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Several perturbation methods are commonly used to predict the free and forced response
of weakly non-linear oscillators. The Krylov-Bogoliubov-Mitropolsky (KBM) and
multiple-time-scales (MTS) methods use expansions of dependent variables, ordinary time
derivatives, and some system parameters to convert the equations of motion into a set of
first order differential equations. Each of these equations represents the slow time
modulations of the amplitude and phase of the zeroth order solution(s).

In this paper, a simple correspondence between the expansions of ordinary time
derivatives employed in these two methods is used to show that, except for notation, these
two methods are identical in the sense that to any order of approximation these two
methods will provide identical results when they use the same parameter expansions and
identical additional constraints. The KBM method attempts to reduce unneeded algebraic
calculations by tailoring the derivative expansions to the simplest applicable form. This,
however, requires some experience or a trial and error approach to establish the
intermediate expansion variables and the implicit and explicit dependence of perturbation
solutions on the different time scales. This relation depends not only on the problem at
hand but also on the parameter expansions used in the solution procedure. By using the
most general expansion for the time derivatives, the MTS method establishes this
dependence as a part of the analysis. In this method, the algebraic details are hidden by
using a compact derivative operator type notation. However, these operators do not
commute in general.
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1. INTRODUCTION

An important aspect of various perturbation methods is their relationship with each other.
The main objective of this paper is to develop the equivalence of the Krylov-Bogoliubov-
Mitropolsky (KBM) and multiple-time-scales (MTS) methods. For this purpose, attention
is focused on single-degree-of-freedom (SDOF), weakly non-linear oscillators which can
be expressed as

ẍ+ x= ef(x, ẋ, Vt; e), (1)

where eq 0, is the ‘‘small’’ gauge parameter, over-dots denote derivatives with respect to
time t, and V is the frequency of external excitation. It is assumed that the function f is
analytic in e and has a sufficient number of derivatives with respect to x and ẋ. Several
perturbation methods are available to predict the free and forced response of such
oscillators. The KBM [1] and MTS [2] methods use expansions of the dependent
variable(s), ordinary time derivative, and possibly some system parameters to approximate
the periodic response(s) and the nearby transient solutions for such oscillators. By using
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many examples, Nayfeh [2–4] has shown that the first and second order KBM and MTS
results are either identical or can be transformed to identical representation. The relation
between higher orders, that is O(en) with ne 3, KBM and MTS approximations is the main
topic of this paper.

A very simple correspondence between these two methods is used to prove their
equivalence. Indeed it is very surprising that this equivalence has not been reported earlier.
Three cases, namely, non-resonance (section 2), resonance with small detuning (section 3),
and resonance with large detuning (section 4), are considered for the harmonically excited
system. This excitation can be direct or parametric. Approximations for the free response
are discussed as a special case of non-resonant response. It is also shown that in general
the partial derivative operators used in the MTS method do not commute.

A second objective of this work is to show that the choice of parameters used in the
KBM derivative expansions depends on the method used to introduce a detuning
parameter in the given equation(s) of the forced system; and that in this regard, incorrect
assumptions can lead to inconsistencies which can stall the KBM procedure at higher
orders. An extension of the KBM method, which eliminates this problem, is examined.
The resulting modified KBM method is shown to be identical to the MTS method with
reconstitution. Section 5 is devoted to this discussion. Conclusions are presented in
section 6.

2. THE NON-RESONANT CASE

In weakly non-linear oscillators, the resonance phenomenon occurs when the frequency
of harmonic excitation is near a rational fraction of the natural frequency of the associated
linear system. That is, V1 (q/p)v, where p and q are mutually prime integers and v is
the natural frequency of the associated linear system. For convenience, this natural
frequency is usually scaled to unity. The O(en) KBM approximation for this case is briefly
outlined in the next two paragraphs. These results are then related to the corresponding
MTS approximation. The results for the free response are also discussed.

In the non-resonant case, the KBM method uses the following perturbation expansions:

x= x0(a, c)+ ex1(a, c, Vt)+ e2x2(a, c, Vt)+ · · ·, (2)

da/dt= eA1(a)+ e2A2(a)+ · · · , and dc/dt=1+ eB1(a)+ e2B2(a)+ · · · , (3, 4)

where c= t+ u, xi are periodic functions with a period 2p in both the arguments c and
Vt, and the symbols a and u represent the amplitude and phase of the zeroth order solution
x0, which is usually taken as x0 = a cos (t+ u). The above expansions are used to obtain
the following:

dx
dt

=
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and
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The function f is expanded in a Taylor series about e=0,

f(x, ẋ, Vt; e)= f1(x, ẋ, Vt)+ ef2(x, ẋ, Vt)+ · · · ,

and equations (2) and (5) are used to expand fi(x, ẋ, Vt), i=1, 2, . . . , about (x0, 1x0/1c).
These expansions are substituted in the governing equation (1) and the coefficients of ei,
i=0, 1, 2, . . . , are equated to zero to obtain a hierarchy of linear oscillators, which are
solved in sequence. The relationship between this KBM approach and the MTS method
with reconstitution is developed below.

It has been suggested that the KBM ‘‘method can be viewed as a multiple scales method
with a and u being the scales’’ [3, p. 173]. Here, however, these are taken as secondary
variables which depend on multiple time scales. That is, a= a(t0, t1, t2, . . . ),
u= u(t0, t1, t2, . . . ), where ti = eit for i=0, 1, 2, . . . . Next, following the MTS method,
define

Di( )= 1( )/1ti , Dia=Ai , Dic=Bi , for i=1, 2, . . . , (7)

where Ai =Ai(a), Bi =Bi(a) for ie 1. With this notation and the assumptions that D0a=0
and D0c=1 (which are also used in the MTS method), one can write

D0u=(1/1c+ 1/1t)u, and Diu=(Ai 1/1a+Bi 1/1c)u, ie 1,

where u(a, c, t) is an arbitrary, differentiable function. It is also clear that for ie 1,

D0Di( )=DiD0( )=$Ai0 12

1a 1c
+

12

1a 1t1+Bi0 12

1c2 +
12

1c 1t1% ( ),

and for i$ j, DiDj $DjDi , unless i or j is zero. That is, the operators Di , Dj , i$ j, do not
commute unless i or j is zero. Using this notation, the expansions (5) and (6) of the KBM
method can be, respectively, written as

dx/dt=D0x0 + e(D0x1 +D1x0)+ e2(D0x2 +D1x1 +D2x0)+ · · · ,

d2x/dt2 =D2
0x0 + e[D2

0x1 + (D0D1 +D1D0)x0]

+ e2[D2
0x2 + (D0D1 +D1D0)x1 + (D0D2 +D2

1 +D2D0)x0]+ · · · ,
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which are precisely the expansions used in the MTS method. It is also clear that the
ordinary time derivative expands according to

d
dt

( )=0s
ie 0

eiDi1 ( ),

and the derivative expansions (3) and (4), respectively, become

da
dt

=0s
ie 0

eiDi1 a, and
du

dt
=0s

ie 0

eiDi1 u,

which are the two components of the reconstitution equation

dA
dt

=0s
ie 0

eiDi1 A, (8)

used in the MTS method with reconstitution, where A= a eiu/2, i=z−1. This
reconstitution preserves the order (O(en), ne 0) of all terms. It is, therefore, clear that all
equations of the KBM method, including the hierarchical set of linear oscillators, are
directly translated into the corresponding equations of the MTS method with
reconstitution and vice versa. Hence, the O(en), ne 1, KBM and MTS reconstitution
approximations for the non-resonance situation of equation (1) must be identical. The
approximate solutions for the unforced response can be established by setting V and the
coefficient of the harmonic excitation to zero in the above development. Therefore, the
above equivalence of the two methods is also valid for the case of free response of equation
(1). The KBM expansions and the corresponding MTS results can also be described in
terms of t, a and u by substituting c= t+ u in equations (2) and (4). Then the operator
D0 can be written in its conventional form D0( )= 1( )/1t0. Equivalence of these two
methods for the resonance situation is described next.

3. THE RESONANCE CONDITION WITH SMALL DETUNING

As mentioned earlier, a resonance situation arises in the forced response of equation (1)
when V1 q/p, where p and q are mutually prime integers. In this case, the excitation
frequency is related to the natural frequency, here unity, of the associated linear system.
When the difference between these two values, called detuning, is small, it is assumed to
be of O(e). This relation can be expressed in several different ways [5–7], such as
pV/q=1+ es or 1= (pV/q)2 + es. The particular equation used in the analysis actually
defines the detuning parameter s. Different values of p and q are used to classify the
response into sub-, super-, or ultra-superharmonic resonance or various parametric
resonances. For example, the situation of direct excitation with p= q is called primary
resonance. As shown in section 5, use of expansion V=1+ es for this case can lead to
a situation where the resulting set of linear systems and periodicity conditions may not
meet the assumptions used in the KBM expansions. Thus, the KBM method can stall at
a higher order where this contradiction first appears. The expansion 1= (pV/q)2 + es is
used in the following discussion. However, the results are valid for any such expansion
which does not lead to the above mentioned problem.
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In this case, equation (1) can be written as

ẍ+((p/q)V)2x= eF(x, ẋ, Vt; e),

where F= f(x, ẋ, Vt; e)− sx. Now the KBM method uses expansion (2) for the dependent
variable, with c=(pV/q)t+ u, and the functions a and u are assumed to satisfy the
following conditions:

da
dt

= s
ie 1

eiAi(a, u), and
du

dt
= s

ie 1

eiBi(a, u). (9, 10)

These conditions are more general versions of equations (3) and (4), respectively. It is easy
to check that by using definition (8) with Ai =Ai(a, u), Bi =Bi(a, u) for ie 1 and the
assumptions D0a=0 and D0u=0 (which are also used in the MTS method), all equations
of the KBM method for this case can be directly translated into the corresponding
equations of the MTS method with reconstitution and vice versa. In particular, equations
(9) and (10) become the two components of the reconstitution equation (8) of the MTS
method. Therefore, for small detuning, the O(en) KBM and MTS reconstitution
approximations for the sub-, super-, and ultra-superharmonic responses or other
parametric resonances in equation (1) will be identical when the two approaches use the
same method of defining a detuning parameter.

Again, the operators Di , Dj , i$ j, do not commute unless i (or j) is zero. The situation
for large detuning, that is when O(1− pV/q)=O(1), is described in the next section.

4. THE RESONANCE CONDITION WITH LARGE DETUNING

When the detuning, that is the absolute value of (1− pV/q), is not small, the KBM
method uses the expansion (2) for the dependent variable with the conditions (9) and

du/dt=(1−(p/q)V)+ eB1(a, u)+ e2B2(a, u)+ · · · .

Again, all equations of the KBM method for this case can be directly translated into the
corresponding equations of the MTS reconstitution method and vice versa by using the
definition (8) with Ai =Ai(a, u), Bi =Bi(a, u) for ie 1, and the assumptions that D0a=0
and D0u=1−(pV/q). So that now

D0u=[(1− (p/q)V) 1/1u+ 1/1t0]u,

where u=(a, u, tj) is an arbitrary, differentiable function. In this case, the operators
Di , Dj , i$ j, do not commute for all i, je 0. In particular, D0 does not commute with Di

for all ie 1, which is different from the situation D0Di =DiD0 for ie 1 observed in
Sections 2 and 3.

It is clear that for a SDOF, weakly non-linear oscillator, the O(en) KBM and MTS
reconstitution approximations will be identical when the same definition of a detuning
parameter is used in these methods. One drawback of the above KBM method is described
next.

5. PRIMARY RESONANCE IN THE DUFFING OSCILLATOR

As mentioned earlier, success of the classical KBM derivative expansions (9) and (10)
depends on the method used to introduce a detuning parameter in the equation(s) of
motion. These expansions use the amplitude and phase of the zeroth order solution as
secondary variables which are assumed to be implicit functions of the slow time scales ti ,
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ie 1. That is the functions Ai , Bi , and the solutions xi are assumed to implicitly depend
on these time scales through a and u. Also, da/dt and du/dt are assumed to be zero in
the steady state situation. However, these assumptions are somewhat restrictive and some
definitions of the detuning parameter can lead to situations where Ai , Bi , and xi , ie 1,
implicitly (through a and u) and explicitly depend on the slow time scales ti , ie 1. In
addition, the steady state is not characterized by du/dt=0. Instead, the time derivative
of some other phase variable, which depends on u and the slow time scales, must be
equated to zero to obtain the periodic steady state results. For example, this situation arises
when the primary resonance in the Duffing oscillator,

ẍ+ edẋ+ x+ ex3 = ep cos Vt, (11)

is analyzed with the detuning, s, defined by V=1+ es. In this case, the following
zeroth and first order systems can be established by using equations (9) and (10) in
equation (11):

e0: 12x0/1t2 + x0 =0, (12)

e1:
12x1

1t2 +2A1
12x0

1a 1t
+2B1

12x0

1u 1t
+ d 1x0

1t
+ x1 + x3

0 =
p
2

ei Vt + cc, (13)

where cc stands for the complex conjugate of the preceding terms. The anticipated
solution x0 = a cos (t+ u) of equation (12) is substituted in equation (13) and the secular
terms are removed by using V=1+ es to provide the following O(e) periodicity
conditions:

A1 = (−da/2)+ (p/2) sin g, and B1 = (3a2/8)− (p/2) cos g,

where g= est− u. Thus A1 and B1 explicitly depend on the slow time scale t1 = et, which
violates the assumptions Ai =Ai(a, u), Bi =Bi(a, u) used in expansions (9) and (10).
Although the above O(e) approximation is correct, this KBM process cannot be carried
further without some modification. One solution is to define a detuning parameter which
does not lead to this problem. However, this situation can also be easily resolved by
allowing the functions Ai , Bi , and xi to explicitly depend on the slow time scales ti , ie 1.
The KBM expansions used in reference [4] allow Ai , Bi to depend on t1. The explicit
dependence of xi on ti is not mentioned in reference [4]. This, however, does not affect the
first and second order results presented in reference [4] because in the analysis presented
there, the dependence of xi on t1 arises first in the third order approximation. Thus for
the situations in which a detuning parameter is defined at O(e), the KBM expansions can
be generalized to

x= x0(a, u)+ ex1(a, u, ti , ie 1)+ · · · , (14)

da
dt

= s
ie 1

eiAi(a, u, tj , je 1), and
du

dt
= s

ie 1

eiBi(a, u, tj , je 1). (15, 16)

The results obtained by these expansions can be easily translated into the MTS
reconstitution results by defining

Dia=Ai , Diu=Bi , and

Diu=(Ai 1/1a+Bi 1/1u+ 1/1ti)u, for ie 1, (17)

together with the assumptions that D0a=D0g=0, where u= u(a, u, tj , je 0) is an
arbitrary, differentiable function and g is defined in terms of u and ti, ie 1. The above
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KBM method can also be applied to the systems with slowly varying parameters,
multi-degree-of-freedom systems, systems with multi-frequency direct and/or parametric
excitations, etc. It is clear that the KBM results for these systems will be identical to the
MTS reconstitution results provided that the same method(s) of introducing detuning
parameter(s) are used in both methods.

6. DISCUSSION AND CONCLUSIONS

The general KBM derivative expansion has been shown to be equivalent to the MTS
method with reconstitution. These results for the SDOF oscillator can be easily extended
to the coupled systems, multiple direct and/or parametric excitations, etc. The MTS
method provides compact notation through the operators Di . Consequently, the most
general expansions (14)–(17) can be applied to the problem under investigation, and when
needed this analysis reduces to the simpler cases, such as equations (2)–(4). In general,
however, the operators Di , Dj , i$ j do not commute. In addition, the definition of D0 may
depend on the problem being analyzed even though most problems are treated by assuming
D0a=D0u=0. On the other hand, the KBM method uses expanded forms of these
operators, which leads to lengthy equations/representations. Consequently, the KBM
approach attempts to reduce the algebra by tailoring the derivative expansions to the
simplest form that can be used for the problem under consideration. Specifically, the
dependence of Ai , Bi , and xi on a, u, and tj is fixed in advance to the simplest form that
may work. As a result, the expansion of operators Di reduces to their simplest form with
the consequent reduction in algebraic details that must be carried through. This, however,
requires some a priori knowledge about the problem being analyzed. For the situation of
free response, for example, the KBM method assumes that Ai , Bi depend only on the
amplitude a. In contrast, the MTS method establishes this dependence as a part of the
analysis. Although a and u do not explicitly depend on the slow time-scales tj , je 1, this
explicit dependence is allowed for their derivatives, e.g., equations (15) and (16), and the
higher order solutions xi . As a result, the steady state solution may require that da/dt=0
and dg/dt=0, where g explicitly depends on u and the slow time scales. This situation is
handled as a part of the MTS analysis. However, due to the early use of the expanded
forms of Di , ie 0, use of the KBM method for such situations requires some experience
or trial and error applications of this method so that a secondary variable, like g above,
is suitably defined for the problem being considered.

Both methods allow the use of a homogeneous solution at each order of approximation.
However, these functions must be determined by imposing additional constraints. This is
specially true for the free vibration problem where a perturbation approximation for the
response frequency is also determined as a part of the analysis. It is clear that the two
methods will provide identical results when they use the same parameter expansions and
identical additional constraints.

In summary, except for notation, the KBM and MTS derivative expansion methods are
identical. By hiding details, the short notation of the MTS method provides some
advantages in presentation and the actual algebraic manipulations.
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