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This paper describes the out-of-plane vibration of a uniform Euler—Bernoulli beam one
end of which is radially restrained (clamped or pinned) on the inside of a rotating rigid
rim and the other end is radially unrestrained (clamped, pinned or free). Depending on the
root offset parameter, the centrifugal axial force distribution may be wholly tensile or partly
compressive and partly tensile or wholly compressive. The general solution of the mode
shape differential equation is expressed as the superposition of four converging polynomial
functions. Six combinations of clamped, pinned and free boundary conditions are
considered, and the corresponding frequency equation is expressed in closed form, the roots
of which give the natural frequencies. The first three out-of-plane dimensionless natural
frequencies for typical combinations of the root offset parameter and rotational speed are
presented in tabular form. Beyond a value of the root offset parameter, the frequencies
increase and then decrease with increase in rotational speed. This aspect is discussed for
the six combinations of the boundary conditions. It is possible for the rotational speed and
a natural frequency to be equal (a “tuned” state) and for the beam to buckle at a critical
rotational speed. These aspects are addressed and some representative results tabulated.

© 1997 Academic Press Limited

1. INTRODUCTION

This paper describes an investigation of the out-of-plane vibration of a uniform
Euler—Bernoulli beam radially attached to the inside of a rigid rim which is rotating at
a constant speed. The other end (radially unrestrained) will pass through or point towards
the axis of rotation. Depending on the value of the root offset parameter (a measure of
the root offset radius compared to the length of the beam) the centrifugal force distribution
may be tensile over the whole length, compressive over part of the length and tensile over
the remainder or compressive over the whole length. With increase in rotational speed, the
natural frequency of vibration will either increase continously, or increase and then
decrease continuously, or decrease continuously. In this study emphasis is placed on the
latter. The “border” root offset parameter at which a natural frequency just decreases for
an increase in rotational speed is derived numerically. If the root offset parameter is such
that the frequency decreases, it is possible for a frequency to be zero at a critical rotational
speed; i.e., buckling occurs. This problem is of practical and mathematical interest. Several
investigators have derived the mode shape differential equation and devised various
numerical methods to solve the dynamical behavior of a cantilever in a centrifugal field
particularly the buckling aspect.

Mostaghel and Tadjbakhsh [1] used a method of successive approximation to estimate
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the rotational speed to cause a cantilever to buckle. Nachman [2] and Lakin [3]
concentrated primarily on the mathematical aspects of the mode shape differential
equation. Wang [4] used the Galerkin method with shape functions represented by a set
of Legendre polynomials. Lakin et a/. [5] had recourse to perturbation expansions in terms
of several parameters appearing in the governing equation. Lakin and Nachman [6]
studied the unstable vibrations and buckling of a flexible beam rotating rapidly (which
causes one of the system parameters to be small) by a singular perturbation method. Fox
and Burdess [7] used the Galerkin method to solve for natural frequencies, to obtain a
“tuned” rotational speed which coincides with a natural frequency and to determine the
radius of the rim for which a natural frequency is zero. White et al. [8] studied the in-plane
and out-of-plane buckling of a cantilever using the integrating matrix method and
presented a graph of the critical speed of rotation vs root offset parameter. Steele and
Barry [9] used an asymptotic matrix integration method and presented graphs of the first
two in-plane natural frequencies of a cantilever and the critical rotating speed. Peters and
Hodges [10] developed asymptotic expansion formulae. Fox [11] reported the effect of the
coupling between the motions in the two principal planes. Nachman [12] continued the
study on the mathematical aspects discussed in references [2,3] and developed a
geometrically exact equation for a rotating cantilever. Kammer and Schlack [13] derived
the critical rotational speed by the Liaponov’s direct method. Subrahmanyam and Kaza
[14] used the finite difference and the Ritz approach. Giirgéze [15] provided simple
formulae from which one can calculate various approximate natural frequencies and the
critical rotational speed. In references [1-15] there is broad qualitative agreement among
the investigators but quantitative agreement is absent. In references [7, 11] it is stated that
the mode shape differential equation “precludes an exact analytical solution”. Eidel and
Bauer [16] stated that “the partial differential equations permit no exact analytical
solutions” and used the Ritz—Galerkin method with trinomials to obtain the approximate
fundamental frequencies for combinations of free, clamped, hinged and guided
boundaries. Wright ef al. [17] studied a type of non-uniform beam under centrifugal
tensile loading.

The mode shape differential equation was derived in references [1-15]. It is linear with
variable coefficients, but no attempt was made in references [1-15] to solve it in the classical
way; for example, by the method of Frobenius [18]. Naguleswaran [19] (a reference that
lists a number of publications in which the centrifugal force distribution was tensile) used
the method of Frobenius to solve the mode shape differential equation of a uniform
Euler—Bernoulli beam attached radially to the outside of a rotating hub. This method is
applied in the present paper. Some phenomena which occur in the problem discussed in
the present paper are not mentioned in reference [19]. The six sets of boundary conditions
are combinations of clamped (cl) or pinned (pn) at the rim end and clamped, pinned or
free (fr) at the other end. The first three natural frequencies in dimensionless form for
various combinations of the root offset parameter and speed of rotation are presented in
tabular form to preserve the accuracy to four places after the decimal place. Graphs of
the variation of the first two natural frequencies with rotational speed are presented for
selected values of the root offset parameter. The ‘“tuned” state (if any), i.e., when a
rotational speed and a natural frequency coincide, are tabulated. Gyroscopic instruments
for measuring the angular rates of turn based on this “tuned” state of a cantilever have
been patented and are referred to in references [7, 11]. The critical rotational speed (if any)
at which a natural frequency is zero (the Euler buckling condition) are tabulated for
various root offset parameters. Some of the conclusions in past publications are shown
to be erroneous. The “‘tuned” state and buckling do not occur in the problem discussed
in reference [19].
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Clamped Pinned

Figure 1. (a) Axially restrained (root) and (b) axially unrestrained boundaries.

2. THEORETICAL CONSIDERATIONS

Ideally clamped and pinned supports which are axially restrained or unrestrained are
shown in Figure 1. Consider a uniform Euler—Bernoulli beam of flexural rigidity, E£I, mass
per unit length m and length /. In Figure 2 are shown the various positions at which the
beam can be attached radially at a root offset radius R, from an axis rotating at a constant
speed p. The origin is chosen at the point of attachment—the left end in the figure. The
right end is radially unrestrained. The natural frequency of out-of-plane vibration of the
beam shown in positions (a) and (b) of Figure 2 are tabulated in reference [19]. In the
present paper positions (c)—(g) are considered. For position (a), the radial force 7(x) due
to the centrifugal field at co-ordinate x is (a list of notation is given in Appendix B)

T(x) = 0:5mp*(* + 2[Ry — 2Rox — x?). (1)

T(x) is positive for tensile force and negative for compressive force. Equation (1) is
applicable for the positions (c)—(g) of Figure 2, provided that R, is considered negative in
these positions.

For out-of-plane natural vibration at frequency o, if at co-ordinate x the amplitude of
deflection, bending moment and transverse shearing force normal to the plane of rotation
are y(x), M(x) and Q(x), then

M(x) = EI &*y(x)/dx?, O(x) = —dM(x)/dx + T(x) dy(x)/dx. (2,3)
The mode shape differential equation is
dQ(x)/dx + mw*y(x) = 0. @)

The derivation of equations (1-4) is given in Appendix A. The variables are expressed in
dimensionless form as follows: the axial co-ordinate X, deflection Y(X), the operator D,

I
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A

yA Y o—»x —————- + (@ py>0
yA oF—»x —————- + D) py=0
A 0 x —— + (©-05<py<0
yA Y o——>x —— ——— 1 (d) py=-0.5
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o——>»x ————— ) pp=-1.0
o——>»« 77}3 ****** + | (8 pp<-1.0
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Figure 2. Positive and negative root offset parameters py.
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the root offset parameter p,, the rotational speed #, the tension f(X), the natural frequency
2, the bending moment M(X) and shearing force Q(X):

X=x/l, YX)=yx), D=d/dX, po=RJl, > =mpEL
B(X) = T(X)PEL, Q> =mw*/EI,  M(X)= MX)/EI, Q(X)= Q(X)P/EL (5)

The dimensionless radial force distribution due to the centrifugal field is

BX) = 0-57°(1 + 2p0 — 2peX — X7). (6)
Equations (2) and (3) in dimensionless form are
M(X) = D*Y(X), 0(X)= —D*Y(X) + B(X)DY(X). (7, 8)

The dimensionless mode shape differential equation is
D*Y(X) — 0-57*(1 + 2p0)D*Y(X) + n°po D[ XD Y (X)]
+ 0-57*D[X*DY(X)] — Q*Y(X) = 0. 9)

Equation (9) with the boundary conditions is an eigenvalue problem. The six combinations
of the boundary conditions considered in this paper are cl—l, pn—pn, cl-pn, pn—cl, cl-fr
and pn—T (the first abbreviation denotes the boundary condition at the radially restrained
end). The other combinations (fr—cl, fr—pn and fr—fr) are not of interest in engineering.

2.1. THE SOLUTION OF THE MODE SHAPE EQUATION

By following the method of Frobenius [18], the mode shape differential equation is found
to have a solution of the form

F(X,c) =X a,.1(c)X", n=0,1,2,..., o0, (10)

in which the undetermined exponent ¢ is the root of the indicial equation
clce—=Dc—=2)(c—3)=0 (11)
and the coefficients a, . (c¢) satisfy the recurrence relationship
(c+n)c+n—D(c+n—2)(c+n—3)a,i(c)= 0571 + 2p,)
X (c+n—2)(c+n—3)a,_(c)
+ n*po(c + n — 3)a,_2(c) + [0:57*(c + n — ) (c +n — 3) — Qa,_s(c). (12)
In equation (12), a;(c) = 1 (arbitrary choice) and a, = 0 for m < 0. The derivatives of

F(X, ¢) are

DF(X,¢) = X" (¢ + n)a,..(c)X",
D’F(X,c)=X"?) (c+n)(c+n—1)a,.(c)X" and

D’F(X,c) =X (c+n)c+n—1)(c+n—2)a.(c)X"

It is possible to compute the function F(X, ¢) and the three derivatives progressively on
a term-by-term basis. The four solution functions are

F(X,0) =1+ 0-57%(1 + 2p) X2 + ¥ a, , s(0)X"**, (13)
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F(X, 1) =X+ 0-57°(1 + 2p)X°/6 — n°poX*/24 + > @, s(1)X" 2, (14)
FX,2) = X+ 051+ 2p0)X*/12 — n?paX*/30 + ¥ a,. s2)X" . (15)
F(X,3) = X+ 0:5°(1 + 200)X°/20 — ?poX/40 + Y a4 s(3)X" . (16)

The four solution functions are clearly independent and hence the general solution of the
mode shape differential equation is

Y(X) = CF(X, 0) + GF(X, 1) + GF(X, 2) + Cy(X, 3). (17)

The constants of integration C,, C,, C; and C, are determined from the boundary
conditions. For a clamped attachment, Y(0) =0 = DY(0). The mode shape function
equation is

Y(X) = GF(X, 2) + CiF(X, 3). (18)
For a pinned attachment, Y(0) = 0 = D*Y(0). The mode shape function equation is

Y(X) = GF(X, 1) + CF(X, 3). (19)
If at the axially unrestrained end X = 1 the beam is clamped, then Y(1) =0 = DY(1): if

pinned, Y(1) = 0 = D?*Y(1), and if free, D*Y(1) = 0 = D*Y(1). The frequency equations for
cl—cl, cl-pn, cl-fr, pn—cl, pn—pn and pn—fr beams are as follow:

cll: F(1,2)DF(1, 3) — DF(1, 2)F(1, 3) = 0, (20)
cl-pn: F(1,2)D*F(1, 3) — D*F(1, 2)F(1, 3) = 0, 1)
clfr: D*F(1,2)D°F(1, 3) — D’F(1, 2)D*F(1, 3) = 0, (22)
pn-cl: F(1, DDF(1, 3) — DF(1, 1)F(1, 3) = 0, (23)
pn-pn: F(1, HD*F(1,3) — D*F(1, 1)F(1,3) = 0, (24)
pn-fr: D*F(1, 1)D*F(1, 3) — D*F(1, )D*F(1, 3) = 0. (25)

2BX)/n?

Figure 3. The axial centrifugal force distribution for various values of the root offset parameter p,.
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3. CALCULATIONS

It was shown in reference [19] that if p, = 0 then f(X) = 0 and the natural frequency
Q increased with increase in the rotational speed 5, and that a rotational speed does not
exist for which Q = 5. The present paper is a study of the influence of negative p, on the
out-of-plane vibration. From equation (6), the variation of 2f(X)/y* with X for various
values of p, is shown in Figure 3. It is clear that f(X) > 0 for 0 > p, > —0-5 and hence,
in this range of the root offset parameter, one can expect Q to increase with . A feature
in the root offset parameter range —1-0 < p, < —0-5 is the centrifugal force distribution
being compressive up to X = —(1 + 2p,) and tensile in the remainder of the beam. If the
root offset parameter p, = —2/3, the total centrifugal force acting on the beam is zero.
If po < —1-0, the centrifugal force distribution is compressive up to X = 1. A necessary
(but not sufficient) condition for an out-of-plane natural frequency to decrease with
increase in rotational speed is p, < —0-5; i.e., part of the beam must be under centrifugal
compression.

The roots of the frequency equations (20)—(25) were determined as follows. An initial
trial and error search provided a narrow range for an approximate root. This was followed
by an iterative procedure based on linear interpolation as described in reference [19]. The
first three dimensionless (out-of-plane) natural frequencies Q,, 2, and Qs for combinations
of pp= —0-1, —0-5, —1-0 and —1-5 (p, = 0-0 is found in reference [19]) and # is the range
0 to 15 are tabulated in Table 1 for cl-l and pn—pn beams, Table 2 for cl-pn and pn—cl
beams, and Table 3 for clfr and pn—{r beams. The tabulation in Table 2 show that the
natural frequency depends not only on the boundary conditions but also on which part
of the boundary is radially restrained. For p, = —0-5, the frequency columns for cl-pn
and pn—cl beams are identical because, at this root offset, the centrifugal tension
distribution is symmetrical. All of the frequency calculations in Tables 1-3 were in double
precision on a VAX computer. Single precision calculation of the various functions in the
frequency equations did not meet the accuracy required and, as a resullt, the iterative
procedure failed. It was found that for some combinations of p, and # outside the
parameters in the tables, double precision computing failed but quadruple precision
computing succeeded, and for certain combinations even quadruple precision computing
failed.

In Figures 46, the variation of Q, and €, with y for the six combinations of boundary
conditions are presented for selected (negative) values of p, with a view to determine the
“border” root offset parameter at which Q decreased or commenced to decrease with
increase in #. White ef al. [8] surmised that for a cl-fr beam this will happen if
po= —0-5 — ¢, even if ¢ is very small but 5 is sufficiently large. The cl-fr beam frequency
column in Table 3 for py = —0-5 and calculations with p, = —0-65 (in Figure 6) show that
@ monotonically increased with . Wang [4] investigated the same problem and suggested
that the “border” p, = —0-778. The cl-fr beam first mode frequency variation shown in
Figure 6 shows that the Wang suggestion is in error. In reference [7] it was suggested that
if pp = —0-64, Q increases with # and if p, = —0-66, Q decreases with 7 if > 14. Kammer
and Schlack [13] suggested the “border” p, = —0-642. Presently, analytical technique is
not available to predict this “border” root offset parameter. The “border” root offset
parameters tabulated in Table 4 were obtained numerically—the criterion used is that in
the range 15 < n < 20, the variation in @ is less than 0-5%.

From Figures 4-6, it is possible to derive the conditions for a natural frequency to
coincide with the rotational speed. Fox and Burdess [7] called this a ““tuned” state and
calculated (by the Galerkin procedure) the “tuned” rotational speeds of a cantilever.
(A stroboscope will show a “frozen” no-node cantilever at the first “tuned” rotational
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Figure 4. The variation of the first two dimensionless natural frequencies of cl-cl and of pn—pn beams with
rotational speed # for various negative root offset parameters po. The broken line is the estimated ““border” root

offset parameter. (a) cl—cl mode 1; (b) cl-cl mode 2; (c¢) pn—pn mode 1; (d) pn—pn mode 2.
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76 S. NAGULESWARAN

4
© 055
0.57
3l _-0.583 -
=059 |
2r 20.60
Ny ~0.61
—062\\
O ‘ \ Il
25
(d)

~

15

Figure 6. As Figure 4, but for cl-fr and of pn—fr beams, respectively.

speed 54, a “frozen” one-mode cantilever at the second ‘““tuned” speed 7, and so on.)
Provided that the system is ideal, there is nothing special in this phenomena. However,
an imperfection such as a slight tilt in the “circular’ path of the attachment will cause a
displacement excitation at the rim end which will result in a dangerous resonance response.
A small radial eccentricity in the attachment may cause parametric instability, but this falls
outside the scope of this paper. The differential equation to be solved for the “tuned”
rotational speed 7, is

D*Y(X) — 57{0-5(1 + 2po)D*Y(X) — poD[XDY(X)] — 0-5D[XC*DY(X)] — Y(X)} = 0.
(26)
This equation subject to the boundary conditions forms an eigenvalue problem. The
eigenvalues (viz., 7) if negative indicate that ““tuned” rotational speeds do not exist. The
“tuned” rotational speed equations are of the same form as equations (20)—(25) and the

roots are calculated by the iterative procedure. In Table 5, the first two “tuned” rotational
speeds for the six combinations of boundary conditions are tabulated. Results published

TABLE 4

The estimated “border™ root offset parameter p, at which Q just tends to decrease with
increase in n

The “border” root offset parameter
A

cl—cl pn—pn cl-pn pn—l cl-r pn—fr

Mode 1 —0-664 —0-606 —0-675 —0-601 —0-689 —0-583
Mode 2 —0-687 —0-652 —0-695 —0-645 —0-743 —0-686




TABLE 5

The first two dimensionless ‘““tuned” rotational speeds w, and 3, for various root offset
parameters po

0o cl—cl pn—pn cl-pn pn—l cl-fr cl-frt pn—fr
na —0-60 nc 10-1430 18-6818 154280 4-0450 [7] ok
—0-70 19-9604 8-1641 14-6553 11-5957 3-6845 — wEE
—0-80 162356 7-0124 124002 9-6548 3-4048 35 ok
—0-90 13-9979 6-2391 10-9276 8-:4404 3-1798 3.2 HEE
—1-00 12-4756 5-6747 9-8741 7-5908 29939 3-0 ok
—1-25 10-1275 4-7412 81687 6-2421 2:6417 27 HAK
—1-50 8:7414 4-1547 7-1191 5-4244 2-3899 2-5 ok
—2-00 7-1113 3:4332 5-8484 4-4440 2-0466 2-1 HEE
—2-50 6-1467 2:9913 50799 3-8550 1-8183 19 ok
—3-00 5-4912 26853 4-5516 3-4514 1-6265 17 HEE
—3-50 5-0087 2-4573 4-1598 3-1527 1-5251 15 ok
o —0-60 kK o o *x 25-3553 — 231133
—0-70 nc nc nc nc 22-4471 — 14-5606
—0-80 262756 20-1414  28-2742 237398 17-7401 19-5 10-8683
—090 225734 16-6347 21-2628 19-2517 14-1632 155 9-0167
—1-00 20-5770 14-4902 187760 16:7170 12:1171 12-3 7-8655
—1-25 16-0406 11-4359 14-5170 13-1366 9-3777 9-5 62174
—1-50 13-5181 9-7425 122347 11-1673 7-9283 81 5-:3001
—2-00 10-7517 7-8283 97392 8-:9538 6-3329 66 42609

—2:50 9-1933 6-7265 8:3293 7-6852 5-4294 5:6 3:6619
—3-00 8-1\610 5-9883 7-3949 6-8375 4-8284 5-0 3:2604
—3-50 7-4130 5-4497 6-7176 6:2198 4-3915 4-5 29674

+ From reference [7]
** Expected to be large; nc, not calculated; ***, does not exist.

TABLE 6

The first two dimensionless critical rotational speeds n. and n. for various root offset
parameters pg

Po cl—l pn—pn cl-pn pn—l cl-r clHr pn—fr
na —0:60 o o ok oK o [7] [8] 15-4740
—0-70  26-1675 nc nc 16-2418  30-3746  17-0  20-0 us
—0-80  22:0247 9-5931 193454  11-9450 11-1689 115 103 us

—0-90 17-3370 7-8635  14:9521 9-8563 7-2842 7-3 7-6 us
—1-00 14-6849 6-8175  12-5684 8-5747 5-6747 5-6 5-6 us
—125 112122 5-3506 9-1563 6-7573 3-9900 4-0 4-0 us

—1-50 94111 4-5469 7-9597 5-7527 3-2566 33 33 us
—2-00 7-4581 3-6468 6-2883 46193 2-5159 2:6 2:6 us
—2-50 63664 3-1282 5:3602 39678 2:1237 2-1 — us
—3-00 5-6461 27830 47499 3-5316 1-8715 19 us
—3-50 51254 2-5316 4-3095 3-2135 1:6920 1-7 — us
'/IL"’ 7060 skk ke sksk sk sk . sk
—0-70 nc nc nc nc nc — — nc
—0-80  39-0749 nc nc nc nc — nc
—090 294798 196179  21-7319  21-5223  18-8993  18-0 — 12:7412
—1:00 21-3070  16-:3911  19-8684  18:3496  14-4902 147 9-8741
—1-25 166548 123124 152223  13-8924  10-3118 10‘5 — 7-0076
—1:50  13-8791  10-2687  12:6517 11-6210 8-:4707 84 5-7462
—2:00 10-9303 8-0939 9-9417 9-1826 6:6049 67 — 4-4745
—2-50 9-3040 6-8926 8-4545 9-8283 5-6009 56 3:7926
—3-00 8-2381 6-1048 7-4820 6-9376 4-9494 50 — 3-3507

—3-50 7-4706 5-5371 6-7826 6-:2949 4-4828 4-5 1-9938

1 From references [7, 8].
** Expected to be large; nc, not calculated; us, unstable.
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on “tuned” frequencies are for cl-fr beams and values from graph of #, versus p, from
reference [7] (Galerkin method) are included in Table 5 for comparison. Where 5, > 20,
the values were not calculated and this is shown by nc, and the values shown by ** (if
they exist) are expected to be very large.

For the combinations of p, and 5 for which Q decreases with increase in #, a critical
n. exists for which a natural frequency is zero, and the beam will buckle at this mode. The
differential equation to be solved is

D{DY(X) — n2[0-5(1 + 2po)DY(X) — poXDY(X) — 0-5X*DY(X)]} =0.  (27)

This equation, together with the boundary conditions, forms an eigenvalue problem and
the buckling speed equations are of the same form as equations (20)—(25). The first two
buckling speeds for the six combinations of the boundary are tabulated in Table 6.
Included in Table 6 are results for cl-fr beams from graphs in references [7] and [8]. Where
n. > 20, calculations were not done and this is shown by nc and if buckling is unlikely or
if 5. is expected to be very large, are shown by **.

4. CONCLUSIONS

The first three dimensionless natural frequencies for out-of-plane vibration of a uniform
Euler—Bernoulli beam attached to the inside of a rotating rim have been tabulated for six
combinations of clamped, pinned and free boundary conditions and for various values of
the root offset parameter. For p, > —0-5 the centrifugal axial force distribution is tensile
and Q increases with increase in . For —1-0 < p, < —0-5 the axial force distribution is
partly compressive. For py, = —0-5 — ¢, where ¢ is small, Q increased with moderate
increase in # and one would expect the frequency to decrease if # is large but the precision
with which the computer operated precluded verification. If ¢ is not small, Q decreases
monotonically. For p, < —1-0, the centrifugal force distribution is compressive and
decreases monotonically. The above aspects are illustrated in Figures 4-6. For n < 20, the
first two “‘border” root offset parameters obtained numerically are presented in Table 4.

A ““tuned” state is possible when Q = 5. Imperfections may lead to dangerous resonance
and hence the “tuned” state must be avoided. Some values of “‘tuned” rotational speeds
are presented in Table 5.

For certain combinations of p, and 5, a frequency may be zero, resulting in buckling
of the beam. Some values of the critical rotational speeds are presented in Table 6.
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APPENDIX A: THE GOVERNING EQUATIONS
It is gratefully acknowledged that this Appendix is based on notes provided by Professor

A. W. Leissa in a private communication [20]. An element of the beam is undeflected and

in

a typical deflected position is shown in Figure Al. Here s is the curvilinear co-ordinate

l¢——  Axis of rotation Centre of curvature
y \\
\) R(s)
0(s + 6s)— 6(s) _A\\\( /
A \\ W
LN @ /
(BN /
VN
\ 7(s + ds)
M(s)
< 6(s + 3s)
Ry > 728D By + 1)
P
7(s) Qs) \ (@)
0 A — 3 4 > x

|
Element in undeflected position %}

Figure Al. d’Alembert forces, forces along and normal to the neutral axis and moments on an element in

a typical deflected position.
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along the neutral axis. The free body diagram shows the force T'(s) along the neutral axis,
the shearing force normal to the neutral axis and the d’Alembert forces. For small
deflection the Euler—Bernoulli equation for bending is

M(s) = EI/R(s) ~ EI d*y(x)/dx?, (A1)

where R(s) is the radius of curvature at s. Considering the equilibrium of the element one
gets

d[T(s) cos O(s) — Q(s) sin O(s)]/ds + mp*(Ry + x) =0 (A2)
d[T(s) sin 6(s) + Q(s) cos O(s)]/ds + mw?y(x) = 0, (A3)
Q(s) + dM(s)/ds = 0. (A4)

The tension T(x) in the radial direction and the shearing force Q(x) in the transverse
direction are

T(x) = T(s) cos O(s) — Q(s) sin O(s), O(x) = T(s) sin 0(s) + Q(s) cos O(s),
0(s) = —T(x)sin 6(s) + Q(s) cos O(s) ~ — T(x) dy(s)/ds + Q(x). (A5)

For small deflection, M(s) ~ M(x), d/ds ~ d/dx and equations (1-4) are obtained.

APPENDIX B: NOTATION

ay11(C) coefficient of X“*” in Y(X, ¢)

c roots of indicial equation (11)

Ciasa constants of integration in equation (17)

D, D" operators d/dX, d"/dX”

EI flexural rigidity of beam

F(X, ¢) trial solution function, equation (10)

F(X, ¢).—o125 the four solution functions of, equation (9)

/ length of beam

m mass per unit length of beam

M(s) amplitude of moment at curvilinear co-ordinate s
M(x) amplitude of bending moment, equation (2)

M(X) dimensionless amplitude of bending moment, equation (5)
P rotational speed about axis

o(s) amplitude of shearing force normal to neutral axis
O(x) amplitude of shearing force normal to plane of rotation, equation (3)
oX) dimensionless amplitude of shearing force, equation (5)
R radius of rim; i.e., root offset radius

R(s) radius of curvature of the deflected element

s curvilinear co-ordinate along neutral axis

T(s) force along neutral axis at s

T(x) radial force at co-ordinate x, equation (1)

X axial co-ordinate

X dimensionless axial co-ordinate, equation (5)

y(x) amplitude of deflection



Y(X)
B(X)

Q123
Ne

Po
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dimensionless amplitude of deflection, equation (5)
dimensionless axial tension, equation (5)

a natural frequency

dimensionless natural frequency, equation (5)

first, second and third natural frequency

dimensionless rotational speed, equation (5)

buckling rotational speed (i.e.m Q = 0) in equation (27)
“tuned” rotational speed (i.e., , = Q) in equation (26)
root offset parameter, equation (5)

summation from 0 to oo



