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The vibration and the coupled interior sound field of a closed, elastic cylindrical shell,
due to both external point forces and distributed forces, are separately studied in this paper.
Multiple dynamic absorbers are then attached to the shell to reduce the vibration and the
consequent interior acoustic sound pressure. The dynamic response of the shell and the
sound pressure in the interior acoustic cavity, under the influence of absorbers, are obtained
using the techniques of substructure synthesis and modal expansion. Analytic solutions are
derived. Numerical examples are then studied and discussed. The results show that the
addition of dynamic absorbers, if correctly positioned, can successfully reduce the vibration
of the shell and the interior acoustic pressure of the sound field enclosed by the shell.
Further, the best absorber arrangement is found to be strongly dependent on the type of
external forces present. Some general guidelines on absorber design for the reduction of
the shell vibration and its interior noise are offered in conclusion. The effects of varying
the parameters of the absorbers such as mass, stiffness, and the location of the absorber
are also investigated for the two types of external forces.
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1. INTRODUCTION

This paper focuses on developing an analytical model for the dynamics of a closed, elastic
cylindrical shell with dynamic absorbers and the coupled interior acoustic field. The
vibrating shell can serve as a simple model of the fuselage of an aircraft. Two types of
general forces, point forces and the distributed pressures, are assumed to exicte the system.
Various configurations of absorbers are investigated. The results show that the vibration
of the shell and the amplitude of the coupled interior sound pressure can be significantly
reduced by adding dynamic absorbers. General discussions on designing techniques of the
absorbers for vibration and sound control of the cylindrical shell, for the two types of
disturbances, are put forward.

The effects of external forces and sound sources on the vibration of a cylindrical shell
and the consequent internal noise have been studied in several publications. Wilby [1] has
published a paper which reviews the various methods of predicting the interior sound field
of the fuselage due to propellers. The vibration and the enclosed sound field of an infinite
cylindrical shell have been investigated by Fuller and Fahy [2] as well as by Fuller [3] by
means of wave propagation analysis. Fuller [4] also used this technique to develop a model
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of aircraft fuselage dynamics where the synchrophasing effect is included. Thomas et al.
[5, 6] derived the solutions for the vibration and the enclosed acoustic field of a cylindrical
shell with finite length under various forcing conditions.

Many techniques have been developed to reduce the vibration of the cylindrical shell,
and the resulting interior noise. Passive control has been the traditional technique used
to achieve these goals. In a passive control system, the vibration and the coupled sound
are reduced by adding appropriate passive elements or modifying the structure. Neither
external energy nor the formulation of control laws are necessary for the use of passive
control implementation. There have been achievements in this field especially in reducing
the vibration of structures. Berry and Nicolas [7] recently presented a paper, concerning
the control of the vibration and the radiated sound of a plate obtained by changing the
mass, stiffness, and supporting conditions. General rules were given in their paper for the
design of passive control methods for plates. Their conclusions, nevertheless, cannot be
applied to the cylindrical shell problem directly due to the significant difference in the
dynamic behaviors of the cylindrical shell and the plate. Fuller has also studied the
reduction of the interior sound field by changing the parameters of the cylindrical shell
[8] or by adding detuned, passive dynamic absorbers [9]. With the exception of these
papers, there exists little literature related to the passive vibration and noise control of a
cylindrical shell or a fuselage.

Active control methods have become increasingly popular with the recent developments
in digital signal processing (DSP) techniques. With fast-calculating computer hardware,
real-time control of vibration and noise is becoming practical. Active control techniques
have been used to reduce the vibration of structures as well as their resultant noise. Active
noise control (ANC) employs microphone error sensors and active acoustic sources to
reduce the acoustic pressure in the sound field. Active vibration control (AVC) uses
structural error sensors and active vibration inputs to reduce structural vibrations. The use
of AVC does not necessarily ensure sound reduction. In fact, the use of AVC to reduce
the vibration will often increase the sound radiation. In this case active structural acoustic
control (ASAC), in which vibration inputs are employed in conjunction with sound error
sensors, is used. Much work related to these methods for the cylindrical shell and the
practical analogue of aircraft interior noise have already been presented. Theoretical
formulations of AVC for controlling the shell vibration can be found in the work of Jones
and Fuller [10], and Brevart and Fuller [11]. Experimental verifications were also
conducted by Mandic and Jones [12], Simpson et al. [13], and Mathur and Tran [14].
Nelson and Elliott [15] have studied the use of ANC. Thomas, and Bullmore et al. have
studied the use of AVC and ASAC [5, 6, 16]; while Fuller and his colleague have done
much of the theoretical and experimental work on applying ASAC to laboratory and real
aircraft fuselages [8, 10, 11, 17].

Though active control methods are effective and give satisfactory results, passive control
remains an important vibration and noise control tool. Passive control, compared to the
active control, exhibits the advantages of easy implementation, low cost, and no need for
external energy. Most importantly, passive control methods never drive the system to
instability while the active methods might. Vibration and noise control achieved through
the use of dynamic absorbers is the specific passive control method considered in this
paper. The techniques for the implementation of absorbers on a simple one- or
two-degrees-of-freedom dynamic system are well known [18, 19]. The general rules of
absorber design for simple dynamic systems, however, cannot be applied to more
complicated structures, such as a shell, because of the existence of relatively high modal
density of these structures. In spite of the lack of theoretical derivations, tuned dynamic
absorbers have been experimentally implemented to reduce the vibration and the
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accompanying noise in real fuselages [20, 21]. The results show that the prospects of
successfully using dynamic absorbers for vibration and noise control are good.

2. VIBRATION OF THE CYLINDRICAL SHELL

2.1.   

In this paper a closed, thin circular cylindrical shell with shear diaphragms at both ends
as shown in Figure 1 will be considered. The mean radius, the length, and the thickness
of the shell are denoted as R, L, and h, respectively. The three independent spatial
co-ordinates are chosen to be the axial co-ordinate x, the circumferential co-ordinate u,
and the radial (transverse) co-ordinate r. The corresponding midsurface displacements of
the shell are ux (x, u, t), uu (x, u, t) and ur (x, u, t) with t representing the time. The matrix
equation of motion of the shell vibration, based on the Donnell-Mushtari shell theory [22],
can then be obtained as

[L]{u}= {Q}, (1)

where {u}= {ux , uu , ur}T represents the displacement vector, and {Q}= {Qx , Qu , Qr}T is
the normalized force vector whose elements are related to the real external forces, fx , fu ,
and fr , by

Qx =−fx /Q, Qu =−fu /Q, Qr = fr /Q, (2)

with Q=Eh/(1− n2)R2. The symmetric, 3×3, differential matrix operator is defined as
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Figure 1. The cylindrical shell and the dynamic absorbers.
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where r, E, and n are, respectively, the density, the Young’s modulus, and the Poisson’s
ratio of the shell material, h
 = h2/12R2 is the dimensionless thickness parameter, and
94 =9292 = [R2(12/1x2)+ (12/1u2)]2.

2.2.  

The general solution to the free vibration of equation. (1) is of the form

{u}= 8A1 cos (m1px/L) cos (m2u)
B1 sin (m1px/L) sin (m2u)
C1 sin (m1px/L) cos (m2u)9 e−ivt, (4)

or

{u}= 8−A2 cos (m1px/L) sin (m2u)
B2 sin (m1px/L) cos (m2u)

−C2 sin (m1px/L) sin (m2u) 9 e−ivt. (5)

Here, v is the natural frequency of the shell and m1p/L(m1 =1, 2, . . . .) and m2

(m2 =0, 1, 2, . . . ) are wave numbers in the x and u directions, respectively, for matching
the boundary conditions at both ends [22]. The constants A1, B1, C1, A2, B2, and C2 are
undetermined modal constants and are different for each mode.

The natural frequencies of the cylindrical shell and the corresponding mode shapes can
be obtained by substituting the modes (4) and (5) into equation (1). For the detailed
calculation of the natural frequencies and modes the reader can refer to the text of Leissa
[22]. Three natural frequencies and three sets of mode shapes, with different modal
constants, are found to be associated with each combination of (m1, m2). Among them,
the set of mode shapes with the lowest natural frequency is usually the transverse-vibration
dominant mode and is coupled strongly with the enclosed sound field. For simplification,
only the displacement in the radial direction, ur , corresponding to the transverse modes,
is considered here for calculating the shell vibration and its associated interior sound
pressure.

2.3.  

The radial displacement of the shell, subject to an arbitrary external excitation, can be
described as a linear combination of modes, i.e.,

ur (x, u, t)= s
a

m1 =1

s
a

m2 =0

s
2

m3 =1

um1m2m3(t)fm1m2m3(x, u), (6)

in which the mode shape is written as

fm1m2m3 = sin (m1px/L) cos (m2u+(m3 −1)p/2) (7)

and um1m2m3(t) represents the modal co-ordinate corresponding to the vibration mode
(m1, m2, m3). In the above expression, m3 =1 associates with the so-called symmetric
response with respect to co-ordinate u and m3 =2 associates with the anti-symmetric
response.

The modal equation can then be derived, using the orthogonal properties of the mode
shapes, in the form of

üm1m2m3 +2zvm1m2u̇m1m2m3 +v2
m1m2

um1m2m3 = qm1m2m3(t)/Mm1m2, (8)
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where m1 =1, 2, . . . , m2 =0, 1, 2, . . . , m3 =1, 2, the dot notation represents the
derivative with respect to the time t, and qm1m2m3(t) is the modal force that will be discussed
later. The notation vm1m2 denotes the radial or transverse natural frequency of mode
(m1, m2). The modal mass Mm1m2 = r(1− m2)(1− A2

1 −B2
1 )/E, on the right side of the

modal equation, is a function of the shell parameters as well as the modal constants. An
additional modal damping term is introduced to each modal equation in which z represents
the modal damping ratio and is taken to be the same for each vibration mode.

Two different types of external forces, acting in the radial direction, are separately
considered in this work. (1) Point forces are first used to excite the motion of the cylindrical
shell. Each point force is expressed as

fr (x, u, t)=F1 d2(x− x̄, u− u�) e−iVt (9)

and is applied to the shell at the location (x= x̄, u= u�). The notation F1 represents the
complex magnitude of the force, V represents the excitation frequency, and d2 is the
two-dimensional Dirac delta function. This type of force is the representation of the
structural inputs due to engine out-of-balance forces. (2) Uniformly distributed pressures
are chosen as the second type external excitation. Every distribution can then be
represented in the form of

fr (x, u, t)=F2[U(x−(x̄− a/2))−U(x−(x̄+ a/2))]

× [U(u−(u�− b/2R))−U(u−(u�+ b/2R))] e−iVt. (10)

In this expression, U represents the step function, (x= x̄, u= u�) is the center of the
distributed pressure (called center location in brief) with width a in the axial direction and
b in the radial direction, and F 2 is the complex magnitude of the pressure. This pressure
distribution is an idealized mathematical model of the external pressure on the fuselage
due to an engine.

Suppose that these two types of external forces are individually applied to the shell in
the radial direction. The modal force to the shell becomes

qm1m2m3(t)=g
2p

0 g
L

0

fr (x, u, t)
Q

fm1m2m3(x, u) dx du. (11)

The radial displacement can then be obtained from equation (6) after all the modal
equations (8) are solved. The displacement can also be rewritten as

ur (x, u, t)= s
k

Hl(x, u, x̄k , u�k , V)F l
k e−iVt, (12)

where Hl(x, u, x̄k , u�k , V) is the frequency response function at shell location (x, u) subject
to one external force of the lth type acting at (x̄k , u�k ), and Sk sums the responses due to
all the external forcing functions.

The kinetic energy (KE) of the shell, for evaluation of the overall vibration of the shell,
is defined as

KE= 1
2 gV

ru̇ru̇*r dV= 1
2rhRV2 s

a

m1 =1

s
a

m2 =0

s
2

m3 =1

Um1m2m3U*m1m2m3Dm1m2m3, (13)

where the notation * denotes the complex conjugate of a complex variable, V is the total



. .   . . 406

volume of the shell material, and Dm1m2m3 = h f2p
0 fL

0 f2
m1m2m3

dx du. Here, Um1m2m3 represents
complex amplitude of the corresponding modal co-ordinate and um1m2m3(t)=Um1m2m3 e−iVt.

3. FORMULATION OF DYNAMIC ABSORBERS

Suppose that M absorbers, located at (xj , uj ), j=1, 2, . . . , M, are connected to the
shell in the radial direction as illustrated in Figure 1. The mean, the stiffness, and
the damping ratio of each absorber are represented by ma

j , ka
j , and za

j , respectively.
The variable va

j =zka
j /ma

j is usually called the natural of the jth absorber while

ca
j =2za

j zma
j ka

j denotes the damping coefficient of the jth absorber. The equations of
motion for the jth absorber are

ma
j d� j =−f a

j , f a
j = ka

j (dj − urj )+ ca
j (d� j − u̇rj ), (14, 15)

in which dj (t)=Dj e−iVt is the radial displacement of the absorber, and f a
j (t)=Fa

j e−iVt

denotes the resultant point force caused by the jth absorber acting on the shell. In equation
(15), urj (t) is the radial displacement of the shell at (xj , uj ), and is a result of the combined
effects of all the external forces and the forces from the absorbers, that is,

urj =Urj e−iVt = s
k

Hl
kjFl

k e−iVt + s
M

s=1

Ha
sjFa

s e−iVt. (16)

Here, Hl
kj =Hl(xj , uj , x̄k , u�k , V) represents the frequency response function at (xj , uj ) due

to the lth type external force located at (x̄k , u�k ), and Ha
sj =H1(xj , uj , xs , us , V) is the

frequency response function at (xj , uj ) generated by the point force f a
s (t) from the sth

absorber. Combining equations (14), (15) and (16) yields the matrix equation

1− k
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=60, 0, . . . , 0, s
k

Hl
k1F l

k , s
k

Hl
k2F l

k , . . . , s
k

Hl
kMFl

k7
T

, (17)

where k
 aj =(ka
j −iVca

j )/(V2ma
j ), j=1, 2, . . . , M. This is an algebraic, matrix equation of

2M linear equations. The complex amplitudes of absorbers’ displacements Dj ,
j=1, 2, . . . , M, and as a consequence, the force amplitudes Fa

j of the absorbers can be
easily obtained.

The radial displacement of the absorber-connected shell, subject to the external forces,
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can then be expressed as

ur (x, u, t)=$sk Hl(x, u, x̄k , u�k , V)F l
k + s

M

j=1

H1(x, u, xj , uj , V)Fa
j % e−iVt. (18)

The sound field inside the cylindrical shell will be calculated based on the above expansion
form of the radial displacement.

4. INTERIOR SOUND FIELD

4.1.  

The interior sound field of the cylindrical shell is governed by the wave equation [23]

92p−(1/c̃2)12p/1t2 =−r̃1s/1t (19)

in which

9=
1
4

1

1r 0r 1p
1r1+

1
r2

12

1u2 +
12

1x2,

c̃ denotes the propagating velocity of the sound wave in air, r̃ is the density of the air,
and s(x, u, r, t) denotes the volume velocity per unit volume of a sound source in the
acoustic field. If the boundary conditions of the sound field are assumed to be rigid
boundaries, the natural frequency of the (n1, n2, n3) acoustic mode can be represented as
[24]

ṽn1n2n3 = c̃z(n1p/L)2 + k2
n2n3

, (20)

where n1 =0, 1, . . . , n2 =0, 1, . . . , and n3 =1, 2, . . . . The radial acoustic wave number
is represented by kn2n3, and kn2n3R is the n3th zero of the derivative of the first kind Bessel’s
function Jn2 of order n2. There are two mode shapes,

cn1n2n3n4(x, u, r)= cos (n1px/L) cos (n2u+(n4 −1)p/2)Jn2(kn2n3r), (21)

with n4 =1 for the symmetric mode or n4 =2 for the anti-symmetric mode, associated with
each natural frequency ṽn1n2n3.

4.2.        

The sound pressure induced by any sound source in the acoustic field has the
eigenfunction expansion form

p(x, u, r, t)= s
a

n1 =0

s
a

n2 =0

s
a

n3 =1

s
2

n4 =1

pn1n2n3n4 (t)cn1n2n3n4(x, u, r). (22)

In the above summation, each modal pressure pn1n2n3n4(t) of the acoustic system is obtained
by solving the acoustic modal equation [23]

p̈n1n2n3n4 +2z	 ṽn1n2n3ṗn1n2n3n4 + ṽ2
n1n2n3

pn1n2n3n4

=−
r̃c̃2

Dn1n2n3n4 g
R

0 g
2p

0 g
L

0

rṡ(x, u, r, t)cn1n2n3n4(x, u, r) dx du dr, (23)
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wherein Dn1n2n3n4 = fR
0 f2p

0 fL
0 rc2

n1n2n3n4
(x, u, r) dx du dr. The acoustic attenuation effect of the

air is represnted by an additional acoustic modal damping ratio z	 in each modal equation
of equation (23).

The vibration of the cylindrical shell in the radial direction can create high levels of noise
in its interior sound field. In order to calculate the sound pressure due to the vibrating
shell, the structure, i.e., the boundary of the sound field, is first treated as the rigid wall.
Next, the vibrating boundary is represented as a distributed sound source for the acoustic
system [23]. Note that in the calculation the force on the structure due to interior acoustic
pressure is not considered. This is because the external force on the shell is much larger
than the force from the interior pressure. The influence on the shell dynamics and on the
acoustic field due to the interior sound inside the shell is usually neglected [3–6, 16]. Besides
the great difference in magnitudes of these two types of forces, solving the fully coupled
structural-acoustic system requires a great effort. To include the interior pressure in the
calculation of the shell dynamics only complicates the solving procedure but gains no
better accuracy of the results. Therefore, the resultant shell vibration as well as the
associate interior acoustic field, obtained by the method described above, will approach
the fully coupled solutions even though the boundary conditions of the sound field are not
exactly satisfied and the effects of the interior pressure are neglected.

To obtain the sound pressure inside the cylindrical shell, an infinitesimal area of the
moving shell is considered as an elemental source. This small piece of shell, located at (x̂, u
 )
and with area R dx̂ du
 , is a sound source of the sound field with a strength given by

s=−u̇r (x̂, u
 , t)R dx̂ du
 d3(x− x̂, u− u
 , r−R), (24)

where u̇r (x̂, u
 ) is the radial vibrating velocity of the shell at the source location (x̂, u
 ) and
d3 is the three-dimensional Dirac-delta function.

The wave equation (19) then becomes

92p−(1/c̃2)12p/1t2 =−r̃V2ur (x̂, u
 )R dx̂ du
 d3(x− x̂, u− u
 , r−R), (25)

with ur given in equation (6) or equation (18), and V is the vibrating frequency of the shell.
The modal equation for the acoustic system can be rewritten as

p̈n1n2n3n4 +2z	 ṽn1n2n3ṗn1n2n3n4 + ṽ2
n1n2n3

pn1n2n3n4

=−
r̃c̃2V2

Dn1n2n3n4

s
a

m1 =1

s
a

m2 =0

s
2

m3 =1

Um1m2m3fm1m2m3 (x̂,u
 )cn1n2n3n4(x
 , u
 , R)R dx̂ du
 e−iVt. (26)

In order to obtain the effects from the entire vibrating shell, equation (26) is integrated
over the entire shell surface. The interior modal pressure is then given by

p̈n1n2n3n4 +2zaṽn1n2n3ṗn1n2n3n4 + ṽ2
n1n2n3

pn1n2n3n4

=−
r̃c̃2V2R
Dn1n2n3n4

eiVt s
a

m1 =1

s
a

m2 =0

s
2

m3 =1

Um1m2m3C. (27)

The constant C=C(m1, m2, m3, n1, n2, n3, n4) is defined in the integration form

C=g
L

0 g
2p

0

fm1m2m3(x̂, u
 )cn1n2n3n4(x̂, u
 , R) dx̂ du
 . (28)
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T 1

System parameters

System parameter Value

Shell L (m) 16·0
R (m) 1·3
h (m) 0·0012

E (N/m2) 7·1×1010

n 0·31
r (kg/m3) 2700·0

z 0·3

Air c̃ (m/sec) 343·0
r̃ (kg/m3) 1·21

z	 0·05

Excitation Location
(0·35L, −5°)
(0·35L, 185°)

V (Hz) 88

A similar expression representing the sound pressure was also obtained by Thomas et al.
[6]. Due to the symmetry of the cylindrical shell and the interior sound field, the coupling
of vibration modes and acoustic modes is quite selective [6, 8]. The non-zero constant C
exists only when m1 − n1 is an odd number, m2 = n2, and m3 = n4. Provided that the
response of the vibrating shell has been obtained, the sound pressure distribution in the
shell can be determined by solving the acoustic modal equations (27) and by the summation
of all the modal pressures pn1n2n3n4 as given in equation (22).

The best indication of the overall noise in a sound field is the potential energy (PE)
within the field which is defined for the given volume of the acoustic field V	 as

PE=
1

2r̃c̃2 gV	

p(x, u, r, t)p*(x, u, r, t) dV

=
1

2r̃c̃2 s
a

n1 =0

s
a

n2 =0

s
a

n3 =1

s
2

n4 =1

Pn1n2n3n4P*n1n2n3n4Dn1n2n3n4, (29)

in which Pn1n2n3n4 is the complex amplitude of the modal pressure, i.e.,
pn1n2n3n4(t)=Pn1n2n3n4 e−iVt.

5. NUMERICAL RESULTS AND DISCUSSIONS

The geometry of the cylindrical shell and the material properties used here (listed in
Table 1) were originally chosen by Thomas et al. [5, 6] based on a consideration of the
characteristics of a B.Ae 748 test aircraft. However, the values of the thickness h and the
modal damping ratio z of the shell were selected so as to match the measured accelerations
of the aircraft fuselage instead of their actual values [16].

5.1.  

The in-vacuo natural frequencies (Hz) of the transverse modes of the vibrating shell are
given in Figure 2. The natural frequencies are found to increase as m1 increases. They
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Figure 2. Natural frequencies of the cylindrical shell: m1 values: —q—, 1; —R—, 3; —e—, 5; —W—, 10;
—Q—, 15; —r—, 20; —E—, 25; —w—, 30.

decrease, as m2 becomes larger, and then increase again at a very slow rate after a specific
value of m2. The slowly increasing property of the natural frequencies is mainly due to
the small thickness of the shell chosen here. A detailed discussion of this property can be
found in Leissa’s book [24]. Hence, numerous natural modes exist while the excitation
frequency of the external force is greater than 80 Hz. The presence of the relatively high
modal density in the shell suggests that many terms will be needed in the modal expansion
of the vibration if the excitation frequency V is at or above this frequency value.

Figures 3(a) and (b) show the natural frequencies of the acoustic field with rigid
boundaries for n3 =1 and n3 =2, respectively. The acoustic natural frequencies are close
to each other while n1 is small and their values increase with n1. From the figures, one can
also see that these frequencies rapidly increase with increasing n2 and n3. No sign of the
high modal density, which exists in the vibration of the shell, is found in the acoustic system
within the lower frequency range.

The acoustic energy efficiencies am1m2, of the different vibration modes are illustrated in
Figure 4. The energy efficiency, am1m2, is defined as the resultant acoustic potential energy

Figure 3. Natural frequencies of the sound field. (a) n3 =1, (b) n3 =2: n1 values: —Q—, 1; —e—, 2; —W—,
4; —q—, 7; —E—, 10; —w—, 20.
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Figure 4. Energy efficiencies of different vibrating modes. m1 values: ——, 1; – – –, 2; –.–.–., 3; . . . . . , 4;
— — —, 5; ——W——, 6; – –W– –, 7; .–.–W–.–, 8; . . . .W. . . , 9; — —W— —, 10.

when there is only the (m1, m2) vibration mode of unit kinetic energy excited. Note that
the energy efficiencies are highly dependent on the excitation frequency V and that this
figure only shows the coefficients for the case of V=88 Hz. The vibrating modes of m2 =1
seem to have the most significant effect on the internal acoustic field. This is due to the
fact that the natural frequencies of the (4, 1, 1) and (3, 1, 1) acoustic modes are quite close
to the excitation frequency V=88 Hz, and therefore are easily excited by the external
forces or the sound sources at that frequency. The vibration modes with m2 =1, from the
calculation of the constant C, are found to give the greatest contribution to these two
acoustic modes. From the figure, we can observe that several vibrating modes with m2 =0
and corresponding to the acoustic mode (8, 0, 1), which has a natural frequency close to
the excitation frequency 88 Hz, are also important to the acoustic field. Thus, as discussed
in the previous work by Fuller [4], Figure 4 implies that only selected structural modes
will couple well with their interior acoustic field.

5.2.      

The effects of using dynamic absorbers to reduce the vibration of the shell, subject to
point forces, and the resultant sound pressure in the enclosed acoustic cavity are first
investigated. Consider two point forces, in the radial direction, applied to the cylindrical
shell at x̄=0·35L, u�=−5°, and 185°. These two external forces used here are assumed
to have the same excitation frequency as well as a fixed phase difference. The phase angle
up defined in this paper is the phase lead of the force at (0·35L, 185°) relative to the force
at (0·35L, −5°) and is referred to as the synchrophase angle [4]. Unless mentioned
otherwise, the natural frequencies of all absorbers are selected with the same value as the
excitation frequency, i.e., tuned dynamic absorbers are assumed, and the damping ratios
of the absorbers are set to be 0·02. Table 2 gives the change in the kinetic energy (DKE)
of the vibration and the change in the potential energy (DPE) of the total sound pressure
in the acoustic field for various implementations of dynamic absorbers and various force
parameters. At first, these two external forces are assumed to be in phase (up =0°). In case
1.1, only one absorber placed at the point (0·35L, −5°) is used and its mass is chosen to
be 40 kg which is about 1/10 of the mass of the cylindrical shell. Since the two external
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T 2

Reduction in KE and PE for external point forces

Case D KE (dB) D PE (dB) up(°) locations of absorbers ma

1·1 −1·42 14·66 0 (0·35L, −5°) 40 kg×1
1·2 −61·79 −61·79 0 (0·35L, −5°) (0·35L, 185°) 20 kg×2
1·3 −61·80 −62·69 0 (0·35L, −5°) (0·35L, 185°) 20 kg×2

(0·35L, 90°) (0·35L, 270°) 10 kg×2
1·4 −61·56 −68·57 0 (0·35L, −5°) (0·35L, 185°) 20 kg×2

(0·32L, −5°) (0·32L, 185°) 10 kg×4
(0·38L, −5°) (0·38L, 185°)

1·5 −61·61 −68·48 0 (0·35L, −5°) (0·35L, 185°) 20 kg×2
(0·32L, −5°) (0·33L, 185°) 1 kg×4
(0·38L, −5°) (0·38L, 185°)

1·6 −55·60 −62·47 0 (0·35L, −5°) (0·35L, 185°) 10 kg×2
(0·32L, −5°) (0·32L, 185°) 1 kg×4
(0·38L, −5°) (0·38L, 185°)

1·7 −56·77 −62·45 90 (0·35L, −5°) (0·35L, 185°) 10 kg×2
(0·32L, −5°) (0·32L, 185°) 1 kg×4
(0·38L, −5°) (0·38L, 185°)

forces are applied symmetrically to the shell, the addition of only one absorber breaks the
symmetry of the system. In the absence of symmetry, the dominant acoustic modes (3, 1, 1)
and (4, 1, 1) are excited and result in a significant increase in the acoustic PE. In order
to retain the symmetry property, a second absorber is attached to the shell at the force
location (0·35L, 185°) (case 1.2) and the mass of each absorber is chosen to be 20 kg. A
substantial reduction of both energies to 62 dB is now observed since the point forces
provided by the absorbers almost cancel out the external point forces. In this case, the
reduction in the KE of the shell is exactly equal to the reduction in the acoustic PE. This
equivalence is based on the fact that the external forces and the absorber-forces are of the
same type and are at the same locations. If another two absorbers, located at (0·35L, 90°)
and (0·35L, 270°) and with a mass of 10 kg each, are used together with the previous two
absorbers (case 1.3), only a small improvement in reducing the acoustic PE is obtained.
From the numerical data, these two extra absorbers are seen to exert very small forces on
the shell. They are also located at the nodes of the m2 =1 vibrating modes and
consequently have little effect on the vibration and the sound field. Therefore, the most
important absorbers for reducing the vibration and the noise are those placed at the
locations at which the external point forces apply. These absorbers are referred to as
central absorbers in this paper.

Although the arrangement of absorbers in case 1.2 gives impressive results, some attempt
still needs to be made to gain an understanding of the effects of changing the mass of the
absorbers. First, two additional dynamic absorbers, each with mass 10 kg, called auxiliary
absorbers, are attached to the shell near each central absorber (case 1.4). A similar
reduction in the KE of the shell, as in case 1.2, is achieved. Surprisingly, the reduction in
the PE of the sound field, as observed from the numerical result, is much larger; even
though the resultant forces caused by the auxiliary absorbers are found to be much smaller
than the central ones. This phenomenon suggests that the reduction may be insensitive to
the mass of auxiliary absorbers. To examine this hypothesis, the mass of each auxiliary
absorber is then reduced to 1 kg (case 1.5), which is much smaller than that of the central
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Figure 5. Amplitudes of vibrating modes due to external point forces: (a) m1 =1, 2, 3, (b) m1 =15, 16, 17; Q,
case 1.2; q, case 1.5.

absorber and the result shows only a very small difference from the previous case.
Figure 5 presents the total amplitude, defined as a2

m3 =1 [um1m2m3u*m1m2m3]
1/2, of the (m1, m2)

symmetric and asymmetric vibrating modes for case 1.2 (without auxiliary absorbers) and
case 1.5 (with 8 auxiliary absorbers) when the amplitude of each external force is 20 N.
The presence of the light auxiliary absorbers is seen to increase the stiffness of the shell
around the center locations. This suppresses the vibration of modes with small m1 values
and enhances the higher vibration modes with large m1 which are not well coupled with
the sound field. Therefore, the KE of the shell remains nearly the same while the acoustic
PE level decreases substantially. The data from case 1.6 in Table 2 is for the same
arrangement of absorbers but using lighter central absorbers, and the results are observed
to be inferior to the results obtained in the previous case. In conclusion, the mass of
the central absorbers is found to dominate in the reduction of the KE while the
additional auxiliary absorbers, even with small masses, may produce a further
attenuation in PE.

Figure 6(a) illustrates the effects of changing the masses of the absorbers in case 1.6.
The abscissa of this figure is the mass of the central absorber. Here, the mass of each
auxiliary absorber is always kept at 1/10 of the mass of the central absorber. As expected,
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Figure 6. Reduction in KE and PE for external point forces as function of (a) mass of absorber, (b) frequency
of absorber: ——, reduction in KE; – – –, reduction in PE.

a greater reduction of KE and PE is obtained when the masses of absorbers are increased.
The resultant effects due to varying the natural frequency of the absorbers are given in
Figure 6(b). Not surprisingly, the optimum reduction in vibration and acoustic energies
occurs when the natural frequency of absorbers is exactly equal to the excitation frequency.

The above discussions are also valid for other center locations and for other phase
difference values between two forces as long as the external excitations are point forces.
The numerical results for up =90° are given in case 1.7 of Table 2. The same
absorber-placement as case 1.6 is used and it yields results close to those in case 1.6. It
is worth mentioning that, before adding the absorbers, the KE of the shell and the acoustic
PE for up =90° are about 1·6 dB and 17·8 dB larger than those for up =0°. This significant
difference in PE attributed to the observation that the two external forces with up =90°
create large, asymmetric m2 =1 vibrating modes. These modes, as discussed previously,
have the largest energy efficiencies and can therefore affect the sound field to the greatest
extent. This result, due to the changing synchrophase angle, is similar to what has been
observed previously [4].

5.3.      

Consider two uniformly distributed pressures applied to the shell. The central locations
of the forces, (x̄, u�)= (0·35L, −5°) and (0·35L, 185°), are the same as the point forces
described previously and the phase difference up between the two distributed forces is
defined as in the previous section. Suppose the two sides of each distribution area are 1 m
in the x direction and 0·25 m in the u direction. The vibration and the sound reduction
effects obtained by adding absorbers are shown in Table 3. The dominant modes of
vibration for up =0° are found to be the m2 =1 modes with antinodes at 90° and the
m2 =2 modes with antinodes at 0°. For the first case, two absorbers, each with a mass
of 20 kg, are placed at (0·35L, 90°) and (0·35L, 270°) (case 2.1) so as to eliminate the m2 =1
modes which have large energy efficiencies. After introducing the absorbers, the m2 =1
modes are slightly decreased; however, the modes corresponding to the larger m2 values
are increased. Thus, the KE of the shell and the acoustic PE are found to remain almost
the same. In case 2.2, more absorbers being added near the locations of the
above-mentioned absorbers still cannot change the results significantly. The authors’
efforts are now turned to cancelling the external forces directly via absorbers at the center
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T 3

Reduction in KE and PE for external, uniformly distributed forces

D KE D PE
Case (dB) (dB) up(°) area locations of absorbers ma

2·1 +0·008 −0·40 0 1·0×0·25 (0·35L, 90°) (0·35L, 270°) 20 kg×2
(0·35L, 90°) (0·35L, 270°) 20 kg×2

2·2 +0·007 +0·06 0 1·0×0·25 (0·32L, 90°) (0·32L, 270°) 1 kg×4
(0·38L, 90°) (0·38L, 270°)

2·3 −5·92 −5·24 0 1·0×0·25 (0·35L, −50°) (0·35L, 185°) 20 kg×2

2·4 −9·30 −9·62 0 1·0×0·25 (0·35L, −5°) (0·35L, 185°) 20 kg×2
(0·32L, −5°) (0·32L, 185°) 1 kg×4
(0·38L, −5°) (0·38L, 185°)

2·5 −21·57 −23·14 0 1·0×0·25 (0·35L, −5°) (0·35L, 185°) 20 kg×2
(0·32L, −5°) (0·32L, 185°) 1 kg×8
(0·38L, −5°) (0·38L, 185°)
(0·35L, −10°) (0·35L, 0°)
(0·35L, 180°) (0·35L, 190°)

2·6 −21·55 −23·05 0 1·0×0·25 (0·35L, −5°) (0·35L, 185°) 1 kg×10
(0·32L, −5°) (0·32L, 185°)
(0·38L, −5°) (0·38L, 185°)
(0·35L, −10°) (0·35L, 0°)
(0·35L, 180°) (0·35L, 190°)

2·7 −0·61 −2·41 0 4·0×0·5 (0·35L, −5°) (0·35L, 185°) 1 kg×10
(0·32L, −5°) (0·32L, 185°)
(0·38L, −5°) (0·38L, 185°)
(0·35L, −10°) (0·35L, 0°)
(0·35L, 180°) (0·35L, 190°)

2·8 −23·13 −23·90 90 1·0×0·25 (0·35L, −5°) (0·35L, 185°) 1 kg×10
(0·32L, −5°) (0·32L, 185°)
(0·38L, −5°) (0·38L, 185°)
(0·35L, −10°) (0·35L, 0°)
(0·35L, 180°) (0·35L, 190°)

locations. If two central absorbers (case 2.3), each with a mass of 20 kg, are used, then
a reduction of approximately 5 dB in both KE and PE is obtained. The results are
improved much more than those in case 2.2; nevertheless, they are still unsatisfactory
compared to those in the preceding section for external point forces. This suggests that
the effects of distributed forces cannot be completely cancelled out through the use of a
few absorbers which apply only point forces to the structure. To overcome this problem,
two auxiliary absorbers (5 kg each) are added near each central absorber (case 2.4). The
reduction in KE and PE now becomes superior to case 2.3. The performance can be further
improved by the use of additional auxiliary absorbers. The data in case 2.5 of Table 3 are
obtained using four 1 kg auxiliary absorbers around each central absorber. This
arrangement yields a reduction in the KE of the shell and the acoustic PE of approximately
22 dB. In fact, one may suspect that there is no need for heavy central absorbers since the
external forces are distributed forces rather than concentrated forces. Moreover, the
magnitudes of masses of the absorbers are found to have only a small influence on the
reduction results. Numerical investigation reveals that the mass of each absorber can be
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described to 1 kg (case 2.6) and similar results of 21·5 dB reduction in KE and 23·1 dB in
PE are still achieved.

More data are given in Figure 7(a) in which the reduction in KE and PE for varying
masses of absorbers is presented. The curves represent the results obtained when the same
arrangement of absorbers as in case 2.6, and every absorber has the same mass. The
reduction effects seem to become saturated, i.e., the resultant KE and PE remain almost
constant, when the mass of an individual absorber exceeds 2·5 kg. This is a distinctly
different behavior from the use of absorbers on simple dynamic systems or on structures
excited by only external point forces. The results suggest that light, distributed dynamic
absorbers, near the distributed pressure locations, may be the best choice for reducing the
vibration of a structure and the accompanying acoustic pressure generated by external
uniformly distributed forces. The effects of changing the natural frequencies of absorbers
are given in Figure 7(b) for the same absorber-placement. Unlike the conclusions drawn
for the shells subject to external point forces presented in the previous section, the
maximum reduction in the KE of the shell and the acoustic PE does not happen in the
tuned case. The largest decrease in the acoustic PE is found when the frequencies of the
absorbers are slightly larger than the excitation frequency. The greatest reduction in the
KE of the shell vibration occurs at an even higher excitation frequency. Similar conclusion
was also presented by Fuller et al. [9]. This result suggests that detuned dynamic absorbers
may do a better job of reducing the vibration and the noise from external disturbances
of the distributed types. The use of detuned absorbers for reduction in the vibration of
continuous structures and in the accompanying noise is conceptually different from using
tuned absorbers in vibrating systems with one or two degrees of freedom.

If the area of the distributed pressure is extended to 4 m×1 m, i.e., the external forces
are more spread out, worse results are obtained for the same absorber-arrangement (case
2.7). This phenomenon is expected since this external excitation is far from a point force,
and more vibration modes participate in the response compared to case 2.6. Adding more
absorbers over broader areas near the distributed pressures is suggested to obtain better
reduction effects.

Even though the complete data are not shown here, similar results and conclusions are
obtained for different center locations and for other values of up . The results for two
external forces with up =90° are given in Table 3. The reduction in KE and PE improves
a small amount compared to that of case 2.6 when up =0°. Note that, after adding

Figure 7. Reduction in KE and PE for external uniformly distributed forces as function of (a) mass of
absorber, (b) frequency of absorber: ——, reduction in KE; – – –, reduction in PE.
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absorbers, the resultant KE and PE for up =90° are still much larger compared to their
values when up =0° although the reduction for the former case seems slightly better.

6. CONCLUSIONS

The dynamic behavior of a closed cylindrical shell, representing an aircraft fuselage with
added dynamic absorbers, has been analyzed. The interior sound field of the shell was also
investigated. The vibration and the sound level of the enclosed acoustic field are
successfully reduced by adding dynamic absorbers at appropriate positions. The reduction
of the kinetic energy of the shell vibration and the potential energy of the sound pressure
were studied. The results were discussed for two different types of external forces—point
forces and uniformly distributed pressures. In addition, the effects of varying the
parameters of the absorbers were investigated and accordingly some design guidelines were
suggested.

For cylindrical shells subject to external point forces, placing a heavy central absorber
at each force location and several light absorbers near to it can result in the best reduction
of vibration and of noise. Perfectly tuned absorbers, in this case, give the greatest reduction
in the kinetic energy of the shell and the acoustic potential energy. In addition, the use
of heavier center absorbers generally yields greater reductions. On the other hand, for
uniformly distributed excitations, several light-weight absorbers scattered on the area of
each distributed pressure are proposed for the reduction of the shell vibration and the
resultant interior sound. The best result is obtained when the common natural frequency
of the absorbers is slightly detuned. Moreover, light absorbers are sufficient for effective
reduction and the mass of absorbers does not affect the results as long as it exceeds a
certain critical value.
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