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1. 

In a previous paper [1], an equivalent center-weight factor (ECWF) method was used to
predict the fundamental frequencies of the loaded plates carrying multiple masses by using
merely the data measured earlier for the respective plates with a single mass. It was pointed
out that an alternative form of Dunkerley’s formula and the ECWF method enable one
to obtain analytically a quick and relatively accurate estimation of the fundamental
frequencies of plates carrying concentrated masses. In this letter an improved model for
a quick and accurate estimation of the fundamental frequency is presented by taking into
account the change in the strain energy owing to a different loading condition on the same
plate.

2.       

The equating of the strain energy to the kinetic energy yields the final expression of
Rayleigh’s quotient [2, 3]

v2 =Umax /T* (1)

where T*=Tmax /v2 is called reference kinetic energy (a list of nomenclature is given in
the Appendix). Its analogous expression for a vibrating plate carrying a concentrated mass
is [4]
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in which the shape function w(z, h) is associated with the concentrated mass M(z, h) at
the plate’s co-ordinates (z, h). In the case of the plate carrying finite masses, equation (2)
can be extended to introduce the respective concentrated masses Mj (zj , hj ) located at
co-ordinates (zj , hj ).

The following symbolic form has been introduced for equation (2) [1]:

v2 = k*/(m*+M*), (3)

where M* is the generalized term associated with the concentrated mass M, while m* is
the generalized quantity associated with the plate only, and k* is the generalized stiffness
associated with the complete system.
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In view of equations (2) and (3), the fundamental frequency for a plate carrying a
concentrated mass (M1) at the plate’s centre can be expressed as
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On the other hand, an expression can be obtained if the mass at the plate’s centre is treated
as a combination of the two mass components, M1(z1, h1) and M2(z2, h2), placed at
locations (z1, h1) and (z2, h2) respectively:

v2 = k*/(m*+M*1 +M*2 ). (5)

To predict the system frequency (v) of a plate carrying multiple masses, merely from the
individual frequency (vj ) and the unloaded frequency (v0), an alternative form of
Dunkerley’s formula was derived [1]:

1
v2 = s

j 0 1
v2

j1−( j−1)
1
v2

0
, (6)

where v2
0 = k*/m* and j denotes the number of concentrated masses on the plate

surface.
The quantity k* of equation (3) was assumed to be constant in reference [1] for the

frequencies, v1 and v2, of plates carrying different masses. It is an approximation
which implies that the change in strain energy (U) owing to the weight difference is not
significant. To account for the change in the strain energy term, equation (6) should be
replaced by

1
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, (7)

where

v2
j = k*j /(m*+M*j ). (8)

3.   

To verify the validity of the proposed model, a vibration test was conducted for a
600×300 mm plate carrying different masses at its centre (see reference [1] for details of
the experimental set-up). The results are summarized in Table 1, where f1 is the
fundamental frequency of the plate obtained experimentally. It is interesting to note from
Figure 1 and Table 1 that the ratio k*/k*0 decreases sharply for 0 QMc /mQ 0·255 but
decreases gradually for Mc /mq 0·255. As mentioned in the previous section, the
fundamental frequency of a complete system can be extracted from those frequencies
associated with individual mass components. As shown in Table 2, the system frequency
obtained experimentally has been compared with that estimated by using equation (6) or
equation (7). The value of k*/k*0 with respect to each different mass ratio is found from
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T 1

Result for the 600×300 mm plate carrying a concentrated mass

Mass number Mc (g) Mc /m f1 (Hz) k* (kN/m2) k*/k*0

— 0·00 0·000 145·80 995·31 1·000
M1 10·33 0·009 141·50 945·64 0·950
M2 20·48 0·017 137·80 904·44 0·909
M3 30·42 0·026 134·30 866·15 0·870
M4 40·55 0·034 130·80 828·44 0·832
M5 50·30 0·042 127·50 793·42 0·797
M6 60·44 0·051 124·50 762·73 0·766
M7 70·65 0·060 121·50 732·36 0·736
M8 80·75 0·068 118·80 705·80 0·709
M9 90·92 0·077 116·30 681·84 0·685
M10 101·10 0·085 114·30 663·59 0·667
M11 161·87 0·140 104·50 576·33 0·579
M12 202·20 0·170 97·75 522·84 0·525
M13 303·00 0·255 87·50 449·35 0·451
M14 403·90 0·341 84·00 441·96 0·444
M15 506·70 0·427 81·25 439·66 0·442
M16 607·80 0·512 79·25 443·23 0·445
M17 708·90 0·598 76·75 438·85 0·441
M18 809·80 0·683 74·50 435·54 0·438
M19 910·80 0·768 72·50 433·17 0·435
M20 1005·5 0·848 71·00 435·22 0·437
M21 1106·7 0·933 69·50 436·30 0·438
M22 1207·8 1·018 68·00 435·78 0·438
M23 1308·9 1·104 66·50 434·33 0·436
M24 1411·5 1·190 65·00 431·59 0·434
M25 1512·2 1·275 63·75 431·25 0·433

m=1·186 kg.

Figure 1. The curve for k*/k*0 versus Mc /m.

Figure 1. It is obvious that by accounting for the change of the ratio k*/k*0 , equation (7)
represents a better model that can well predict the frequency of the complete system,
especially for systems involving heavy masses.
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T 2

Estimation of the system frequency for the 600×300 mm plate carrying concentrated masses
from Table 1

Mass fest1 (Hz), fest2 (Hz), fexp (Hz), Error 1 Error 2
combination equation (6) equation (7) experiment (%) (%)

M1+M2 134·15 134·28 134·30 −0·11 −0·02
M1+M10 119·41 118·79 118·80 0·51 −0·01
M6+M9 104·60 104·48 104·50 0·09 −0·02

M1+M2+M3 125·03 124·46 124·50 0·43 −0·03
M1+M5+M10 104·91 104·47 104·50 0·39 −0·02
M4+M6+M8 97·39 97·69 97·75 −0·36 −0·06

M1+M2+M3+M4 115·18 114·25 114·30 0·77 −0·05
M2+M4+M5+M6 105·24 104·47 104·50 0·71 −0·02
M1+M3+M5+M9 97·26 97·67 97·75 −0·50 −0·08
M2+M4+M6+M8 85·90 87·45 87·50 −1·83 −0·06

M1+M2+M3+M4+M5 105·50 104·45 104·50 0·96 −0·05
M2+M3+M4+M5+M6 97·86 97·67 97·75 0·11 −0·08
M1+M2+M4+M6+M7 86·22 87·44 87·50 −1·46 −0·07

M10+M14 66·62 76·75 76·75 −13·19 0·00
M13+M14 67·91 74·50 74·50 −8·85 0·00
M12+M17 66·31 72·50 72·50 −8·53 0·01
M15+M19 58·25 65·00 65·00 −10·38 −0·02
M17+M18 57·46 63·75 63·75 −9·87 −0·02

M10+M12+M13 67·77 79·25 79·25 −14·48 0·01
M10+M16+M17 56·66 65·00 65·00 −12·82 −0·04
M10+M15+M19 54·30 63·75 63·75 −14·84 −0·03

M10+M12+M13+M14 56·58 70·98 71·00 −20·31 −0·02
M10+M12+M15+M16 53·39 64·98 65·00 −17·86 −0·03
M10+M12+M15+M17 52·61 63·74 63·75 −17·48 −0·02

Note: error (=(fest( − fexp )/fexp .

4.  

This work presents an improved model to estimate the fundamental frequency of plates
carrying concentrated masses from those frequencies associated with individual mass
components. It is found that the change in the strain energy should be incorporated in
the model, especially for cases of large masses, in order to predict well the natural
frequency of the complete system from those of the component systems. The study is useful
in the frequency estimation, either calculated or determined experimentally. The work
can also be extended to off-centre loading systems by making use of the equivalent
center-weight method [1].

It should be noted that the model in reference [1] was based on Dunkerley’s method,
where an additional mass is attached to an existing system. Complementary to Dunkerley’s
method is Southwell’s method, which is particularly useful where some additional stiffness
is attached or constraint made to an existing system. Both of the methods can be derived
from the Rayleigh quotient [5]. In fact, the improved model presented here is originated
from the expression of Rayleigh’s quotient, equation (1).
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: 

a, b dimensions of plate
D =Eh3/12(1− n2), flexural rigidity of plate
E Young’s modulus of plate material
f fundamental frequency of the loaded plate

(Hz)
f0 fundamental frequency of the unloaded

plate (Hz)
h plate thickness
j number of concentrated masses on the

plate surface
k* generalized stiffness associated with the

complete system
k*j generalized stiffness associated with the

loaded plate carrying a mass Mj

k*0 generalized stiffness associated with the
unloaded plate

m* generalized mass associated with the plate
only

m mass of the unloaded plate
M concentrated mass mounted on the plate

surface
M* generalized mass associated with the

concentrated mass M
T kinetic energy
U strain energy
w transverse plate displacement function
g density of plate (kg/m2)
v =2pf, fundamental frequency of the

loaded plate (rad/sec)
v0 =2pf0, fundamental frequency of the

unloaded plate (rad/sec)
n Poisson ratio of plate material
z, h co-ordinates of weight placed on the plate

surface


