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The stability behavior of a spinning Timoshenko shaft with an overhung disk subjected
to a follower force is analytically studied. The succinct expression of frequency (whirl speed)
equations for hinged–hinged–free and clamped–hinged–free rotors are given. By using the
numerical technique, the critical follower loads are sought. Numerical results reveal that
the instability mechanisms are complex due to the presence of the spin speed, the overhung
disk and the location of the intermediate support. Fifteen different types of instability
mechanisms are presented. The critical load jump is possible when the instability
mechanism changes from one to another. Furthermore, in some special cases, the critical
follower loads are almost zero; therefore, such a rotor combination is extremely
unstable and should be avoided for design purposes.
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1. INTRODUCTION

The current trend in the design of modern rotating machinery, particularly
turbomachinery, is toward the achievement of higher operating speeds. Therefore, the
accurate dynamic analysis of shaft–disk (rotor) systems has become a fundamental aspect
of the design of high speed turbomachines. As a result of the ever increasing demand for
higher spin speeds, the shafts of the rotors are made extremely flexible, which reinforces
the importance of studying the dynamics of rotor systems. There have been a number of
investigations relating to this field in the past decades, as indicated in the book by
Dimentberg [1] and in the survey paper by Rieger [2]. In those published studies, the main
aspects of rotor dynamic behavior are the vibration due to imbalance forces and different
self-excited sources, stability and torsional dynamics of shaft. However, of the many
important forms of dynamic behavior of a rotor system, the most commonly predicted for
design purposes are the stability regions.

In addition to torque transmission, shafts subjected to follower forces due to the pressure
difference across the rotor disks can be found in many rotating machines. The study of
the stability of elastic systems subjected to non-conservative forces, such as follower forces,
has been of great interest in recent years. A main characteristic of such non-conservative
systems is that they are mathematically non-self-adjoint. In general, there exist two types
of instability mechanisms, divergence and flutter, for these problems. An excellent
treatment of non-conservative stability problems of various kinds of structural
components can be found in the early books by Bolotin [3] and Ziegler [4]. A
comprehensive discussion of this subject with a related list of references can be found in
the book by Liepholz [5].
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Zorii and Chernukha [6] investigated the effect of the intermediate elastic support on
a column that was simply supported at one end and subjected to a follower force at the
other, free one. They found an interesting effect of the transition from one instability
mechanism to another: namely, if the intermediate support is close to the simply supported
end the column becomes unstable by flutter; whereas if the intermediate support is far
enough from the simply supported end, the column loses its stability by divergence.
Elishakoff and Hollkamp [7] studied the same system of Zorii and Chernukha [6] by means
of computerized symbolic algebra in conjunction with the two-mode Galerkin method.
Also, in subsequent work by Elishakoff and Lottati [8], exact solutions of the same problem
were presented. A general discretization method was presented by De Rosa and Franciosi
[9] to analyze the effect of an intermediate support on the dynamic behavior of the previous
problem. Lee [10] used the Lagrangian approach and the assumed mode method to discuss
the effects of an intermediate spring support on the stability behavior of the cantilever
beam. As such, it had been studied from many different points of view, by adopting the
usual Euler–Bernoulli hypothesis. Quite recently, De Rosa [11] resolved the
above-mentioned system by taking the shear deformation into account.

For the exact solution of a spinning Timoshenko shaft with an overhung disk subjected
to a follower force, no such work has been previously investigated. The objective of this
paper is to carry out the analytical forms of frequency equations of the spinning
Timoshenko shaft with an overhung disk. In order to obtain a deeper insight into the
dynamic behavior of a shaft–disk system, the present shaft mathematical model has taken
account of rotary inertia, shear deformation, gyroscopic moments and their combined
effects. The influence of the spin speed, the disk and the location of the intermediate
support on instability mechanisms and their corresponding stability bounds is investigated
in detail.

2. MATHEMATICAL FORMULATION

A uniform circular shaft of length L, with a thin disk attached at the right free end,
support at the left end as well as at some intermediate location L1 and spinning along its
longitudinal axis at a constant speed V is illustrated in Figure 1. The shaft in Figure 1(a)
is considered as supported by a short bearing at the left end and that in Figure 1(b) is
supported by a long bearing. The bearings considered in the present study are rigid, so
supported conditions can be modelled as hinged and clamped supports for short and long
bearings, respectively. For the sake of convenience, the rotor as shown in Figure 1(a) will
be abbreviated as H–H–F (hinged–hinged–free) rotor and that in Figure 1(b) will be
abbreviated as C–H–F (clamped–hinged–free). Both rotors are subjected to a follower
force that always remains normal to the disk.

The governing differential equations and corresponding boundary and continuity
conditions for such an elastic system can be easily achieved by use of the extended
Hamilton’s principle. The equations of motion and the boundary and continuity
conditions are obtained by the relation

g
t2

t1

[d(V−T)− dW] dt=0, (1)

where V and T are, respectively, the strain and kinetic energies of the system, and dW is
the variational work done by external forces.

In the present study, the rotor is divided into two portions, the left (from the left end
to the intermediate support) and right (from the intermediate support to the free end)
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portions. Two sets of inertia reference frames, o1x1y1z1, with origin o1 at the left end of
the rotor, and o2x2y2z2, with origin o2 at the intermediate support of the rotor, are adopted.
It is assumed that the axial motion is small and can be reasonably neglected, and therefore
a typical cross-section of the shaft, located at a distance xi from the origin oi , in a deformed
state, is described by the translations vi (xi , t) and wi (xi , t) in the yi and zi directions and
small rotations bi (xi , t) and gi (xi , t) about the yi - and zi -axes, where the subscript i=1
and 2 designates, respectively, the left and right portions of the shaft.

Because the disk is considered to be rigid here, only the strain energy due to the shaft
should be taken into consideration. Taking into account the rotatory inertia and shear
deformation, the strain energy V for a shaft of cross-sectional area A and moment of
inertia of the shaft cross-section I is given by

V= 1
2 g
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Figure 1. Spinning rotors and co-ordinate systems. (a) H–H–F rotor; (b) C–H–F rotor.
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where L1 is the distance between the left end and the intermediate support of the rotor,
and E, G, r and k are the Young’s modulus, shear modulus, mass density and shear
coefficient of the shaft respectively.

Under the assumption of constant spinning speed, the kinetic energy T of the system,
including both translational and rotational forms, is given by

T= 1
2 g

L1

0

r[A(v̇2
1 + ẇ2

1)+ Id (b� 21 + ġ2
1)−2VIpb1ġ1 +2V2Ip ] dx1

+ 1
2 g

L−L1

0

r[A(v̇2
2 + ẇ2

2)+ Id (b� 22 + ġ2
2)−2VIpb2ġ2 +2V2Ip ] dx2

+ 1
2[MD (v̇2

2 + ẇ2
2)+ ID (b� 22 + ġ2

2)−2VIPb2ġ2 +2V2IP ] =x2 =L−L1, (3)

where the superscript dot denotes differentiation with respect to time t, Id and Ip are the
diameter and polar moments of inertia per unit length of the shaft respectively, MD is the
mass of the disk, and ID and IP are the diameter and polar mass moments of inertia of
the disk respectively. Note that Ip =2Id and Id = I for the uniform circular shaft
cross-section, and IP 1 2ID for the thin circular disk.

Practical rotors possess inherent external and internal damping, which tend to affect the
stability behavior of the present non-conservative rotor system. However, the inclusion of
external and internal damping in the present study will make the problem intractable with
regard to analytical solution. Also, the instability mechanism will become more complex
for the consideration of internal damping in the present study. This is because, in the
absence of follower force, a rotor system may lose its stability at some spin speed due to
internal damping [12]. Therefore, external and internal damping are not included in the
present study. From the above, the only variational work included in this study is due to
the follower force p and can be expressed as

dW=g
L1

0

p$1v1

1x1
d01v1

1x11+
1w1

1x1
d01w1

1x11% dx1

+g
L−L1

0

p$1v2

1x2
d01v2

1x21+
1w2

1x2
d01w2

1x21% dx2

+ p(b2dw2 − g2dv2) =x2 =L−L1. (4)

Upon substitution of equations (2)–(4) into the extended Hamilton’s principle, equation
(1), the governing differential equations for the system are obtained as follows:

(kGA− p)
12vi

1x2
i
− kGA

1gi

1xi
− rAv̈i =0, (5)

(kGA− p)
12wi

1x2
i
+ kGA

1bi

1xi
− rAẅi =0, (6)

EI
12bi

1x2
i
− kGA01wi

1xi
+ bi1−2rVIġi − rIb� i =0, (7)
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EI
12gi

1x2
i
+ kGA01vi

1xi
− gi1+2rVIb� i − rIg̈i =0. (8)

The necessary and sufficient boundary and continuity conditions are found as follows:
hinged end (at x1 =0),

v1(x1 =0, t)=0, w1(x1 =0, t)=0,
1b1(x1 =0, t)

1x1
=0,

1g1(x1 =0, t)
1x1

=0; (9)

clamped end (at x1 =0),

v1(x1 =0, t)=0, w1(x1 =0, t)=0, b1(x1 =0, t)=0, g1(x1 =0, t)=0; (10)

free end (at x2 =L−L1),

1v2(x2 =L−L1, t)
1x2

− g2(x2 =L−L1, t)+
MD

kGA− p
v̈2(x2 =L−L1, t)=0, (11)

1w2(x2 =L−L1, t)
1x2

+ b2(x2 =L−L1, t)+
MD

kGA− p
ẅ2(x2 =L−L1, t)=0, (12)

EI
1b2(x2 =L−L1, t)

1x2
+ IDb� 2(x2 =L−L1, t)+2VIDġ2(x2 =L−L1, t)=0, (13)

EI
1g2(x2 =L−L1, t)

1x2
+ IDg̈2(x2 =L−L1, t)−2VIDb� 2(x2 =L−L1, t)=0; (14)

continuity conditions (across x1 =L1 and x2 =0),

v1(x1 =L1, t)= v2(x2 =0, t)=0, w1(x1 =L1, t)=w2(x2 =0, t)=0,

b1(x1 =L1, t)= b2(x2 =0, t)=0, g1(x1 =L1, t)= g2(x2 =0, t),

1b1(x1 =L1, t)
1x1

=
1b2(x2 =0, t)

1x2
,

1g1(x1 =L1, t)
1x1

=
1g2(x2 =0, t)

1x2
. (15)

Introducing the complex notation

ui = vi +jwi , ci = gi −jbi , (16)

and letting

xi =Lji , L1/L= h, ui =LUi e jvt, ci =Ci e jvt, (17)

in which Ui and Ci are the normal functions of ui and ci respectively, ji is the
non-dimensional length of the shaft and v is the angular frequency.

Omitting the factor e jvt, equations (5)–(8) become

(1− p̄s2)
d2Ui

dj2
i
+ v̄2s2Ui −

dCi

dji
=0, (18)

s2 d2Ci

dj2
i
+[v̄r2s2(v̄−2V�)−1]Ci +

dUi

dji
=0, (19)

where the non-dimensional coefficients are

r2 = I/AL2, s2 =EI/kGAL2, p̄= pL2/EI,

v̄2 = rAL4v2/EI, V�2 = rAL4V2/EI. (20)
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Uncoupling Ui and Ci yields the following equations:

d4

dj4
i
Ui (ji )+2a

d2

dj2
i
Ui (ji )+ bUi (ji )=0, (21)

d4

dj4
i
Ci (ji )+2a

d2

dj2
i
Ci (ji )+ bCi (ji )=0, (22)

where

a=[v̄2(r2 + s2)−2v̄r2V�− p̄(v̄2r2s2 −2v̄r2s2V�−1)]/[2(1− p̄s2)], (23)

b= v̄2[v̄r2s2(v̄ −2V�)−1]/(1− p̄s2). (24)

The necessary and sufficient boundary and continuity conditions for the system are also
expressed in non-dimensional complex form as follows:

hinged end,

U1(j1 =0)=0,
dC1(j1 =0)

dj1
=0; (25)

clamped end,

U1(j1 =0)=0, C1(j1 =0)=0; (26)

free end,

dU2(j2 =1)
dj2

−C2(j2 =1− h)−
v̄2s2M� D

1− p̄s2 U2(j2 =1− h)=0, (27)

dC2(j2 =1− h)
dj2

− v̄I�D (v̄ −2V�)C2(j2 =1− h)=0, (28)

where

M� D =MD /rAL, I�D = ID /rAL3; (29)

continuity conditions,

U1(j1 = h)=U2(j2 =0)=0, C1(j1 = h)=C2(j2 =0),
dC1(j1 = h)

dj1
=

dC2(j2 =0)
dj2

.

(30)

3. SOLUTIONS

With the aid of the standard procedure for solving ordinary differential equations, a
quartic auxiliary equation is derived. The roots of the auxiliary equations have three
possibilities; however, only two cases are practical and the other one is of a much higher
frequency mode and is hence of less interest in practical application. Thus, for the sake
of saving space, only the two practical cases are presented here.

Case A. Suppose that the auxiliary equation has two real and two pure imaginary roots,
say 2a1 and 2ja2. This happens when bQ 0, and the general solutions of Ui and Ci are
then

U1(j1)=C1 cosh (a1j1)+C2 sinh (a1j1)+C3 cos (a2j1)+C4 sin (a2j1),

C1(j1)=m1C1 sinh (a1j1)+m1C2 cosh (a1j1)−m2C3 sin (a2j1)+m2C4 cos (a2j1),

(31)
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Figure 2. (a)–(f). Caption on page 49.
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Figure 2. (g)–(l). Caption on page 49.
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Figure 2. (m)–(o).

Figure 2. The load–frequency curves for various types of instability mechanisms. (a) H–H–F rotor, D, h=0·7,
V�=0, M�D =0 and I�D =0; (b) H–H–F rotor, F12, h=0·3, V�=0, M�D =0 and I�D =0; (c) H–H–F rotor, F23,
h=0·45, V�=0, M�D =0 and I�D =0; (d) C–H–F rotor, F45, h=0·71, V�=0, M�D =0 and I�D =0; (e) H–H–F
rotor, F12f*, h=0·8, V�=10, M�D =1 and I�D =0·032; (f) H–H–F rotor, D*, h=0·6514, V�=10, M�D =1 and
I�D =0·032; (g) H–H–F rotor, F12b*, h=0·625, V�=10, M�D =1 and I�D =0·032; (h) C–H–F rotor, F12b**,
h=0·766, V�=5, M�D =1 and I�D =0·032; (i) H–H–F rotor, F12b, h=0·3, V�=10, M�D =0 and I�D =0; (j)
H–H–F rotor, F23b, h=0·45, V�=10, M�D =0 and I�D =0; (k) C–H–F rotor, F23f, h=0·49, V�=10, M�D =0
and I�D =0; (l) C–H–F rotor, F34b, h=0·63, V�=10, M�D =0 and I�D =0; (m) H–H–F rotor, F34f*, h=0·8,
V�=3, M�D =5 and I�D =0·8; (n) C–H–F rotor, F45b, h=0·72, V�=10, M�D =0 and I�D =0; (o) C–H–F rotor,
F45f, h=0·71, V�=10, M�D =0 and I�D =0.

U2(j2)=C5 cosh (a1j2)+C6 sinh (a1j2)+C7 cos (a2j2)+C8 sin (a2j2),

C2(j2)=m1C5 sinh (a1j2)+m1C6 cosh (a1j2)−m2C7 sin (a2j2)+m2C8 cos (a2j2),

(32)

where

a1 = [−a+za2 − b ]1/2, a2 = [a+za2 − b ]1/2,

m1 = [(1− p̄s2)a2
1 + v̄2s2]/a1, m2 = [(1− p̄s2)a2

2 − v̄2s2]/a2. (33)

Case B. Suppose that the auxiliary equation has four pure imaginary roots, say 2ja2
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Figure 3. (a) and (b).
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Figure 3. (c) and (d).

Figure 3. The stability boundary of the H–H–F rotor versus the location of the intermediate support. (a)
M�D =0, I�D =0; (b) M�D =1, I�D =0·032; (c) M�D =2, I�D =0·128; (d) M�D =5, I�D =0·8. ——, V�=0·0; · · · · ,
V�=1·0; –·–·–, V�=5·0; –··–··–, V�=10·0.
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Figure 4. (a) and (b).
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Figure 4. (c) and (d).

Figure 4. The stability boundary of the C–H–F rotor versus the location of the intermediate support. (a)
M�D =0, I�D =0; (b) M�D =1, I�D =0·032; (c) M�D =2, I�D =0·128; (d) M�D =5, I�D =0·8. Key as Figure 3.
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and 2ja3. This happens when a2 − bq 0 and bq 0, and the general solutions of Ui and
Ci are then

U1(j1)=C�1 cos (a3j1)+C�2 sin (a3j1)+C�3 cos (a2j1)+C�4 sin (a2j1),

C1(j1)=−m3C�1 sin (a3j1)+m3C�2 cos (a3j1)−m2C�3 sin (a2j1)+m2C�4 cos (a2j1),

(34)

U2(j2)=C�5 cos (a3j2)+C�6 sin (a3j2)+C�7 cos (a2j2)+C�8 sin (a2j2),

C2(j2)=−m3C�5 sin (a3j2)+m3C�6 cos (a3j2)−m2C�7 sin (a2j2)+m2C�8 cos (a2j2),

(35)

where

a3 = [a−za2 − b ]1/2, m3 = [(1− p̄s2)a2
3 − v̄2s2]/a3. (36)

The application of appropriate boundary and continuity conditions to equations (31)
and (32) or equations (34) and (35) yields a set of eight homogeneous linear algebraic
equations for each case. After some algebra reductions, the dimensions of the coefficient
matrices become 3×3 for both cases. The elements of these coefficient matrices for each
case are given in the Appendix. In order that the non-trivial solutions may exist, the
determinants of coefficient matrices must be equal to zero. These lead to the frequency
equation in each case from which the whirl speeds (natural frequencies) can be determined.

4. NUMERICAL RESULTS AND DISCUSSION

Elastic systems subjected to follower forces can have two types of instability: divergence
(static instability) and flutter (dynamic instability). Divergence occurs when

v̄i = v̄j =0 (i$ j), i, j=1, 2, 3, . . . , (37)

and flutter occurs when

v̄i = v̄j $ 0 (i$ j), i, j=1, 2, 3, . . . . (38)

In general, the system will be referred to as unstable and its load as critical whenever a
static or a dynamic instability occurs.

T 1

The transition history of the types of instability mechanisms for
C–H–F rotors with V�=10, M�D =1 and I�D =0·032

Non-dimensional intermediate Type of instability
support location, h mechanism

0·1000–0·6670 F12b
0·6680–0·7252 F12b*
0·7253 D*
0·7254–0·7280 F12f*
0·7290–0·7480 F23f
0·7490–0·7650 F12f*
0·7660 F12b**
0·7670–0·7940 F23b
0·7950 F12b**
0·7960–0·9000 F12f*
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Figure 5. The stability boundary of the H–H–F rotor versus the spinning speed. (a) h=0·4; (b) h=0·8. ——,
M�D =0·0, I�D =0·0; · · · · ·, M�D =1·0, I�D =0·032; –·–·–, M�D =2·0, I�D =0·128; –··–··–, M�D =5·0, I�D =0·8.

To perform the numerical simulations of the system, the basic non-dimensional data
employed are the same in all discussion cases; namely r=0·08 and E/kG=3. For a given
rotor with r, s, M�D , I�D , p̄, h and V� known, the v̄i (i=1, 2, 3, . . . ) can be found from the
appropriate frequency equations. However, these frequency equations are highly
transcendental and not to be solved simply. This difficulty is overcome by the use of the
numerical method. When a rotor is put into a spinning motion, its at-rest natural frequency
(whirl speed) splits into two components: forward and backward precissions. In all of the
figures that follow, the positive whirl speed indicates the forward precession, while the
negative whirl speed denotes the backward precession. The first 12 whirl speeds (six
forward and six backward modes) are considered to determine the stability bounds.
However, there is no proof that the higher modes will not coalesce at an even lower
follower load. It should be pointed out that the frequencies of case B, as mentioned in
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the previous section, are of relatively large magnitude; however, case B should be sought
in the numerical simulations because flutter may occur in the higher mode.

There exist 15 different types of instability mechanisms within the scope of the present
study. These instability mechanisms are shown in detail in Figures 2(a)–(o), which
demonstrate the relationships between the whirl speeds v̄ and the follower force p̄ for 15
different rotor parameters. In these figures, for the sake of convenience, a concise type
name is given for each type of instability mechanism. In this scheme, ‘‘D’’ denotes
divergence, ‘‘F’’ denotes flutter, ‘‘f’’ and ‘‘b’’ denote forward and backward precession, and
the digits between two letters represent the coalescent modes. Furthermore, if two
instability mechanisms are the same but have different load–frequency procedures, they
will be distinguished by a superscript asterisk. In Figure 2(i), for example, the onset of
flutter instability occurs when the two lowest backward whirl speeds coalesce; it is denoted

Figure 6. The stability boundary of the C–H–F rotor versus the spinning speed. (a) h=0·4; (b) h=0.8. Key
as Figure 5.
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Figure 7. The stability boundary of the H–H–F rotor versus the mass and diameter mass moment of inertia
of the overhung disk. (a) h=0·4; (b) h=0·8. ——, V�=0·0; · · · · , V�=1·0; –·–·–, V�=5·0; –··–··–, V�=10·0.

as F12b. However, as shown in Figure 2(g), when the follower force slightly exceeds some
value, the first forward whirl speed disappears and immediately changes its natural whirl
mode to the backward manner. Since this new emergent backward whirl speed is smaller
than the original first backward whirl speed, this new backward whirl speed should be
denoted as the first backward mode and the original first backward whirl speed should
now yield to the second backward mode. If the follower force increases continuously and
sufficiently, the first two backward whirl speeds move closer and, at some value of p̄,
coincide with each other; the flutter instability occurs and this type of instability
mechanism is called F12b*. The names of the other instability mechanisms can be
understood in the same manner.

In Figures 3 and 4 is illustrated the influence of the location of the intermediate support
on the critical follower loads of H–H–F and C–H–F rotors with four different attached
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overhung disks. In each case, four spin speeds, V�=0, 1·0, 5·0 and 10·0, are considered.
It can be observed that the instability boundaries are separated by several significant
discontinuities. It is well known that if the critical load jump occurs, the accompanied
change of instability mechanism is necessary. However, the converse implication is not
always true. For example, when the instability mechanism transits from F12b* through
D* to F12f*, the critical load curve is quite smooth, without jumping. Generally, the
transition of the types of instability mechanisms of a rotor system is fairly complex. An
example of a complex transition history for the instability mechanisms is shown in Table 1.
An interesting observation is that the critical follower load is almost zero in Figure 4(b)
for h=0·8217 of case V�=1·0. Therefore, the rotor is extremely unstable for such a
parameter combination and should be avoided for design purposes.

Figure 8. The stability boundary of the C–H–F rotor versus the mass and diameter mass moment of inertia
of the overhung disk. (a) h=0·4; (b) h=0·8. Key as Figure 7.
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The dependence of the critical follower load p̄cr on the spin speed V� of the rotor system
with four different attached overhung disks is studied next. Here the locations of the
intermediate support is considered to be h=0·4 and 0·8, and the results are plotted in
Figure 5 for an H–H–F rotor and in Figure 6 for a C–H–F rotor. It can be seen from
Figures 5(a) and 6(a) that the instability mechanism is F12b for a spin speed range from
0 to 20 when h=0·4. As can be seen from the curves of the light disk (i.e., M�D =0, I�D =0
and M�D =1·0, I�D =0·032) in Figures 5(a) and 6(a), the critical follower loads are found
to decrease as the spin speed increases. However, once the heavy disk (i.e., M�D =2·0,
I�D =0·128 or M�D =5·0, I�D =0·8) is attached to the free end, such a tendency is not always
held. The critical follower loads decrease with the spin speed at first, and at some spin speed
change, to increase with spin speed. Consequently, one should be careful in drawing any
conclusions about the effect of spin speed (or gyroscopic moment) on critical follower
loads. In Figures 5(b) and 6(b) it is indicated that the instability mechanisms of the rotors
are most probably F12f*. If only the F12f* type of instability is considered, the critical
follower load increases with spin speed monotonously. As can be seen again, extremely
unstable regions exist in this numerical simulation.

To examine the effect of an attached disk on the critical follower loads, the stability
boundaries for H–H–F and C–H–F rotors are presented in Figures 7 and 8 respectively.
Here the location of the intermediate support is again considered to be h=0·4 and 0·8.
Also, for the sake of convenience, the relation between M�D and I�D is simply assumed to
be I�D =0·032M�2

D. As observed from Figures 7(a) and 8(a), the critical follower loads
decrease as the mass and diameter mass moment of inertia of the disk increase for the cases
of low spin speed (i.e., V�=0 or V�=1·0). However, once the spin speed exceeds some
value (i.e., V�=5·0 or V�=10·0); the critical follower loads decrease with M�D and I�D first,
and at some values of M�D and I�D change, to increase with M�D and I�D . Upon investigation
of Figure 7(b), it is seen that when the spin speed V�=0, the instability mechanism is
divergence, and the critical load is independent of M�D and I�D . This result is to be expected,
since the divergence is a static phenomenon which is independent of the inertia effect.
Furthermore, the critical follower loads of the F12f* type of instability increase
monotonously with M�D and I�D .

5. CONCLUSIONS

A stability analysis of a non-conservative spinning Timoshenko shaft with an overhung
disk is presented. The succinct frequency equations for two types of shaft–disk systems
have been derived by the analytical method. From the formulation and the results of the
numerical simulations, the following conclusions can be drawn.

(1) Due to the effects of the spin speed, the overhung disk and the intermediate support,
the instability mechanisms become more complex.

(2) Usually, the occurrence of flutter is accompanied by the coalescence of the lowest
two rotor’s forward or backward modes. However, higher modes may sometimes be
involved in some rotor combination. If a numerical method (such as the finite element
method) is used for the analysis, the same precession for the treatment of higher modes,
which may cause the instability, must keep as for lower modes. The present analytical
model does not have this drawback.

(3) The critical load jump is possible when the instability mechanism transits from one
to another. Thus the critical load curve becomes discontinuous and its tendency is hard
to predict.

(4) In some special cases, the critical follower loads are almost zero; therefore, such
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parameter combinations of the rotor systems are extremely unstable and should be avoided
for design purposes.

(5) As mentioned before, the internal and external damping tend to affect the instability
behavior of the gyroscopic non-conservative system. It is important and challenging to
investigate the effects of external and internal damping on the stability behavior of the
present rotor system. This may be studied by the use of the finite element method.
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APPENDIX: ELEMENTS OF THE MATRICES FOR HINGED–HINGED–FREE AND
CLAMPED–HINGED–FREE ROTORS

Case A: bQ 0.

A11 =g
G

G

F

f

h1 cosh (ha1) sin (ha2)− sinh(ha1) cos (ha2)
sinh (ha1) sin (ha2)

,

2h1[1−cosh (ha1) cos (ha2)]+ (h2
1 −1) sinh (ha1) sin (ha2)

h1 cosh (ha1) sin (ha2)− sinh (ha1) cos (ha2)
,

for H–H–F rotor;

for C–H–F rotor,

A12 =−h1, A13 =−1,

A21 = h3 sinh [(1− h)a1]+ h5 sin [(1− h)a2]− h7 cosh [(1− h)a1]+ h7 cos [(1− h)a2],

A22 = h3 cosh [(1− h)a1]− h7 sinh [(1− h)a1],

A23 = h5 cos[(1− h)a2]− h7 sin [(1− h)a2],

A31 = h1h5 cosh [(1− h)a1]+ cos [(1− h)a2]− h1h9 sinh [(1− h)a1]− h9 sin [(1− h)a2],

A32 = h1{h5 sinh [(1− h)a1]− h9 cosh [(1− h)a1]},

A33 =−sin [(1− h)a2]− h9 cos [(1− h)a2],
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where

h1 =m1/m2, h3 = ( p̄a2
1 − v̄2)/( p̄a2

2 + v̄2), h5 = a1/a2,

h7 =
v̄2a1M�D

(1− p̄s2)( p̄a2
2 + v̄2)

, h9 =
I�Dv̄(v̄ −2V�)

a2
.

Case B: a2 − bq 0 and bq 0.

A�11 =g
G

G

F

f

sin (ha3) cos (ha2)− h2 cos (ha3) sin (ha2)
sin (ha2) sin (ha3)

,

2h2[cos (ha2) cos (ha3)−1]+ (h2
2 +1) sin (ha2) sin (ha3)

h2 cos (ha3) sin (ha2)− sin (ha3) cos (ha2)
,

for H–H–F rotor;

for C–H–F rotor,

A�12 = h2, A�13 =1,

A�21 = h4 sin [(1− h)a3]− h6 sin [(1− h)a2]+ h8 cos [(1− h)a3]− h8 cos [(1− h)a2],

A�22 =−h4 cos [(1− h)a3]+ h8 sin [(1− h)a3],

A�23 =−h6 cos [(1− h)a2]+ h8 sin [(1− h)a2],

A�31 = h2h6 cos [(1− h)a3]− cos [(1− h)a2]− h2h9 sin [(1− h)a3]+ h9 sin [(1− h)a2],

A�32 = h2{h6 sin [(1− h)a3]+ h9 cos [(1− h)a3]},

A�33 = sin [(1− h)a2]+ h9 cos [(1− h)a2],

where

h2 =m3/m2, h4 = ( p̄a2
3 + v̄2)/( p̄a2

2 + v̄2), h6 = a3/a2,

h8 =
v̄2a3M�D

(1− p̄s2)( p̄a2
2 + v̄2)

.


