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1. 

Some of the structural components of aircraft, missile and ship structures can be idealized
as curved panels. Quite often, to save weight and also to provide a facility for inspection,
cutouts are provided in these panels. Also, there can be some instruments directly fixed
to these panels, and the safety of these instruments can be dependent on the vibration
characteristics of the panels. Hence free vibration studies on curved panels with cutouts
are of interest to structural engineers.

If the classical theory of plates is assumed to be valid, the governing differential equation
for a thin plate is biharmonic and exact solutions cannot be realized for many configur-
ations of the plate. If curvature is also present in the plate, then there is also stretching in
addition to bending, and solution of such problems is obviously more difficult. Providing
cutouts will enhance the difficulty of the solution. Thus, to understand the behaviour of
panels with cutouts, approximate methods have to be used.

Paramasivam [1] made use of the finite difference method to study the behaviour of
square plates with symmetrical square cutouts. Simply supported and clamped boundary
conditions were considered for analysis. Aksu and Ali [2] studied the dynamic character-
istics of rectangular plates with rectangular cutouts using variational techniques in
conjunction with a finite difference method. Results were presented for plates with one as
well as two cutouts; the plates were clamped on two parallel edges and simply supported
on the other two. Mundkur et al. [3] have studied the vibration of square plates with square
cutouts by using boundary characteristics orthogonal polynomials satisfying the boundary
conditions along the plate outer edge and making use of the Rayleigh–Ritz method.
Solutions were given for many boundary conditions.

Studies have also been carried out on curved plates. Petyt and Debnath [4] have obtained
natural frequencies of rectangular singly curved plate making use of the Kantorovich
method. Results were presented for plates clamped on all edges. Free vibration character-
istics of a singly curved rectangular plates were obtained by making use of the extended
Rayleigh–Ritz method, the finite element method and the Kantorovich method [5]. Results
were presented for panels clamped on all edges. An approximate method for the determin-
ation of natural frequencies of stiffened and curved plates was suggested in reference [6].
With trigonometric functions representing the three displacements, an energy method was
used to obtain the values of the frequencies for panels simply supported on all edges. This
method of solution could result in an unacceptable solution for certain cases and this
deficiency was discussed by Webster and Warburton [7].
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In the present analysis, the effect of cutouts on the natural frequencies of plates with
some classical boundary conditions are studied. The plate has curvature in one direction
and is straight in the other. This structure could be imagined as an idealization of the
panel of a circular cylindrical shell supported longitudinally by stiffeners and along the
circumference by bulkheads.

A 28-degree-of-freedom rectangular element is used for the study. Results obtained when
specialized for flat plates agree well with those of reference [3] and the behaviour of the
shell structure with cutouts seems akin to that of plates with similar cutouts, although
numerically the effect of curvature is to increase the frequency multi-fold.

2.     

The element chosen for study is developed by using Olson’s polynomial used in the
development of the Olson–Lindberg shell element [8]. The element has seven degrees of
freedom per node; viz., u, 1u/1y, v, 1v/1y, w, 1w/1x and 1w/1y.

The co-ordinate system chosen is as shown in Figure 1 and the following functions are
used to represent the displacements:

w(x, y)= a1 + a2x+ a3y+ a4xy+ a5x2 + a6y2 + a7x2y+ a8xy2

+ a9x3 + a10y3 + a11x3y+ a12xy3, (1)

u(x, y)= a13 + a14x+ a15y+ a16xy+ a17y2 + a18xy2 + a19y3 + a20xy3, (2)

v(x, y)= a21 + a22x+ a23y+ a24xy+ a25y2 + a26xy2 + a27y3 + a28xy3. (3)

The polynomial function used for the radial displacement is the same as that used for
quadrilateral plate elements. Since the lines y=0 and y= b are straight, only a linear
function for x is used for in-plane displacements; improve the account taken of the
curvature effect, higher order polynomials are used for y.

The Strain–displacement relationships of classical shell theory [9] are used in the
development of the stiffness matrix. They are

oxx =(1u/1x)− z(12w/1w2), (4)

oyy =(1v/1y)+ (w/R)− z{(12w/1y2)− (1/R)(1v/1y)}, (5)

oxy =(1v/1x)+ (1u/1y)−2z{(12w/1x 1y−(1/R)(1v/1x)}, (6)

By making use of the above expressions for the strains, the strain energy can be
calculated in terms of the displacements, and by using the shape functions in terms of the
nodal displacements; from this, the stiffness matrix can be obtained. It is worth mentioning
that while the authors have neglected the terms which are of order h2/R2, in the present

Figure 1. The shell element with the co-ordinate system.
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development all terms in the strain energy expression have been considered (i.e., including
the terms of order h2/R2). The kinetic energy also can be expressed in terms of the assumed
displacements u, v and w, and from this the consistent mass matrix can be generated. Since
polynomials are used for representing the displacements, closed form integrations are
carried out for the development of the stiffness matrix as well as mass matrices.

3.    

By making use of the element developed, the natural frequencies of a cantilevered fan
blade has been computed. This was the same numerical exercise carried out by Olson and
Lindberg to check their element against values available from experiments. Computations
carried out by them using a coarse mesh (4×4) showed some discrepancy with the
experimental results. The values obtained by using the present element with the same
coarse mesh is in agreement with their values for the first three frequencies and with a finer
mesh (12×12) the values improve, which can be seen from the fact that they compare
reasonably well with those obtained experimentally. However, the numerical result for the
third frequency is slightly lower than that obtained experimentally. The results are
presented in Table 1. It should be expected that the results should exactly match with
reference values. The material chosen is reported to be steel and the numerical values of
Young’s modulus and density used are not given. In the present studies the following
numerical values were used for computation: radius 609·6 mm; a= b=304·8 mm;
t=3·043 mm, n=0·3; E=21 000 kg/mm2; r=7·8×10−10 kg/mm3. Minor variations in
these values could be one of the reasons for this discrepancy. Including the terms of order
h2/R2 was thought of as another reason for the difference. However, it was seen from the
computation that the effect was only in the first decimal. The authors of reference [8]
reported, that results obtained by using the element differs by 2·5% from the exact results
when specialized for a plate without curvature. In the present analysis, the difference is
only 1% in the fundamental frequency for a cantilever plate without curvature. A possible
reason for this could be in the algorithm chosen for extraction of eigenvalues and
eigenvectors and the accuracy sought in the analysis.

As the next exercise, the code developed was checked for its accuracy by solving the
curved plate problem solved by Petyt and Debnath [4]. Curved plates clamped on all edges
were chosen for the study. The mode shapes for the first four frequencies are the same

T 1

Convergence studies on a cantilever fan blade

Frequency (Hz)
ZXXXXXXXXXXCXXXXXXXXXXV

Mesh Mode 1 Mode 2 Mode 3

3×3 Present 101·8 155·9 261·9
Reference [8] 100·7 155·1 260·9

4×4 Present 94·3 148·4 250·6
Reference [8] 94·5 147·6 255·1

10×10 Present 87·9 141·3 250·6

12×12 Present 87·6 140·8 250·3

Experiment Reference [8] 86·6 136·5 258·9
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as reported in reference [4]. The numerical values of frequencies associated with these four
mode shapes also show very good agreement.

After validating the program, further numerical results were obtained for square plates
with cutouts for the following boundary conditions: clamped on all edges (CCCC); simply
supported on all edges (SSSS); clamped on two parallel edges and simply supported on
the other two (CCSS); clamped on two parallel edges and free at the other two (CCFF);
clamped on one edge and free on the other three (CFFF). (In the above abbreviations,
the first two subscripts correspond to the curved edges and the last two to the straight
edges.) Two values of R/t (250 and 50) were used for study. Although the use of a 12×12
mesh yielded reasonable results while validating the programme, for these further studies
the panel was divided into a 20×20 mesh to model the cutouts properly.

The first six frequencies are presented in Figures 2(a)–(e). The cutout is also square and
positioned symmetrically. The size of the cutout was varied and the computation was
carried out for values of (g/a)=0·1–0·8 (in steps of 0·1), where g is the edge/length of
the cutout. It can be seen from the figures that the trend in the behaviour is the same as
that of the plates and the solution for the plate is almost the same, as that obtained in
reference [3]. By comparing the numerical values obtained for R/t=50 and 250, it can
be seen that the effect of the curvature is to increase the frequency. Initially, the frequency
decreases marginally due to the cutout, but with the increase in the size of the cutout the
effect of the curvature seems to become less, and plates with and without curvature have
almost the same frequency, which is much higher than that of the plate without the cutout.
This could be attributed to the fact that the mass has decreased and the stiffness, due to
the edge effect, has increased considerably. This behaviour is noticed for plates supported
on the four sides. For plates having two or three free edges, the effect of the cutout is to
decrease the frequency.

To provide a quantitative idea about the effect of cutouts as well as curvature on
the natural frequencies, two different types of non-dimensional curves are presented in
Figures 3 and 4. Both figures are for square plates clamped on all edges with symmetrical
square cutouts. In Figure 3, the frequency is non-dimensionalized with respect to a plate
of zero curvature; in Figure 4 the non-dimensional value is with respect to the same plate
(corresponding dimensions and curvature) without a cutout.

From Figure 3 it is seen that, for the flat plate, the effect of the cutout is to increase
the frequency and the increase is monotonic. The effect of curvature is to increase the
frequency; for curved plates, there is a decrease in the value when the cutout size is
increased. Also it is seen that the behaviour is the same for all plates when the cutout size
is large. This behaviour should be expected, because when the cutout size is large, only
the portion of the plate very near the support is present and its stiffness is large.

Almost the same observation can also be seen in Figure 4. Here, the non-dimensional
value monotonically increases for a flat plate, and for curved panels the value initially
decreases and then increases. The increase in frequency is much less than that of the flat
plate when the plate has curvature and the ratio of the frequency of a plate with a cutout
to that of a plate without a cut-out decreases with an increase in R/t.

The effect of curvature is to change the mode shape. A sample study was carried out
on a square plate of 500 mm×500 mm with a cutout size of 250 mm×250 mm
(symmetrical). Studies were also carried out on a curved panel of the same size with a
radius of curvature of 500 mm (i.e., R/t=250).

For plates without a cutout, the fundamental mode shape always has a single half wave
in either direction; that is, there is no nodal point within the plate. This is seen for plates
with any boundary condition. The cutout on the plate does not change this pattern, but
the introduction of curvature does. With m denoting the number of half-waves in the



20

4

F
re

qu
en

cy
 (

kH
z) 16

18

14

12

8

10

(a)

0.8

1000

200
0

F
re

qu
en

cy
 (

H
z)

500

900

400

300

600

700

0.2 0.4 0.6

14

4

F
re

qu
en

cy
 (

kH
z)

10

12

8

6

(b)

0.8

800

100
0

g/a

F
re

qu
en

cy
 (

H
z)

500

600

400

300

200

0.2 0.4 0.6

3

0.2

2

1

(c)

0.8

240

0

160

200

120

80

40

0.2 0.4 0.6

6

800

700

C

F F

F

    231

longitudinal direction and n that in the circumferential direction, it is seen that, for all
boundary conditions, the number of half-waves in the longitudinal direction is one and
that in the circumferential direction is more than three. For the panels also, a cutout does

Figure 2(a), (b) and (c)—continued overleaf.
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Figure 2. The variation of the first six natural frequencies with different cutout sizes for square panels.
Boundary conditions: (a) CCCC; (b) SSSS; (c) CFFF; (d) CFCF; (e) CSCS. For top graphs, R/t=50; for bottom
graphs, R/t=250. q, w, e, r, ×, t, Modes 1–6 respectively.

not change the pattern much: i.e., the mode shapes corresponding to any frequency for
curved panels with and without cutouts are either the same or interchanged between the
two adjacent frequencies. There is a specific pattern for the mode shapes of plates with
and without cutouts for higher frequencies: i.e., they will follow an ascending order such
as (1, 1) (1, 2), (2, 1), (2, 2), etc. Such a pattern is not seen for panels with and without

Figure 3. The ratio of the fundamental frequency of a CCCC panel with a cutout to that of the same
panel without a cutout. ——, Plate; —·—, R/t=250; ––––, R/t=200; —--—, R/t=150; ----, R/t=100;
—--—--—, R/t=75; – · – · –, R/t=50.
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Figure 4. The effect of curvature on the fundamental frequency of a CCCC panel with cutouts. —·—·—, Plate;
—··—··—, R/t=250; -----, R/t=200; —--—, R/t=150; ––––, R/t=100; —-—, R/t=75; ——, R/t=50.

T 2
Mode shapes for the first five frequencies of plates and panels with and without cutout

Boundary condition
ZxxxxxxxxxxxxCxxxxxxxxxxxxV

Mode Structure CCCC CFFF CFCF CSCS SSSS

1 Pla I 1,1 1,1 1,1 1,1 1,1
Pla II 1,1 1,1 1,1 1,1 1,1

Pan I 1,3 1,3 1,4 1,4 1,4
Pan II 1,4 1,2 1,2 1,4 1,4

2 Pla I 1,2 1,2 1,3 1,2 1,2
Pla II 1,2 1,2 1,2 1,2 1,2

Pan I 1,4 1,2 1,3 1,3 1,3
Pan II 1,3 1,3 1,3 1,3 1,3

3 Pla I 2,1 2,1 1,3 2,1 2,1
Pla II 2,1 2,1 2,1 2,1 2,1

Pan I 1,5 1,4 2,4 1,5 1,5
Pan II 2,4 1,4 1,5 1,4 1,4

4 Pla I 2,2 1,3 2,1 2,2 2,2
Pla II 2,2 2,3 1,3 2,2 2,2

Pan I 2,4 2,3 2,5 2,4 2,4
Pan II 2,3 2,3 1,6 1,5 1,5

5 Pla I 3,3 2,2 2,2 1,3 1,3
Pla II 2,3 2,2 2,1 3,1 3,1

Pan I 2,5 2,4 1,5 2,5 2,5
Pan II 1,4 2,1 2,4 2,4 2,4

Pla I, plate without cutout; Pla II, plate with cutout; Pan I, panel without cutout; Pan II,
panel with cutout. (The first number corresponds to the number of half waves in the
longitudinal direction and the second to that in the circumferential direction.)
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cutouts. Mode shapes for the first five frequencies for plate and panel with and without
cutouts for various boundary conditions are presented in Table 2.
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