hence, while the analytic values given by the model (5) can be used as starting values
in the optimization routine, they will not in general yield an accurate model response
due to physical variations in the material patch properties.

4.5. EXAMPLE 5: NON-AXISYMMETRIC EXCITATION WITH SMALL HAMMER

In this experiment, a non-axisymmetric response was obtained through a small hammer
impact at the point (7-27 in, 0) (see Figure 3). The leads to the piezoceramic patch were
disconnected in this experiment to minimize damping effects due to the circuit and
piezoelectric properties of the patch. Data was again measured via the three accelerometers
located at 4, = (2in, 0), A. = (0, 0) and 4, = (2 in, ). Optimization was performed using
the data from the accelerometer located at 4, = (2in, 0) and the estimated parameters
values are summarized in Table 3.

Time and frequency plots of the experimental data from the right (4,), centered
(A4.) and left (A4,) accelerometers, as well as corresponding model responses, are given in
Figures 13(a), (b) and (c), respectively. The observed experimental frequencies as well
as the calculated model frequencies at the three accelerometers are tabulated in
Table 5.

From the frequency plots in Figure 13(a), it can be seen that the model very accurately
matches the (n, m) = (0, 0), (0, 2), (0, 3), (1, 1), (1, 2), (2, 0), (2, 1) and (0, 4) modes, while
significantly underdamping the (1,0) and (0, 1) modes (see Table 2 to compare the
observed frequencies with the corresponding modes). As expected, the higher order modes
are overdamped, as is typical with the Kelvin—Voigt damping mechanism.

Similar results are observed in the plots in Figure 13(c), which depict the acceleration
data and model response at A, (recall that the data from the right accelerometer was used
to obtain the parameters). In addition to the previously matched modes, this data contains
a stronger response in the (0, 4) mode (408 Hz) which is accurately matched by the model.
Although the (1, 0) and (0, 1) modes are still underdamped, the accurate matching of nine
modes demonstrates the distributed nature of this model.

The underdamping of the (1, 0) mode is very evident in both the time domain and
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Figure 13. The experiment 5 data and model response (in the time and frequency domains) at (a) 4. = (2, 0),
(b) Ac =(0,0) and (c) 4, = (2, ®). x——, Experimental data; O———, model response.

frequency plots of the data and model response at the centered accelerometer
(Figure 13(b)). By comparing the relative degree of underdamping that is observed at
A, with that seen at A, or A4,, it can be seen that the results are comparable. However,
the different distribution of energy in the axisymmetric and non-axisymmetric modes
leads to larger discrepancies between the model and experimental data measured at 4.
than were observed at the noncentered points. The underdamping of the (1,0) and
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TABLE 5

Observed frequencies in the Experiment 5 data and model response

Right acceleration (measured) Right acceleration (model response)
60-1 1230 2043 2974 4036 59-3 1230 2021 2952 3992
227-1  350-1 4937 6460 8188 2292 350-8 4885 6423
5127 6921  895-0 5127 6929 8877
916-3
Center acceleration (measured) Center acceleration (model response)
59-3 2981 593
227-8 230-0
514-9 894-3 5149
9155 914-1
Left acceleration (measured) Left acceleration (model response)
60-1  123:0 2043 2974 4080  529-5 59-3  122:3 2014 2959 4036
227-8 3501 4937  646:0 819-6 2299  350-8 4885 6416
512:0 6921  895-0 51227 6929 8877
9177 914-8

(0, 1) modes again illustrates some of the limitations of the damping model being
used in these investigations.

5. CONCLUSIONS

In this paper, we have considered issues associated with the estimation of parameters
in a PDE-based model for a vibrating plate. Specifically, we considered a clamped thin
circular plate with surface-mounted piezoceramic patches. Thin plate equations which
accounted for both the passive and active contributions from the patches were used to
model the dynamics of the system. The unknown parameters in the model included
structural parameters (density, flexural rigidity, Poisson ratio, and material and air
damping) and patch parameters. The structural parameters were taken to be piecewise
constant in order to account for the presence and differing material properties of the
patches. It should be noted that all modelling equations for the system were derived using
Newtonian principles (force and moment balancing), and all parameters represent physical
quantities in the system.

When designing and performing experiments, two issues were considered. The first
concerned the ability of the PDE model accurately and consistently to describe the physics
of the system under a variety of inputs and responses. Second, it is well known that closing
or shunting the circuit containing the piezoceramic patch provides additional damping,
and this was investigated in the context of the PDE model.

With regard to the first issue, experiments were performed in which the plate was
excited with a variety of inputs (including impact hammers and voltage spikes to the
patches) which excited from four to 15 frequencies ranging from 60 Hz to 4000 Hz. The
matching of up to six axisymmetric and eight non-axisymmetric frequencies illustrated
that the thin plate model was appropriate and sufficiently accurate for the experimental
plate under consideration. Moreover, the distributed nature of the PDE model means that
it accurately describes the physics of the entire plate, including points not used in the
optimization process. As demonstrated by the results reported in reference [1], the
accuracy of the model, with parameters estimated in the manner discussed here,
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contributed to the good vibration attenuation when the model was incorporated in a
PDE-based controller.

When comparing the parameters estimated in the various experiments, it was noted
that the density, flexural rigidity and Poisson ratios were consistent across a/l
experiments. There was some variation in the damping parameters depending on the
frequency content of the data. In experiments with minimal low frequency excitation
but substantial energy in the high frequencies, the Kelvin—Voigt damping coefficient
¢p was smaller and air damping y higher than in experiments in which the response
was dominated by the primary mode. This indicates the necessity of estimating parameters
with a response in the frequency range under consideration and illustrates a limitation
in the damping model.

The damping which results when the circuit involving the piezoceramic patch is closed
was investigated by performing a series of experiments with open and closed circuits. The
estimated parameters and model responses for the two cases were then compared. As
expected, the plate response with the closed circuit was more highly damped than that
obtained with the open circuit, and the optimization routine compensated by increasing
the material damping coefficients. While the damping provided by the circuit is not directly
modelled by the Kelvin—Voigt or viscous damping terms, it does produce an effect in the
system which is phenomenologically similar to Kelvin—Voigt and viscous damping, and
hence accurate model fits were obtained with the estimated parameters. We emphasize that
if the applications of interest involve such a closed circuit, parameter estimation should
be performed in this regime so as to account for the additional damping.

We reiterate that while the fixed-edge boundary conditions (6) adequately modelled the
boundary dynamics for the set-up under consideration, in many cases energy loss through
the boundary clamps will make the fixed-edge model inadequate. In such cases, an “almost
fixed”” boundary moment model of the type discussed in reference [9] may provide a more
accurate description of edge physics. Experimental results pertaining to the use of that
model for describing the plate dynamics when boundary clamps are loosened can be found
in reference [2].

Finally, while the investigations here pertained to a circular plate, the issues are
important in a large number of applications involving vibrating structures, and the specific
results reported here may indicate directions to be followed when developing and applying
PDE models to more complex structures. As indicated by parameter estimation results
reported here and control results reported in reference [1], the use of PDE models can lead
to accurate descriptions of structural systems (even in the presence of actuators and
sensors) which can then be successfully incorporated in PDE-based controllers.
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