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The purpose of this paper is to extend the use of ‘‘ectoplasm’’ to a vibro-acoustic
problem. The notion of ectoplasm had been presented in a previous paper treating the
prediction of natural mode shapes of plates with holes of any shape. It was shown that
a structure originally defined on a complex domain can be prolonged by an insubstantial
mechanical medium (ectoplasm) in order to be defined on a canonical domain. Then, a
semi-analytical calculus can be used. Ectoplasm characteristics must not perturb the
structure behaviour, but must cover round-off errors of the computer. Here it is shown that
such a compromise is still valid when the structure is coupled to a fluid. A holed plate is
considered, separating a rectangular cavity in two parts. An integral formulation is used
to describe the pressure field. The cavity Green function is expanded on twice indexed
functions, implicitly allowing to take into account the pressure field discontinuity, and save
running time. The plate is considered as a heterogeneous plate containing ectoplasm,
defined on all the sections of the cavity and a variational formulation is used. Radiation
and transmission loss of a holed plate is discussed and compared with the case of a full
plate. The case of the non-baffled free plate is also presented. The method is validated by
comparison with experimental data.
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1. INTRODUCTION

Holed plates are often used in engineering. Sometimes, holes are intentionally designed by
acousticians in order to improve absorbent panels properties, and in many other cases,
holes are present in structures (like sound enclosures) for non-acoustical reasons such as
venting, saving weight, for accessibility or visual control of the enclosed machine, etc.
Sometimes the holed structure itself is responsible for structure-borne sound. In such cases,
optimisation of sizes and positions of the holes could probably be found in many cases
in order to minimise radiated noise. It then necessitates parametric studies utilising
predicting tools. However, the prediction of transmission loss or radiated power is difficult
as holed plates do not have canonical geometries. Classical results and known
tendencies of canonical structures in the literature (rectangular, circular, infinite, baffled
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plates, cylindrical shells...) cannot be used, as singular effects occur such as acoustical short
circuits that are difficult to quantify.

Predicting the behaviour of fluid loaded holed plates presents two main difficulties:
firstly, natural modes shapes of holed plates must be known (including high order modes).
Secondly, the presence of holes requires that the classical ‘‘baffle condition’’ used when
predicting structure radiation must be abandoned. Then, treating a non-baffled problem,
a double layer potential density must be considered, leading to the classical high singularity
of the Green kernel derivative.

There are two kinds of holed plates: plates with an array of small holes and plates with
one or a few holes (having any sort of size and shape). Plates with an array of holes (or
slits) have been treated in the literature by regarding their absorption properties.
Salikuddin has shown experimentally [1] and theoretically [2] that such perforated plates
can be used as anechoic terminations in ducts when the incident wave is of high pulse
intensity. It was concluded that the absorption is due to non-linear propagation effects,
and that its magnitude depends on the porosity of the termination and the intensity of
propagating sound waves (vortex formation, induced by the holes, acts on the absorption
mechanism). Dowling [3] has studied a screen perforated by a regular array of parallel slits
with a mean bias flow through the slits. He has shown that the interaction between an
incident sound wave and the mean bias flow converts acoustical energy into non-radiative
unsteady vortical motion, leading to a linear mechanism of sound absorption.

Radiation of plates with an array of small holes has been experimentally studied by
Pierri [4]; it was concluded that the radiation of holed plates decreases as the ‘‘free area’’
(total holes surface) of the plate increases. However, for plates having small free area,
differences compared with a full plate vanish for high frequencies. Plates with an array
of small holes have also interesting properties when used in a double-leaf panel. Classically,
double-leaf panels have a better transmission loss than simple-leaf panels, except at the
resonant frequency ‘‘mass-stiffness-mass’’ of the double-leaf structure where the tendecy
is reversed. Atwal and Crocker [5] have experimentally shown that the transmission loss
can be improved at this resonant frequency when perforating one of the leaves, finally
leading to a better global transmission loss than a classical double-leaf panel. The effect
of perforations on fixed single-leaf and double-leaf panels also has been treated by Ffowcs
Williams [6] and Leppington and Levine [7]; similar tendencies were observed with
honeycomb sandwich panels. Transmission loss can be improved by perforating one of the
leaves so as to link honeycomb cells to the exterior fluid. Leppington [8] has proposed a
theoretical model to express the effective boundary conditions for a perforated elastic
sandwich panel in a compressible fluid. The compound panel is shown to be acoustically
equivalent to that of a hypothetical surface with different normal velocities on either side.

Plates with one or a few holes (of medium or large dimensions) have been reported less
in the literature. Pan [9] has used a perforated plate as acoustical actuator for active
control, but he considered only the first plate mode that was assumed to be the same as
full plate mode. Mechel [10] had studied acoustical transmission through a small hole in
a rigid wall by using an electro-mechanical analogy. Murashi [11] had experimentally
discussed the influence on transmission loss of a hole positioned in a wall separating two
rooms. Ouellet [12] predicted the sound field in a rectangular cavity enclosing a thin limp
panel. The panel was acoustically introduced as a double layer potential density. This last
formulation is close to the one presented in this paper, but improvements are proposed
in order to reach better convergence and the panel is considered as a plate having modes.
No paper treating perforated panels, having any hole shape, taking into account vibratory
modes and full coupling with the fluid medium, has been found in the literature.
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The first contribution of this study is to consider holed plates with their own modal
behaviour. This implies the use of a holed plate operator. A representation of such an
operator on a functional basis was proposed in a previous paper [13]. Then, to avoid
ill-conditioning of mass and stiffness matrices, a new notion of ‘‘ectoplasm’’ was developed.
Ectoplasm is an insubstantial mechanical medium having no influence on the plate motion
but having some effect in terms of numerical round-off errors. The second contribution
is the extension of the use of ectoplasm to a vibro-acoustic problem and shows that
ectoplasm can remain negligible compared with light fluid medium such as air. It permits
a plate with a complex arrangement of holes to be treated as a heterogeneous structure
defined on a canonical domain. Then, a semi-analytical formulation can be used and many
simplifications occur in the calculations. A third contribution is to remove the double layer
potential singularity by considering the holed plate in a cavity, and using an expansion
of the cavity Green function which implicitly takes into account the pressure jump across
the plate. Moreover, the Green function expansion is defined by double index basis
functions instead of the classical three index functions, which saves running time.

The paper is organised as follows. The acoustical part of the problem is treated using
an integral formulation. The unknown pressure jump across the plate is described as an
expansion of cosine functions. The fluid loaded holed plate motion is taken into account
using a holed plate operator developed in a previous paper [13], linking the pressure jump
and the plate displacement, which is the second unknown of the problem (expanded in
sine functions). The second equation for coupling plate and cavity is the continuity of
velocities on the plate surface. Then, the convergence of the method and the negligibility
of the ectoplasm compared with the fluid medium characteristic impedance are studied and
criteria are found. The influence of a hole on plate radiation and transmission loss is
discussed, and the numerical code is validated by comparing with experimental results.
Finally a simulation of a non-baffled free plate is presented as an extreme case of a holed
plate than can be treated using ectoplasm.

2. BASIC THEORY
2.1.    

A parallelepipedic rigid walled cavity of dimensions: a× b× l (Figure 1) is considered.
A plate of dimensions a× b containing cut-outs is placed perpendicularly to the z-axis,

Figure 1. Typical problem.



.   . . 444

at z= zp . The surface of the total plate (including the holes) is denoted by S. Two ways
of harmonic excitation at angular frequency v are considered. A mechanical excitation of
the holed plate at point MF (xF , yF ):

Fex(x, y, t)=F�exd(x− xF )d(y− yF ) ejvt, (x, y)$S, (1)

and an acoustical excitation, introduced as a vibrating piston of velocity Vex and surface
Sa , lying on a wall of the cavity at z=0:

Vex(x, y, t)=V�ex ejvt, (x, y)$Sa . (2)

The first type of excitation allows one to study the acoustical radiation of a holed plate,
while the second type can be used to predict the transmission loss of a holed plate. The
interior volume of the parallelepiped is defined as V− and the walls surface S. Damping
phenomena in the plate (respectively cavity) are taken into account by the use of an
imaginary part of Young modulus (respectively acoustical wave number):

E:E(1− jhs ), k2:k2(1− jha ). (3, 4)

2.2.        

The pressure field in the cavity p(M) can be considered as a single and double layer
potential; the vibrating surface Sa acting as a layer of monopole sources, and the plate
acting as a layer of dipole sources (continuity of velocity and discontinuity of pressure
across the plate). The density of the simple layer is imposed (as the acoustical excitation
source), but the density of the double layer is an unknown of the problem. It represents
the pressure jump across the plate, and will be noted P�(M0), where M0(x0, y0, zp ) is a point
lying on the surface S:

P�(M0)=Lim
o:0+

{p(x0, y0, zp + o)− p(x0, y0, zp − o)}, (x0, y0)$ [0, a]× [0, b]. (5)

2.2.1. Helmholtz-Huygens integral
The pressue field must satisfy the following non-homogeneous Helmholtz equation and

boundary conditions:

(D+ k2(1− jha ))p(M)=−(d/dz)(P�(M0)d(M, M0)), M $V−, M0$S. (6)

9� (p(M)) ) n� =0, M $S; 9� (p(M)) ) n� =jkZ0V�ex, M $Sa , (7, 8)

where n� is the normal vector relative to the S or Sa surface, pointing toward the exterior
of the cavity, k is the wave number and Z0 the characteristic impedance of the fluid:

k=v/c0, Z0 = rfc0; (9, 10)

c0 and rf are the celerity of sound and the fluid density, respectively.
Using integral formulation (reference [14], p. 262, reference [15], p. 181), the pressure

field, solution of equations (6–8), can be expressed as

p(M)=gSa

jkZ0V�exGk (M, M0) dS0 +gS

P�(M0)9� M0(Gk (M, M0)) ) n� z dS0, (11)
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where Gk (M, M0) is a Green function of the problem such that

(DM + k2(1− jha ))Gk (M, M0)=−d(M, M0), [M $V−, (12)

9� M (Gk (M, M0)) ) n� =0, [M $S*Sa . (13)

2.2.2. The Green function
A classical way to express the Green function satisfying equations (12, 13), is to expand

it in terms of cavity modes:

Gk (M, M0)= s
n,p,q integerse 0

gnpq cos (npx/a) cos (ppy/b) cos (qpz/l)

× cos(npx0/a) cos(ppy0/b) cos(qpz0/l). (14)

This method leads to two difficulties for the present application: (1) coefficients gnpq depend
on three indices. This leads to large matrices. (2) It is a well known property of Fourier
series that when they approximate discontinuous functions, the term by term derivative
of the series expansion is different from the true derivative of the function [16]. This is the
case here as the plate generates a pressure jump. However, Ouellet [12] has used this
method; it was needed then to introduce supplementary unknown coefficients representing
the expansion of the pressure gradient. This technique leads to large matrix sizes as well.

Another way to express the Green function satisfying equations (12, 13) was proposed
by Bruneau (reference [14] p. 514): the Green function can be expanded on a double
indexed ortho-normal basis {crs} satisfying Neumann boundary conditions:

Gk (M, M0)= s
(r,s) integerse 0

grs (z, z0)crs (x, y)crs (x0, y0). (15)

The grs (z, z0) are functions having discontinuous slope at z= z0. This allows us to take
into account the pressure jump along the z-axis when the derivative of the Green function
along the z-axis is used. In such a way, problems of Fourier series derivatives are removed
and two indices are needed instead of three, leading to smaller matrices than the classical
approach. This last method was retained to treat the present problem.

A {crs} ortho-normal basis set satisfying Neumann boundary condition is

crs (x, y)=z(2− d0r )(2− d0s )/ab cos (rpx/a) cos (spy/b), (16)

where d0r is the Kronecker’s symbol:

dij =601 if
if

i$ j
i= j

. (17)

The {crs} functions satisfy the ortho-normal relation

gS

crs (x, y)cr's'(x, y) dS= drr'dss'. (18)
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Substituting the expression (15) of the Green function into the Helmholtz equations
(12, 13) and using the orthogonality property (18) demonstrates that each grs (z, z0)
functions must be such that

12grs (z, z0)/1z2 + k2
zrsgrs (z, z0)=−d(z− z0), [z $ [0, l], (19)

1grs (z, z0)/1z =z=0 =0; 1grs (z, z0)/1z =z= l =0, (20, 21)

where kzrs is the z-axis component of the wave vector, such that

k2
zrs + k2

rs
= k2(1− jha ) (22)

and krs is the projection of the wave vector on the x-y plane:

k2
rs =(rp/a)2 + (sp/b)2. (23)

The wave number kzrs can be expressed in the form

kzrs = k	 zrs −jGrs , (24)

where k	 zrs and Grs are real and positive quantities given by

k	 zrs = k/z2zz[(krs /k)2 −1]2 + h2
a −[(krs /k)2 −1], (25)

Grs = k/z2zz[(krs /k)2 −1]2 + h2
a +[(krs /k)2 −1]. (26)

grs (z, z0) is a mono-dimensional Green function that can be expressed as

grs (z, z0)=−cos (kzrs (l− z0)) cos (kzrsz)/kzrs sin (kzrsl), [z $ [0, z0[, (27)

grs (z, z0)=−cos (kzrsz0) cos (kzrs (z− l))/kzrs sin (kzrsl), [z $ ]z0, l]. (28)

grs (z, z0) is a continuous function in [0, l]. However, as mentioned previously, grs (z, z0) has
a slope discontinuity at z= z0. It can be noted that, for high order (r, s) indices (where
krs�k) the real part of kzrs tends toward zero, and the imaginary part of kzrs tends toward
−krs (a large negative value), leading to strongly evanescent waves. This insures the good
convergence of the method.

2.2.3. The pressure field
Substituting the expressions (27,28) of the Green function into the integral formulation

of the pressure in the cavity (11), an expansion of the pressure field on the crs functions
is finally obtained as follows:

p(M)= s
r,s

[P�rs (ars (z)+U(z− zp ))+V�ex
rs Z0brs (z)]crs (x, y), [z $ [0, l]. (29)

U(z) is the Heaviside function:

6U(z)=0,
U(z)=1,

if
if

zQ 0,
zq 0.

(30)

ars (z) and brs (z) and their first derivatives are continuous functions in the domain [0, l]:

ars (z)=−sin (kzrs (l− zp )) cos (kkrsz)/sin (kzrsl), [z $ [0, z0], (31)
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ars (z)= sin (kzrszp ) cos (kkrs (l−z))/sin (kzrsl)−1, [z $ [z0, l], (32)

brs (z)=−jk cos (kzrs (l− z))/kzrs sin (kzrsl), [z $ [0, l]. (33)

V�ex
rs is the projection of the velocity of the vibrating surface Sa in {crs} basis functions:

V�ex
rs =V�exgSa

crs (x, y) dS. (34)

P�rs are unknown expansion coefficients of the pressure jump in {crs} basis functions:

P�rs =gS

P�(x, y)crs (x, y) dS. (35)

The presence of the Heaviside function in the pressure field expression (29) takes into
account the pressure field discontinuity. It can be seen that using this expression of the
pressure field in the definition (5) of the pressure jump, it can be described because ars (z)
and brs (z) are continuous:

P�(x0, y0)= s
r,s

P�rscrs (x0, y0). (36)

This is consistent with the above expression (35) of P�rs .

2.3.    

In the above acoustical part of the formulation, the presence of the plate is taken into
account by the pressure jump function (36). The pressure jump acts on the plate as a
loading force density that adds to the mechanical exiting force. For a harmonic motion,
the plate displacement (respectively the loading force density) has the form
W(x, y, t)=W�(x, y) ejvt (respectively f(x, y, t)= f�(x, y) ejvt). The holed plate displace-
ment field W�(x, y) and the loading force density f�(x, y) can be linked by a holed plate
operator Z that takes into account the holed plate mechanical characteristics:

Z(W�(x, y))= f�(x, y). (37)

It was shown in a previous paper [13] that a representation of the Z operator in the
modal basis of a full plate can be obtained. Such a formulation allows one to calculate
high order holed plate modes at small numerical cost but leads to a non-unique solution
for the plate displacement W(x, y) and thus, to ill-conditioned mass and stiffness matrices.
It was shown that, to remove the non-uniqueness problem and avoid ill-conditioned
matrices, the holes must be considered as a mechanical medium having negligible
characteristics compared to the plate but not negligible in terms of the round-off errors
of the computer o (110−15). This insubstantial mechanical medium was named
‘‘ectoplasm’’.

2.3.1. Using ectoplasm
The holed plate is supposed to be simply supported on its exterior contour Gp , and free

on the holes contour Gh . The plate motion must then satisfy two types of boundary
conditions:
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Natural boundary conditions: 6Bending moment=0,
Shearing force=0,

for
for

(x, y)$Gh *Gp ,
(x, y)$Gh .

(38)

Essential boundary conditions W(x, y, t)=0 for (x, y)$Gp . (39)

The plate area (excluding the hole) is denoted Sp and the holes area is denoted Sh (such
that S=Sp *Sh ). On the Sp area, the classical mechanical parameters of the
Love-Kirchhoff theory are used: rs mass per unit area, E Young modulus, n Poisson ratio,
h plate thickness, h structural damping coefficient,

D=Eh3(1+ jh)/12(1− n2): bending stiffness. (40)

As mentioned previously, in order to avoid ill-conditioned problems, the real holed plate
(defined by the Sp area) must be replaced by a heterogeneous plate defined by the S area.
The heterogeneous plate must have the same mechanical characteristics as the holed plate
in the Sp area, and have insubstantial ectoplasmic characteristics (rect , Dect ) in the Sh area:

r(x, y)= rs + rect , for (x, y)$Sp ; r(x, y)= rect ; for (x, y) $ Sh ;

(41, 42)

D(x, y)=D+Dect ; for (x, y)$Sp ; D(x, y)=Dect , for (x, y)$Sh ;

(43, 44)

oQ rect /rs W 1, oQDect /DW 1, (45, 46)

where o is the order of magnitude of the computer round-off error (010−15 when using
double precision).

2.3.2. The holed plate operator
The plate displacement W(x, y, t) and the loading force density f(x, y, t) can be

expressed as

W(x, y, t)=W�(x, y) ejvt, f(x, y, t)= f�(x, y) ejvt, (x, y)$S. (47, 48)

In order to obtain a representation of the Z operator on a functional basis {fnm}, the
plate displacement is expanded on the modal basis {fnm} of the full plate (before cutting
it out) satisfying the essential boundary conditions (39):

W�(x, y)= s
n,m integersq 0

W�nmfnm (x, y), fnm (x, y)=z(4/ab) sin (npx/a) sin (mpy/b)

(49, 50)

The Hamilton functional of the plate is given by

H(t1, t2)=g
t2

t1
gS

(T(W(x, y, t))−U(W(x, y, t))+ f(x, y, t)W(x, y, t)) dS dt. (51)

T and U are, respectively, the kinetic and potential energy density:

T(W(x, y, t))= (r(x, y)/2)(1W(x, y, t)/1t)2, (52)
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U(W(x, y, t))= (D(x, y)/2)[(12W(x, y, t)/1x2)2 + (12W(x, y, t)/1y2)2

+2n 12W(x, y, t)/1x2 12W(x, y, t)/1y2

+2(1− n)(12W(x, y, t)/1x 1y)2]. (53)

When the Hamilton function (51) is at extremum versus the W�nm coefficients, the
following linear system is obtained:

[Zpqnm ] · {W�nm}= {f�pq}, f�pq =gS

fpq (x, y) f� (x, y) dS. (54, 55)

The fpq are generalised loading force densities. [Zpqnm] is the representation of the holed plate
operator in the {fnm} basis functions. It can be expressed using stiffness and mass matrices,
as classically done:

{Zpqnm}= {Kpqnm}−v2{Mpqnm}, (56)

with

Kpqnm =
Dp4

a2b2 [(b2/a2)n2p2 + (a2/b2)m2q2 + n(n2q2 + p2m2)]Apqnm

+2D(1− n)bpqnm +Dect [(np/a)2 + (mp/b)2]2dnpdmq , (57)

Mpqnm = rsApqnm + rectdnmdpq , Apqnm =gSp

fpq (x, y)fnm (x, y) dS,

Bpqnm =gSp

12fpq (x, y)
1x 1y

12fnm (x, y)
1x 1y

dS. (58–60)

If there is no hole in the plate, the classical result is found, with diagonal matrices:

Kpqnm =D[(np/a)2 + (mp/b)2]2dnpdmq , Mpqnm = rsdnpdmp . (61, 62)

2.4.    

Cavity and plate must be coupled, using two equations describing the fluid loaded plate
motion, and the continuity of velocities across the plate. Both equations are established
in the following sections.

2.4.1. Fluid loaded plate motion
Using the pressure jump expression (36), the total loading force density acting on the

plate can be expressed as

f�(x, y)=F�ex(x, y)− s
r,s

P�rscrs (x, y). (63)

Then, using equation (55), the generalised loading force density is given by

f�pq =F�ex
pq −CpqrsP�rs , (64)
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where F�ex
pq are the generalised mechanical driving forces

F�ex
pq =gS

fpq (x, y)F�ex(x, y) dS, (65)

[Cpqrs] is a projection matrix (from {crs} to {fnm}),

Cpqrs =gS

fpq (x, y)crs (x, y) dS. (66)

Finally, from equations (54) and (64), the fluid-loaded equation of motion is expressed by
the following linear system:

[Zpqnm] · {W�nm}= {F�ex
pq}−[Cpqnm] · {P�rs}. (67)

2.4.2. Continuity of normal velocities across the plate
The acoustical velocity v� a (M) at any point M(x, y, z) in the cavity is given by

v� a (M)= (j/kZ0)9� M (p(M)). (68)

The continuity between the plate normal velocity and the acoustical velocity is written as

jvW�(x, y)= v� a (x, y, zp ) ) n� z , (x, y)$S; (69)

using the expansion (49) of W�(x, y) on {fnm} and expression (29) of the pressure field, the
above equation becomes

s
n,m integersq 0

W�nmfnm (x, y)= s
integerse 0

(W�ex
rs −YrsP�rs )crs (x, y), (70)

with

Yrs =(−1/Z0vk)(d/dz)a(z) =z= zp , W�ex
rs =(V�ex

rs /vk)(d/dz)brs (z) =z= zp . (71, 72)

Multiplying equation (70) by ctu (x, y) and integrating over S, the continuity of velocities
leads finally to the linear system

[Ct
tunm] · {W�nm}= {W�ex

tu }−[Yturs] · {P�rs}, (73)

where [Ct
tunm] is the transposed matrix of [Cpqrs] defined in equation (66), and [Yturs] is the

matrix of elements:

Yturs =Yrsdtrdus . (74)

2.4.3. Linear system to be solved
By considering the fluid-loaded plate motion equations (67) and the velocities continuity

equations (73), the final system is obtained:

$Zpqnm

Ct

tunm

Cpqrs

Yturs% · 6W�nm

P�rs 7=6F�ex
pq

W�ex
tu7. (75)

The radiation of a holed plate can then be treated by setting W�ex
tu to zero (no acoustical

excitation source), while the transmission loss of a holed plate can be simulated by setting
F�ex

pq to zero (no mechanical excitation source).
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3. CONVERGENCE OF THE METHOD

Convergence of the method and the negligibility of ectoplasm are discussed in this
section. Criteria for the {fnm} and {crs} basis sets selection and ectoplasm characteristics
are given.

3.1.     

To implement this formulation on a computer code, both sets {fnm} and {crs} must be
selected. Selection criteria are discussed in the next section.

3.1.1. Selection criteria for the uncoupled plate
Criteria have been established in a previous paper [13] to obtain in-vacuo holed plate

modes using the {fnm} basis. A wave number knm , relative to a fnm basis function is defined
by

k2
nm =(np/a)2 + (mp/b)2. (76)

Then the retained {fnm} set is such that

{fnm}= {fnm , such as k2
nm E k2

max(vacuo)}, (77)

where kmax(vacuo) must satisfy two criteria, as follows.

3.1.1.1. Frequency criterion
The flexural wave number at v is defined

k	 f(v)=v/cf(v), (78)

where cf(v) is the speed of bending waves at angular frequency v. Then the first criteria
that kmax(vacuo) must satisfy is

kmax(vacuo) e kf(v). (79)

This relation is used in order that plate modes having their resonance frequencies below
the driving frequency are retained.

3.2.1.2. Geometrical criterion
By considering lmin , a holed plate where the characteristic length, lmin is the smallest hole

dimension, a minimum wavlength lmin is defined as

lmin = lmin /3. (80)

kmax(vacuo) must satisfy a second criterion:

kmax(vacuo) e 2p/lmin . (81)

This relation is used in order that plate modes of sufficiently small wavelength are retained.
This is necessary to localise the holes as far as possible. As often as not, the second criterion
includes the first one.

3.1.2. Selection criteria for the coupled system
For the coupled system, similar ways of selections are retained: the mechanical set {fnm}:

{fnm}= {fnm , such as k2
nm E k2

max(mec)}, (82)
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and the acoustical set {crs}:

{crs}= {crs , such as k2
rs E k2

max(acou)}. (83)

Numerical simulations have demonstrated that for the coupled system, convergence
necessitates that kmax(mec) must be greater than kmax(vacuo). The increasing of the {fnm} set when
treating the coupled system is due to the transfer of the basis between {fnm} and {crs} in
both ways:

fpq (x, y)= s
r,s

Cpqrscrs (x, y), ctu (x, y)= s
n,m

Ct
tunm fnm (x, y). (84, 85)

It can be shown [17] that the expansion of a fnm function (sines) on {crs} functions (cosines)
converges in a better way than the expansion of a crs function on {fnm} functions. This
leads to a dissymmetry of size between the {fnm} and the {crs} sets that must be retained
to converge accurately. Namely, the size of the mechanical sine basis must be greater than
the acoustical cosine basis. After several simulations [17] accurate criteria for the coupled
problem have been found: kmax(mec) and kmac(acou) must be such that

kmax(mec) 1 1·5kmax(vacuo), kmax(acou) 1 kmax(vacuo). (86, 87)

3.2.    

The mechanical negligibility of ectoplasm has been studied before [13] and the main
results are summarised in Section 2.3.1. In the vibroacoustic problem it must be assured
that ectoplasm remains negligible compared with the fluid medium acoustical impedance;
namely that the pressure jump generated by the ectoplasm is very small compared to the
acoustical pressure. Criteria can be found by considering an infinite plate having
ectoplasmic characteristics, submitting to an incident plane wave. Then, the required
negligibility of the plate impedance compared to the fluid impedance is written as

Dectk4 sin4 (u)− rectv
2�Z0v/cos (u), (88)

where u is the angle of incidence of the plane wave, and k is the wave number of the
incident wave: v/c0. This last inequality leads to the following criteria for the ectoplasm
characteristics. (1) The negligibility of the ectoplasm bending stiffness requires that

oD 0 (Dect /vZ0)k4�1. (89)

(2) The negligibility of the ectoplasm mass requires that

or 0vrect /Z0�1. (90)

3.3.  

An example of numerical resolution is presented in this section in order to show the
convergence of the proposed method. Characteristics of the simulated case are the
following. The cavity dimensions are a=0·7 m, b=1·0 m, l=2·0 m, zp =0·6 m; the fluid
medium characteristics are rf =1·25 Kg/m3, c0 =344·8 ms−1; the plate dimensions are
h=2 mm, rectangular hole 0·25 m×0·30 m, centred at (0·325, 0·5); the plate
characteristics are rs =15·6 Kg/m2, E=2·0×1011 Pa, n=0·3, (rect /rs )= (Dect /
Ds )=10−13; the acoustical excitation acts on a square surface 0·1 m×0·1 m, centred at
(0·51, 0·27), (in the z=0 plane), vibrating at 200 Hz. For cavity and plate damping see
Table 1.



    453

T 1

Acoustical and mechanical damping

Frequency range (Hz) 12·5–25 25–50 50–100 100–200 200–400 400–800 800–1600

Acoustical damping:
ha 0·1 0·05 0·015 0·013 0·011 0·06 0·04

Mechanical damping:
hs 0·1 0·017 0·015 0·012 0·013 0·013 0·012

3.3.1. Pressure in the cavity
The pressure is calculated at two points in the cavity. They are both on an axis parallel

to the z-axis and passing through the centre of the hole: (1) point M1(0·325, 0·5, 0·55) is
situated in the part zQ zp of the cavity (close to the hole), (2) point M2(0·325, 0·5, 1·5)
is situated in the part zq zp of the cavity (far from the hole). A transfer function (dB)
between the pressure at point M and acoustical source velocity is defined by

Lp (M)=10* log10 0g
T

0

p2(M, t) dt>g
T

0

Vex2(t) dt1, T=2p/v. (91)

In Figure 2, Lp is plotted for the two points M1 and M2. For each point, two curves
are plotted, the solid lines represent Lp versus the number of basis functions fnm , while
the number of basis functions crs is set to 415. The dashed lines represent Lp versus the
number of basis functions crs , while the number of basis functions fnm is set to 841. It can
be seen in Figure 2 that convergence is easier with the {crs} basis than with the {fnm} basis
for both points M1 and M2. This is due to the dissymmetry of the basis transfer as explained
in Section 3.1.2. Convergence begins to be reached when using 841 mechanical basis
functions (kmax(mec) = 168 m−1) and 415 acoustical basis functions (kmax(acou) = 112 m−1). The
smallest dimension of the hole is lmin =0·15 m. Using the minimum wavelength criteria of

Figure 2. Convergences: ——, number of {crs} basis functions is set to 415 and convergence is studied versus
the number of {fnm} basis functions; ––––, number of {fnm} basis functions is set to 841 and convergence is studied
versus the number of {crs} basis functions. Upper curves, M1; Lower curves, M2.
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Figure 3. Real part of the plate normal velocity: (a) holed plate surface, (b) domain S including hole area.

section 3.1.1 leads to (kmax(mec) = 188 m−1) and (kmax(acou) = 127 m−1). So, for this case, it can
be seen that criteria (86) and (87) are sufficient conditions for accurate convergence. The
acoustical negligibility of ectoplasm is verified regarding criteria (89) and (90): numerical
application of the stiffness negligibility term leads to oD =4·8×10−15, and for the mass
negligibility terms it leads to op =4·5×10−12. So, both terms are effectively negligible
compared to 1.

3.3.2. Plate shape and pressure jump
In this section, the plate displacement W�(x, y) and the pressure jump P�(x, y) relative

to the case studied in the previous section are presented using kmax(mec) = 168 m−1 and
kmax(acou)112=m−1. It is verified that the use of ectoplasm effectively cancels the pressure
jump and permits large velocity magnitudes in the hole area.

Figure 4. Real part of the pressure jump; the right side view represents the pressure jump along the axis
x= a/2. The bottom side view represents the pressure jump along the axis y= b/2. Side views are given to show
that the pressure jump tends toward zero in the hole surface.
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Figure 5. Simulation of the radiation of a full (thin line) and a holed (thick line) plate: (a) plate velocity, (b)
acoustic pressure in the first cavity zQ zp , (c) acoustic pressure in the second cavity zq zp .

In Figure 3(a), the holed plate displacement is represented on the Sp area only. In
Figure 3(b), the plate displacement is represented on all of the domain S (including the
hole area). The holed plate surface seems to be motionless in Figure 3(b). This is due to
limited dynamics of graphical representation; velocities magnitudes in the hole area are
one hundred times larger than those in the plate area. In Figure 4, the pressure jump is
represented on all of the domain S. It can be seen that the pressure jump magnitudes in
the hole area tend actually toward zero.

T 2

Holed plate eigenfrequencies

Mode 1 2 3 4 5

Holed plate
eigenfrequencies (Hz) 14·6 30·3 42·8 55·1 58·7

Full plate
eigenfrequencies (Hz) 15·0 30·7 44·5 56·8 60·2
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Figure 6. Simulation of the transmission loss of a full (thin line) and a holed (thick line) plate: (a) plate velocity,
(b) acoustic pressure in the first cavity zQ zp , (c) acoustic pressure in the second cavity zq zp .

4. ANALYSIS AND VALIDATION

In order to validate the developed numerical code, an experimental system was built to
obtain measured data. The experimental set-up is described and theory/experiment
comparisons are made, treating the cases of a holed plate and a full plate.

4.1.  

The cavity was built with 22 mm thick plywood panels, except for one wall which was
made of 20 mm thick plexiglas, that allowed visual control of microphones positions in
the cavity. The interior cavity dimensions were a=0·7 m, b=1·0 m, l=2·0 m. The
relative lightness of such a set-up leads to non-negligible transmission losses of the walls
at very low frequency (Q30 Hz). However, this ‘‘low-cost’’ setting allowed essential
tendencies to be obtained and to validate the numerical code. A 2 mm thick steel plate
was placed at zp =0·6 m. Such a plate thickness was retained in order to avoid losses
through the plate boundaries, as cavity walls were not infinitely rigid. The acoustical source
was a square loudspeaker (of size 10 cm) with a flat diaphragm where normal velocity is
measured with a small accelerometer. A two channel analyser was used to generate white
noise and to compute the transfer function between microphone (or accelerometer on the
plate) and loudspeaker accelerometer (for transmission loss) or shaker force transducer
(for radiation) (see equation (94) for the definition of the transfer function). Cavity and
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plate damping were measured using the classical time decay method. Results are reported
in Table 1. Pressure was measured on both sides of the plate at M1(0·15, 0·70, 0·0.31) and
M2(0·20, 0·47, 1·42). An accelerometer was placed on the full or holed plate at co-ordinates
(0·20, 0·56). The co-ordinates of the square loudspeaker centre were (0·51, 0·73). The
shaker co-ordinates on the plate were (0·48, 0·25).

4.2.        

4.2.1. General remarks
In Figure 5, the simulation of a holed and a full plate radiation are compared. In

Figure 6 the simulation of a holed and a full plate transmission loss are compared. Each
time, the holed plate is presented with a thick line while the full plate is presented with
a thin line. In this section, some general remarks about these curves are made.

The first cavity mode (excluding the Helmholtz mode) relative to the l-dimension of the
cavity has an eigenfrequency of 87 Hz, so all the resonances below 87 Hz are only due to
the plate. This acoustical mode is not clearly seen here as the plate is inserted in the cavity.
However, the second cavity mode, at 173 Hz, relative to the b-dimension appears clearly
with a small frequency shift due to the coupling between the plate and the cavity.

Eigenfrequencies of the first five in vacuo modes of a full and a holed plate are reported
in Table 2, it can be seen that the hole has not a strong influence on the first five

Figure 7. Radiation of a full plate; comparison of theory (thick line) with experiment (thin line): (a) plate
velocity, (b) acoustic pressure in the first cavity zQ zp , (c) acoustic pressure in the second cavity zq zp .
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Figure 8. Radiation of a holed plate; comparison of theory (thick line) with experiment (thin line): (a) plate
velocity, (b) acoustic pressure in the first cavity zQ zp , (c) acoustic pressure in the second cavity zq zp .

eigenfrequencies. When the plate (full or holed) is coupled to the cavity, it can be seen in
Figures 5(a) and 6(a) that some shifts appear at the plate resonances. Particularly, the first
full plate mode is shifted by 6 Hz toward the higher frequencies. Such a shift was expected
as it is well known that in this configuration only the Helmholtz mode is efficient; then,
cavities act on the plate as additional stiffnesses. This effect of additional stiffnesses is still
effective with a holed plate, but in a lesser way, as the hole allows a fluid transfer between
the two parts of the cavity (short-circuit effect).

4.2.2. Radiation of a full and a holed plate
In this section, the influence of a hole on the plate radiation is discussed (Figure 5). It

can be observed in Figure 5(a) that the first full and holed plate modes have almost the
same vibration level, however, as can be seen in Figures 5(b) and 5(c), the first full plate
mode, generate, higher pressure levels in both cavities than the first holed plate mode. As
expected, the hole induces a short-circuit effect. The first mode radiation impedance is then
decreased when the plate is cut out. Looking at Figure 5(a), it can be seen that the main
effect of the hole on the plate vibration field is to shift eigenfrequencies, but most often
the vibration levels remain similar at the plate resonances. Looking at Figures 5(b) and
5(c), it can be observed that the even full plate modes like modes 2 and 3 are non-radiative,
while the corresponding holed plate modes are radiative. Actually, the plate symmetry is
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broken when cutting out the plate; the mean value of the plate displacement is no longer
zero and the plate become radiative. A similar effect of increased radiation when
perturbing symmetries have been described for plates [18, 19] and shells [20] with added
masses.

In summary, it can be concluded that the main influence of a hole on a rectangular
simply supported plate radiation is to strongly increase the radiation of modes that were
initially even (before cutting the plate). However, at very low frequency, the hole
contributes to an expected short-circuit, decreasing the plate radiation. But this last effect
cannot balance the main effect of increase, so in theory, a holed plate is noisier than a
full one. However, in practice, a more temperate effect has to expected. Actually, the very
low radiation efficiency of even modes of the theoretical full plate is due to its perfect
symmetry. For a real life plate, the symmetry is generally destroyed by various
heterogeneities so that an additional hole will probably not induce a strong perturbation
of radiation.

4.2.3. Transmission loss of a full and a holed plate
In this section, the influence of a hole on the plate transmission loss is discussed. In

Figure 6(a) it can be seen that, in opposition to the mechanical excitation case, the hole
has a strong influence on the plate vibration field when the plate is acoustically excited.
Actually, as shown in the previous section, when the plate is cut out, it no longer has

Figure 9. Transmission loss of a full plate; comparison of theory (thick line) with experiment (thin line): (a)
plate velocity, (b) acoustic pressure in the first cavity zQ zp , (c) acoustic pressure in the second cavity zq zp .
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Figure 10. Transmission loss of a holed plate; comparison of theory (thick line) with experiment (thin line):
(a) plate velocity, (b) acoustic pressure in the first cavity zQ zp , (c) acoustic pressure in the second cavity zq zp .

T 3

Free plate eigenfrequencies

Mode Rigid body Rigid body Rigid body 1 2 3 4 5
translation (Oz) rotation (Ox) rotation (Oy)

Free plate
eigenfrequencies (Hz) 0·0 0·0 0·0 21·3 23·2 52·1 59·1 67·4

Simply supported plate
eigenfrequencies (Hz) – – – 15·0 30·7 44·5 56·8 60·2

symmetric modes so that all holed plate modes are coupled to the fluid medium. This is
why, as shown in Figure 6(a), all holed plate modes are excited by the acoustical source.
If a plate mode was initially antisymmetric (before cutting it out), the hole has almost no
influence on the vibration level induced by the acoustical excitation at the mode
eigenfrequency. For example, when considering mode 1 in Figure 6(a), it can be seen that
the hole induces a frequency shift of the mode natural frequency; however, the plate
velocity level remains the same. In contrast, if the mode was initially symmetric, then the
hole has a great influence on the plate velocity level at the mode natural frequency because
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such a mode is turned into a non-symmetric, and therefore acoustically excitable mode
when a hole is cut out (for example, see modes 2 and 3 in Figure 6(a)).

Figure 6(b) represents the transfer function between the normal velocity of the acoustical
source and the acoustic pressure at point M1 situated at co-ordinates x1 =32·5 cm,
y1 =50 cm, z1 =55 cm in the cavity containing the acoustic source. Above 100 Hz, the
presence of the hole has no influence on the pressure, the pressure field being dominated
by the acoustic source and the geometry of the first cavity (zQ zp ); the part of the pressure
radiated by the plate is negligible. However, under 100 Hz, the presence of the hole has
a strong influence on the pressure field, and acoustic pressure peaks can be found at holed
plate resonances, so in this low frequency band, the radiation of the plate in the first cavity
is not negligible.

Figure 6(c) represents the transfer function between the normal velocity of the acoustical
source and the acoustic pressure at point M2 situated at co-ordinates x2 =32·5 cm,
y2 =50 cm, z2 =150 cm in the cavity which does not contain the acoustic source. It is clear
that, as expected, the holed plate has a lower insertion loss than a full plate as there is
no obstacle to the acoustic field in the surface of the hole. Moreover, at low frequency
(under 100 Hz) it can be seen that the holed plate vibration resonances can generate high
pressure levels (see mode 4 and 5 resonances in Figure 6(c)). These holed plate vibration
resonances contribute to a decrease of the insertion loss.

Figure 11. Simulation of the radiation of the unbaffled free plate (thick line) in comparison with the full plate
(thin line): (a) plate velocity, (b) acoustic pressure in the first cavity zQ zp , (c) acoustic pressure in the second
cavity zq zp .
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Figure 12. Simulation of the transmission loss of the unbaffled free plate (thick line) in comparison with the
full plate (thin line): (a) plate velocity, (b) acoustic pressure in the first cavity zQ zp , (c) acoustic pressure in the
second cavity zq zp .

For transmission loss it can be concluded that the main tendency of a holed plate is to
have a lower transmission loss than a full plate. This tendency was of course expected as
diffraction through a hole is well understood. However, a supplementary and less expected
reason is that a holed plate has less symmetries than a full plate (in the general case),
causing it to be more strongly coupled with the fluid medium.

4.3.     

Theoretical experimental comparisons for the radiation of holed and full plates are
presented in Figures 7 and 8, respectively. Comparisons of the transmission loss of holed
and full plates are presented in Figure 9 and 10, respectively. Measurements are presented
by thin lines, while simulations are presented using thick lines. Simulations and
experiments are in good agreement except at very low frequency (Q30 Hz). This
descrepancy at very low frequency was expected, because of the lightness of the
experimental set-up. Flanking transmission through the walls was not negligible,
moreover, the cavity was not perfectly airtight, so the Helmholtz mode (theoretically the
only effective mode in this frequency range) could not pressurise the cavity as well as in
theory. Another reason for discrepancy at very low frequency is the difficulty of producing
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simply supported boundary conditions. In the frequency range of main interest, the
theorical experimental agreement is very good, both in tendency and levels. It is
uncommon to observe such a good validation when predicting this kind of phenomenon,
resulting from cavity and structure coupling, both having multi-modal behaviour. This is
true with a mechanical as well as with an acoustical excitation. Finally, to emphasise the
validation of the method, it must be noted that this comparison is severe, as it is not based
on global factors like radiation factor or mean squared pressure in the cavity, but on local
data such as pressure or velocity at one particular point (even in the near field of the plate
or of the source).

5. SIMULATION OF THE NON-BAFFLED FREE PLATE

Finally, in order to show what extreme cases can be treated using ectoplasm, the
simulation of a non-baffled free plate in a cavity is presented and compared with a full
plate in terms of radiation and transmission loss.

5.1.    -  

Geometrical and mechanical characteristics of this coupled system are the same as those
presented in Section 4, except for the shape of the holed plate and the position of the
mechanical excitation on the holed plate. The non-baffled free plate is simulated using a
simply supported full plate of dimension a=0·70 m, b=1·0 m. A strip of 15 cm width
is then cut out, around the full plate. A new smaller rectangular plate is then created of
dimension a'=0·40 m, b'=0·70 m, having free edges. The first eight eigenfrequencies of
this new free plate are presented in Table 3. (These in vacuo eigenfrequencies were
calculated using a numerical code presented in reference [13]). The new position of the
mechanical excitation on the non-baffled plate is MF (0·40, 0·55) referenced with the
Oxyz-frame presented in Figure 1. To simulate the non-baffled free plate with respect to
criteria presented in section 3, 1194 mechanical basis functions and 405 acoustical basis
functions were used. The running time was 12 minutes per frequency point on an IBM
RS 600/320 h. The full plate presented in this section is the same as the one presented in
section 4.

5.2.    -  

In Figure 11 the non-baffled free plate radiation is compared with a full plate radiation
(mechanical excitation). The non-baffled free plate is presented with thick lines, while the
full simply supported plate is presented with thin lines. Both plates have the same velocity
level. However, the non-baffled free plate radiation is not quite efficient in the
low-frequency range compared with a full plate. The low-radiation of the non-baffled free
plate at low-frequency is due to two main reasons: firstly, even if it was baffled, it is well
known, as shown by Berry [21], that a plate having free edges radiates considerably less
than a simply supported plate as the average of the plate displacement is close to zero for
all modes (except for the rigid body mode of translation). Secondly, the plate is
non-baffled, so its corners cannot radiate as shown for the baffled plate (reference [22], p.
67), because there is an acoustical short-circuit at the edge of the non-baffled plate. At high
frequency non-baffled and full plates tend to achieve the same behaviour.

5.3.     -  

In Figure 12 the non-baffled free plate transmission loss is compared with a full simply
supported plate transmission loss. The non-baffled free plate is presented with thick lines,
while the full plate is presented with thin lines. Regarding velocity levels, it can be seen
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that below the first cavity mode (at 87 Hz), the acoustical source is unable to excite the
non-baffled free plate. This can be understood, citing reciprocity of the short circuit effect
explained for radiation. It can be observed that, at low frequency, non-baffled plate
resonances do not act on the pressure in the cavity. The radiation of the plate is then
negligible compared with the diffraction through the holes. The cavity resonance at 87 Hz
does not appear when a full plate is inserted in the cavity, but this is not the case with
a non-baffled plate where the cavity resonance at 87 Hz can be clearly observed. By looking
at pressure levels in the receiving cavity (Figure 12(c)), it can be concluded that, as
expected, the non-baffled plate transmission loss is lower than the full plate. However, in
this particular case, an exception must be made for a small frequency range near the first
eigenfrequency of the full plate where the full plate transmission loss is lower than for the
non-baffled plate.

6. CONCLUSION

The goal of this work has been to propose a method for predicting sound radiation and
transmission loss of plates with holes in order to explain the influence of a hole on the
plate vibroacoustic behaviour. The expansion of the Green function on double indexed
functions proposed by Bruneau [14] has been used with success. It leads to a simpler
numerical code and implicitly allows to be taken into account the pressure jump across
the plate, unlike the modal expansions on the cavity modes which were proposed by
Ouellet et al. [12].

The notion of ectoplasm developed for vibrations in a previous paper [13] has been
extended successfully to a vibroacoustic problem. By prolonging the holed plate on a
canonical domain instead of considering the initial complex plate surface, many
simplifications occur in the semi-analytical calculus. Criteria about the negligibility of
ectoplasm compared with the fluid medium impedance has been given in order to use it
with good accuracy. Extreme cases of holes can be treated using ectoplasm without being
worried with ill-conditioning problems, as illustrated with the case of the non-baffled free
plate. This proposed method has been exploited to simulate the sound pressure radiated
by a guitar [23], and it could probably be extended to numerical approaches in order to
avoid ill-conditioned matrices.

The method has been validated by experiment using local data such as pressure or plate
velocity at particular points and not only by global factors such as mean quadratic velocity
or radiation factor.

Results obtained for a rectangular simply supported plate indicate certain physical
tendencies. Cutting a hole in a plate makes the transmission loss worse and increases plate
radiation, except for the first plate mode where the tendency is reversed. This singular
behaviour of the first holed plate mode could be used and optimised for some targeted
applications. If a hole is required in a noisy structure for non-acoustical reasons, the better
way to modify the structure is to have regard for structural symmetries which preserve
antisymmetrical modes and their interesting low radiation properties.
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Université de Maine, Le Mans, France: p. 634.

15. A. D. P 1981 Acoustics: an Introduction to its Physical Principles and Applicatons. New
York: McGraw-Hill Company, p. 642.
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