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1. 

Supersonic flutter of finite periodically supported panels subjected to lengthwise fluid flow
has been investigated by Dowell [1] using classical methods. Recently, Mukherjee and
Parthan [2] showed that using the wave-progagation approach, proposed in earlier works
on free vibration of periodic beams presented by Mead [3] and Sengupta [4], the analysis
of flutter of periodic panels on simple supports (both ends simply supported) can be carried
out with much less computational effort than is necessary in other methods. The results
of reference [2] are in excellent agreement with those presented by Dowell [1].

In section 6 of reference [2], the authors commented that, unlike the case of free vibration
of periodic panels, supersonic flutter analysis of periodic panels with clamped end supports
cannot be carried out from the dispersion relationships. Subsequent research conducted
by the authors has shown that this is not true. The authors regret the error made
inadvertently and withdraw this particular erroneous conlcusion of [2]. In fact, the method
proposed in reference [2] can also predict the frequencies and critical flutter conditions for
periodic panels with clamped ends as easily as for those with simply supported ends. The
present communication is made to clarify this fact. For the purpose of completeness, some
of the salient features of reference [2] are repeated here. Furthermore, the standing wave
characteristics of finite periodic structures have been discussed here in greater detail.

2.      

In Figure 1 are represented two finite periodic panels, each of five identical bays, with
both ends simply supported or both ends clamped, subjected to a supersonic fluid flow of
speed U. The differential equation [1, 2] of a periodic unit of length l, with left support
as the origin, is given by

(d4W/dj4)+ l(dW/dj)− p4Z · W=0 (1)

where j= x/l, l=2ql3/bD, p4Z=V2 − ip2gtV(i=z−1), V2 =mv2l4/D, gt =(rU/b
+ c)/(mv0) and v0 = (p/l)2z(D/m). Here m is the mass per unit area, r is the fluid density,
D is the usual flexural rigidity of the panel, q is the dynamic pressure, c is viscous damping
and b=z(M2 −1), M being the flow Mach number. The deflection at time t is given by
w(j, t)=W(j)e−ivt, where W(j) is the amplitude.

The solution to the differential equation (1) for a periodic bay with transversely rigid
supports (W(j=0)=W(j=1)=0) is given by [1, 2]

W(j)=A[eg(1− j) sin d sinh oj−e−g(1− j) sinh o sin dj]

+B[egj sin d sinh o(1− j)− e−gj sinh o sin d(1− j)] (2)
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Figure 1. A multi-supported periodic panel under supersonic flow: (a) both ends simply supported; (b) both
ends clamped.

where A and B are arbitrary coefficients, and the parameters g, d and o are related to each
other by the following equations:

d2 = [l/(4g)+ g2], o2 = [l/(4g)− g2], 64g6 +16(p4Z)g2 − l2 =0. (3a–c)

In reference [2], it is shown that using the boundary conditions from the Floquet
principle,

W'(j=1)=W'(j=0)em and W0(j=1)=W0(j=0)em, (4a, b)

where m is the complex propagation constant (m= mr +imi), the following equation can be
obtained for non-trivial values of A and B (here W' and W0 denote dW/dj and d2W/dj2

respectively):

det=[a]− em[b]==0 (5)

Solving (5) for the eigenvalue em, a three-dimensional graphical representation of the
relationship between l, V and m1 for undamped vibration (i.e., gt =0) is reproduced from

Figure 2. The variation of phase constants, pressure parameters and frequencies.
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Figure 3. The relationship of the critical pressure parameters and critical phase constants.

reference [2] (see Figure 2). The ‘‘flutter line’’ is the locus of points characterized by the
property 1mi/1V=0. These points therefore correspond to the critical conditions in which
the group velocity (1V/1mi) is infinite in a corresponding infinite panel of elements identical
to those of the finite one. The variation of the corresponding critical phase constant and
pressure parameter is presented in Figure 3.

The flutter line (see Figure 3) originates at lcrit =343·3, (mi)crit =0 and Vcrit =32·4, and
terminates at lcrit =636·4. (mi)crit = p and Vcrit =52·3. The originating point and the
terminal point correspond respectively, to the critical flutter conditions for an isolated
periodic beam with both ends simply supported and both ends clamped. This is confirmed
by the modal analysis of supersonic flutter of a single isolated bay.

3.      

The frequencies (V) for pressure parameters l of vibration under supersonic flow can
be obtained by the discritization process [2], similar to that prescribed in reference [4]. In
reference [2], the propagation bands had been identified as the first and second bands. A
close observation reveals further interesting phenomena. From l=0 to 292 Hz, the
dispersion curve over the first propagation band exists as a continuous one from mi =0
to 2p (see Figure 4). Beyond l=292, however, the curve looks like that presented in
Figure 5, i.e., there is a straight portion of this curve, parallel to the mi-axis, showing a
sudden change of behaviour, and a subsidiary curved portion. Modes of frequencies
corresponding to this straight portion (having equal frequencies) are all in weak
coalescence [1].

At l=343·3, the upper bounding frequency of the first band (for mi =0) just joins up
with the lower bounding frequency of the second propagation band at the frequency
V=32·4, thus displaying the condition of 1mi/1V=0 (see Figure 6). This is the origin of
the flutter line. With further increase of l, this extremum point moves towards p and higher
frequency values, finally just vanishing at l=636·4 at V=52·3 and mi = p. Beyond
l=343·3, one can understand the existance of the first propagation band at a single
frequency at which the attenuations mr are equal; i.e., the attenuation curves meet at the
single frequencies at the specified phase constants for the finite periodic structure.

A type of standing wave is formed in finite periodic panels from the superposition of
opposite going waves due to end reflections. In the propagation bands, for real Z, the
eigenvalues em always occur in complex conjugates, and so do the propagation constants
(m= mr 2 imi). Observing that the real parts mr of the complex conjugate propagation
constants are always positive in the propagation bands, one may easily conclude that a
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Figure 4. Attentuation and phase constants versus frequency for: A, l=100; B, l=200; C, l=300.

wave moving along the flow direction (with phase constant −mi) increases in amplitude
along its direction of propagation by the factor exp(mr), while the wave moving opposite
to the flow (with phase constant +mi) attenuates along its direction of propagation, by
the same factor.

Figure 5. Phase constants versus frequency for: B, l=292·2; C, l=300.
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Figure 6. Attenuation and phase constants versus frequency for: A, l=343·3; B; l=399; c; l=420.

At a support r of the finite structure of N spans (r=0 for the first support over which
flow occurs), the state vector vr (slope or bending moment) can be expressed as a
superposition of opposite going waves, one increasing in amplitude and the other
decreasing in amplitude along their respective direction of propagation:

vr = valong flow + vagainst flow

vr =A+ exp[(mr −imi)r]+A− exp[(mr +imi)r+iz]
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where z is the phase factor incorporated for reflection (z=0 or p). For a bounded edge,
A+ =A−. Thus the net superposed state vector is

vr =A+ exp(mrr)[exp(−imir)2 exp(imir)].

Thus either

vr =K exp(mrr)sin(mir) (6a)

or

vr =K exp(mrr)cos(mir), (6b)

where K is some normalized constant. If vr represents support slope, then equations (6a)
and (6b) apply, respectively, to the cases with extreme edges both clamped and both simply
supported. If vr represents support bending moment, the correlation is just reversed.

For an N-bay structure, the permissible phase constants are given by mi = jp/N, where
the values of j are given by the following rules.

For both ends simply supported [2]:

j=1, 2, . . . , N for the first (and subsidiary) propagation band,

j=0, 1, 2, . . . , N−1 for the second propagation band;

and for both ends clamped

j=0, 1, 2, . . . , N−1 for the first (and subsidiary) propagation band,

j=1, 2, . . . , N. for the second propagation band.

The frequency–pressure relationship of a single bay and that of a five-bay structure (with
simply supported ends or clamped ends) are presented in Figures 7–9. From the
discritization rule, it indeed follows that the five-bay case also includes the one-bay case
[2]. This is equally true for both ends clamped and both ends simply supported [4]. Figure
7, or Figure 8, is included for any N-bay periodic panel with simply supported or clamped
ends respectively. In Figure 9, the results presented for the five-bay case (common to both
simply supported and clamped ends) correspond only to the cases for mi = p/5, 2p/5, 3p/5
and 4p5, while those for mi =0 or p are not shown, although it is understood that the
one-bay case (Figures 7 or 8) applies also to the five-bay case (of either simply supported
or clamped ends). This procedure of representation is adopted here following the earlier
literature [1] (see Table 1).

Figure 7. The l-V relationship for the one-span case (both ends simply supported).
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Figure 8. The l-V relationship for the one-span case (both ends clamped).

In general, for free vibration (l=0) of a periodic panel of N spans with clamped ends,
except for the highest (higher bounding) frequency in a propagation band, all the lower
N−1 frequencies are identical to the natural frequencies of a periodic panel with simply
supported ends, except for the lowest (lower bounding) one. This fact can be confirmed
by a modal/exact analysis. This implies that the work of reference [2] actually has a wider
range of application than has been originally reflected.

For predicting the critical values of the pressure parameters, the curve of Figure 3 is
to be discretized at the critical phase constants (mi)crit =( jp/N), j=0, 1, 2, . . . , N−1 for
simply supported ends [2] and j=1, 2 , . . . , N for clamped ends.

4. 

The present paper is meant to discuss some of the significant observations made on
flutter in the earlier literature [2] and the doctoral dissertation of the first author [5]. The
behaviour of the propagation bands, the characteristics of propagating waves and the

Figure 9. The l-V relationship for the five-span case (both ends simply supported/clamped). The one-span
case is also present (Figure 7 or Figure 8).
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T 1

Critical flutter parameters for one-dimensional multi-bay panels: for simply-supported edges,
ignore rows marked by +; for clamped edges, ignor rows marked by *

Lcrit

Number of spans, ZXXXXXCXXXXXV
N Dowell [1] Present Vcrit (mi)crit

1 * 343·0 343·3 32·4 0
+ — 636·4 52·3 p

2 * 343·0 343·3 32·4 0
485·0 481·0 42·0 p/2

+ — 636·4 52·3 p

5 * 343·0 343·0 32·4 0
395·0 395·0 33·1 p/5
450·0 447·0 39·0 2p/5
525·0 520·0 44·0 3p/5
605·0 600·0 49·0 4p/5

+ — 636·4 52.3 p

occurrence of the standing waves in finite periodic structures with clamped or simply
supported ends are discussed briefly.
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