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A unified, potential-flow, boundary-integral formulation is presented for studying
velocity and pressure fields around rotors in hover and forward flight, thereby providing
a tool for an integrated analysis of aerodynamics and aeroacoustics in linear as well as
non-linear problems. The integral formulation for aerodynamics, based on the assumption
of potential flows, has been widely used by the authors in the past and has been validated
extensively; the integral formulation for aeroacoustics, closely related to the aerodynamic
one, yields the pressure in the field. Specifically, a boundary-integral equation allows one
to evaluate the potential distribution around the body; after having obtained this, the
corresponding boundary integral representation is used to evaluate the potential and hence
the pressure at any point in the field. Numerical aerodynamic and aeroacoustic results,
obtained with the proposed formulation for helicopter rotors in hover and forward flight
at subsonic speeds, are in good agreement with experimental data and existing numerical
results.
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1. INTRODUCTION

This work deals with a boundary integral formulation for the unified analysis of
aerodynamics and aeroacoustics of rotors in hover and forward flight. The formulation
is based on a potential-flow assumption (specifically, it is assumed that the flow is
quasi-potential, in the sense indicated in the next section). The integral formulation for
aerodynamics has been widely used and extensively validated by the authors in the past
(see below). Thus, the emphasis here is on the interplay between aerodynamics and
aeroacoustics and the novel application of the aerodynamic formulation to aeroacoustic
analysis.

In aerodynamics, the primary unknown is the pressure distribution over the surface of
the body. This may be obtained computationally by using several numerical methods (e.g.,
finite differences, finite volumes, finite elements, boundary elements, and spectral methods).
Here, the focus is on the boundary-element (or boundary-integral) approach, which
involves the solution of a boundary integral equation, obtained in the limit, from the
corresponding boundary integral representation, as the field point approaches the
boundary surface (see section 3).

In aeroacoustics, the primary unknown is the pressure field away from the body. There
exist two classical approaches used in aeroacoustics: (a) the Ffowcs Williams and
Hawkings equation (see, e.g. references [1–3]) and (b) the Kirchhoff-surface approach (see,
e.g., references [3–5]). In the first case, the pressure is obtained from a boundary integral
representation giving the acoustic pressure in the field in terms of (i) geometry and motion
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of the surface of the body, (ii) the pressure acting on it, and (iii) the quadrupole term in
the field, if non-linear effects are included. In the second case, the pressure is obtained from
a boundary integral representation (Kirchhoff’s formula for the wave equation and its
extension to moving surfaces), which gives the pressure in the field in terms of the pressure
and its normal derivative on a surface that surrounds the body and surrounds the
non-linear term region. It may be noted that in both cases all the necessary aerodynamic
input data are assumed to be known from the aerodynamic analysis. Thus, in acoustics,
the operator is always linear; the non-linear analysis is always shifted to the aerodynamic
analysis. The aerodynamic data may be obtained either from experimental data or from
computational results. In this second case, the output of an aerodynamic code is the input
for the aeroacoustic one; this provides a strong motivation for attempting an integration
of aerodynamics and aeroacoustics.

A unified approach for aerodynamics and aeroacoustics of potential flows has been
presented by Hanson [6, 7] for the frequency domain analysis of propellers, and by Long
[8, 9], Farassat [10, 11], and Farassat and Myers [12] for the time domain analysis of bodies
in arbitrary motion. All the unified aerodynamic/aeroacoustic formulations mentioned
above derive a boundary integral equation for the pressure distribution on the body,
starting from the linear form of the Ffowcs Williams and Hawkings equation [1].

It must be noted that the Ffowcs Williams and Hawkings equation is valid for viscous,
compressible flows. For linear problems, this equation may be used to solve the aero-
dynamic problem, since there exists only one unknown variable (the acoustic pressure).
However, this is not true for non-linear problems and thus the formulation based on the
Ffowcs Williams and Hawkings equation may not be used for a non-linear aerodynamic
analysis. The problem disappears if we limit ourselves to potential flows, since in this case
one may use a formulation based on the velocity potential, 8, for which there exists an
exact non-linear formulation in which the only unknown is 8 (see section 2). This is the
approach presented here. Specifically for the aeroacoustic analysis, the very same integral
representation used (as an integral equation) for the aerodynamic one is utilized. This
yields the potential in the field and hence the pressure, via Bernoulli’s theorem.

The aerodynamic formulation addressed here stems from a general boundary-integral-
equation formulation for the study of unsteady compressible potential aerodynamics
introduced by Morino [13]. In that work, the integral equation is formulated in terms of
the velocity potential and the formulation is valid for a surface undergoing arbitrary
motion with respect to a body frame of reference which is in uniform translation with
respect to the undisturbed air. For linear problems, the integral equation yields the velocity
potential from the normal component of the velocity on the body, which is known from
the boundary conditions, and the potential discontinuity across the wake known from the
preceding time history. For non-linear (transonic) flows, the solution depends also upon
the non-linear terms in the field. The formulation was further developed and has been
validated for the case of airplanes at subsonic, transonic, and supersonic speeds. Given
the scope of this paper, a review of the development of boundary integral formulations
for potential aerodynamics is not attempted here: for this, the reader is referred to the
paper by Morino and Tseng [14], Morino and Gennaretti [15], and Morino [16]. It suffices
to say that the formulation for frames of reference in arbitrary motion used here is an
evolution of past work of the authors ([17–22]).

Similarly, a review of the development of boundary integral formulations for
aeroacoustics is not attempted here; extensive presentations of several aeroacoustic
formulations have been given in Lyrintzis [4], and Brentner and Farassat [23]. The present
boundary integral formulation is closely related to those commonly used in aeroacoustics
for the evaluation of the acoustic field. The novelty is in the fact that, as mentioned above,
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the unknown is the velocity potential, instead of the acoustic pressure or related quantities.
On the other hand, the type of integral equation that is used is fully equivalent to those
developed by Lighthill [24], Ffowcs Williams and Hawkings [1], and Farassat [2]. Indeed,
in reference [21], a more general boundary integral representation is presented, which
includes as particular cases the one presented here and those of Ffowcs Williams and
Hawkings [1] and Farassat [2].

It should be emphasized that the numerical validation presented here is limited to
subsonic flows with negligible BVI effects (the BVI effects require a free-wake analysis
which is not included in the present results; however, the formulation itself does not
preclude such possibility; see e.g., reference [17]). Thus, the emphasis in this paper is on
the linear analysis. However, one important motivation for this work is the possibility of
extending the approach to non-linear problems (for which preliminary numerical results
exist, as indicated later in this section). Because the formulation is fully non-linear, it may
be used for the solution of two important problems in rotor aerodynamics/aeroacoustics:
(i) the analysis of rotors in transonic flow regimes, where non-negligible non-linear terms
appear in the differential equation for the potential (preliminary numerical aerodynamic-
aeroacoustic results for transonic rotors in hover have been presented by Gennaretti,
Iemma and Morino [25]), and (ii) the analysis of configurations where BVI effects occur,
in which the evaluation of the highly distorted wake geometry is required (for free-wake
analysis results in incompressible flow; see reference [17]). Therefore, the fully non-linear
differential formulation for the potential is outlined, but only to the extent necessary to
illustrate the above point.

Specifically, the exact (non-linear) differential formulation for potential aerodynamics
and aeroacoustics is presented in section 2. The boundary-integral formulation for the
linearized problem is presented in section 3. In order to validate the formulation, in section
4 the present aerodynamic and aeroacoustic results are compared with existing
experimental and numerical results for rotors in hover and forward flight in subsonic flows
with moderate BVI effects.

Finally, concluding remarks are given in section 5. This paper is based on the doctoral
thesis of Gennaretti [22]; the theoretical formulation was jointly developed by Gennaretti
and Morino; Gennaretti and Luceri are responsible for the numerical validation.

2. FORMULATION FOR QUASI-POTENTIAL FLOWS

It is known that the forces acting on an object in steady potential flows are zero
(d’Alembert paradox). This problem is resolved by allowing the flow to have a
discontinuity on the potential (which implies the existence of a vortex layer in the field).
In order to emphasize this fact, those flows which are potential everywhere except on zero
thickness layers are here denoted by ‘‘quasi-potential’’ (this terminology is inspired by
Chorin and Marsden [26], who define as ‘‘almost potential’’ those flows that are potential
outside thin layers).

The formulation for quasi-potential flows (in particular, the issue of potential flow wakes
and the corresponding boundary conditions) is not necessarily well known to the
aeroacoustics community, where the formulation is usually cast in terms of acoustic
pressure. Thus, for the sake of clarity and completeness, and in order to show the capability
of the approach presented to provide a unified aerodynamic/aeroacoustic formulation also
for non-linear problems, in this section the differential formulation for compressible
quasi-potential flows, including all the non-linear terms that appear in the formulation, is
outlined. The assumptions for a theory of compressible quasi-potential flows are that the
flow be inviscid, non-conducting, shock-free, as well as initially homentropic and initially



.   .470

irrotational (e.g., initially in dynamic and thermodynamic equilibrium). These assumptions
are introduced below, as necessary.

The governing equations for inviscid, non-conducting, shock-free flows are the
continuity equation, the Euler equation, and the entropy-evolution equation, DS/Dt=0
(where D/Dt denotes the substantial derivative). This last equation, combined with the
assumptions of initially homentropic flow, implies that the flow is isentropic (i.e.,
homentropic at all times). Therefore, the relationship dh=dp/r+T dS (with h denoting
the enthalpy) reduces to dh=dp/r. Hence, for compressible inviscid isentropic flows the
acceleration is irrotational and Kelvin’s theorem is valid. Thus, the assumption of initially
irrotational flow implies that the flow remains irrotational at all times, except for the points
of the wake to which Kelvin’s theorem in not applicable (see section 2.2). Therefore, except
for the wake points, the velocity may be expressed in terms of the velocity potential, 8,
as v=98. As a consequence, excluding the wake points, the Euler equation has a first
integral, i.e., Bernoulli’s theorem which, in the frame of reference connected with the
undisturbed air (air frame), where va =0, reads

18/1t+ 1
2v

2 + h= ha, (1)

with v= >v>.

2.1.     

Note that for isentropic flows r= r(p) and dp/r=dh: hence, the continuity equation,
r9 · v+Dr/Dt=0, may be written as 928+ a−2 Dh/Dt=0, where a2 = (1p/1r) =S.
Combining this with equation (1) yields

928=(1/a2)/(D/Dt)(18/1t+ 1
2v

2). (2)

Equation (2) contains two unknowns, 8 and a. A relationship between a and 8 exists if
the air is assumed to be an ideal gas with a constant specific heat coefficient. In this
case, one has h= gp/(g−1)r and p/pa =(r/ra)g, where g denotes the specific heat
ratio (isentropic law); hence, a2 = gp/r=(g−1)h. Thus, Bernoulli’s theorem yields
a2 = c2 − (g−1)(8� + v2/2), where c= aa denotes the undisturbed speed of sound and
8� = 18/1t. Eliminating a between this equation and equation (2) one obtains a differential
equation in which the only unknown is the velocity potential, 8. This equation may be
rewritten in a form suitable for a boundary integral formulation, by moving all the linear
terms to the left side of the equation and all the non-linear terms to the right side. This
yields

−q28=928−(1/c2)/(128/1t2)= s, (3)

where s=[(c2 − a2)928+2v · v̇+ v · 9v2/2]/c2 denotes all the non-linear terms, which are
important only in the transonic region (and hence neglected in the following sections).

2.2.  

In order to complete the problem, the boundary conditions are needed. In the air frame
of reference used here, the boundary condition at infinity is given by 8=0. Also, as to
the presence of a body, it is typically assumed that its surface, SB be impermeable; hence,
the boundary condition on a point of SB is (v− vB ) · n=0, or

18/1n= vB · n, x$SB , (4)

where vB is the velocity of the point x on the surface of the body SB (more general
boundary conditions, such as prescribed through-flow at a nacelle inlet, may be
implemented by
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adding the flux-term on the right side of equation (4); a similar term arises if one uses the
transpiration-velocity formulation by Lighthill [27] to include the boundary-layer effects).

In addition, for quasi-potential flows, the issue of the wake and trailing-edge boundary
conditions needs to be addressed. A detailed analysis of this is given in references [14–16].
Here, it suffices to note that the proof that an inviscid isentropic initially irrotational flow
remains irrotational at all times fails for the fluid points that come in contact with the
surface of the body, because Kelvin’s theorem is not applicable in this case (since contours
surrounding these points do not remain in the fluid volume at all times). These points form
a surface called the wake which, in general, is a surface of discontinuity for the potential.
There exist two types of surfaces of discontinuity, shock waves and wakes; wakes are
defined as surfaces of discontinuity in which DvN =0 (where vN = v · n is the component
of the velocity normal to the surface of discontinuity and Df= f2 − f1 indicates the
discontinuity across the surface), whereas shock waves are defined to be surfaces of
discontinuity in which DvN $ 0. Hence, the boundary conditions for the wake may be
obtained from the conservation principles across a surface of discontinuity. Combining the
principle of conservation of mass, D[r(vN − vW )]=0 (where vW is the speed of the wake
surface, by definition in the direction of the normal n), with DvN =0 yields Dr=0. Also,
the principle of conservation of momentum, D[r(vN − vW )v+ pn]=0, yields

Dp=0 (5)

and r(vN − vW )Dv=0. Since Dv$ 0 (otherwise there exists no discontinuity at all), one
obtains vN = vW , which indicates that the fluid does not penetrate the surface of the wake.
This fact implies that the above result of isentropic flow is valid as well in the presence
of the wake (alternatively, Dr=0 and Dp=0 imply DS=0). Hence, repeating the
considerations presented above, one obtains that the flow remains irrotational everywhere
except for the wake points.

Next, consider the wake boundary conditions for quasi-potential flows; DvN =0 implies

D(18/1n)=0. (6)

In order to obtain a boundary condition for the potential discontinuity D8, one notes that
Dr=0 and Dp=0 imply Dh=0. Combining this with Bernoulli’s theorem (equation (1)),
one obtains 8� 2 −8� 1 + (v2

2 − v2
1 )/2=0, where 1 and 2 denote the two sides of the wake.

Then, noting that v2
2 − v2

1 = (v2 + v1) · (v2 − v1), one has

(DW /Dt)D8=0, (7)

where DW /Dt= 1/1t+ vW · 9 denotes the substantial derivative following a wake point
xW , which is defined as a point having velocity vW =(v1 + v2)/2. Equation (7) is the desired
evolution equation for D8 and implies that D8 remains constant following a wake point
xW , and equal to the value it had when xW left the trailing edge. This value may be obtained
by imposing that concentrated vortices do not exist at the trailing edge; the implication
of this assumption is that

lim
x2:xTE

8− lim
x1:xTE

8= lim
xW:xTE

D8, (8)

where x1 and x2 are two points on opposite sides of the body surface (see reference [16]
for a more detailed discussion of this point).

Finally, it should be noted that, for quasi-potential flows, the above formulation governs
both aerodynamic and aeroacoustics: indeed, in both cases the objective of the analysis
is the evaluation of the pressure (on the boundary surface in aerodynamics and in the field
in aeroacoustics). It should also be emphasized that the above formulation (exact, in that
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all the non-linear effects are included) is cast in terms of only one unknown, the velocity
potential. As mentioned above, the same is not true for the formulation in terms of the
acoustic pressure, because in this case, even for potential flows, the non-linear terms
depends both on the acoustic pressure and on the velocity field (see, e.g., the expression
of the Lighthill stress tensor in reference [24]).

3. BOUNDARY INTEGRAL FORMULATION

In this section the boundary integral formulation for the solution of the velocity
potential field is presented, when the fluid is perturbed by the presence of a lifting body
in arbitrary rigid-body motion. One assumes that the flow remains subsonic at all times
and that the non-linear term s in equation (3) is negligible. Hence, the solution is
determined from the homogeneous wave equation for the potential.

Now consider two disjoint closed rigid surfaces SB and S'W surrounding, respectively,
the volume DB occupied by the body and the volume DW occupied by a thin fluid region
containing the wake surface, SW , (see Figure 1), which is assumed to be time independent
in an appropriate frame of reference (e.g., the rotor frame for the hover case, or the air
frame in the forward case, see section 3.2).

In order to derive an integral representation for the linear form of equation (3), it is
convenient to recast it into an equivalent infinite-space problem. To this end, a domain
function E(x, t) is introduced, defined as E=1 in V=R3�D, where D=DB *DW , and
E=0 otherwise. Consider also the function 8
 (x, t)=E(x, t)8(x, t). Then, the original
problem (equation 3), with s=0, may be replaced by the following infinite-space problem:

−q28
 =9E · 98+9 · (89E)−
1
c2 $1E

1t
18

1t
+

1

1t 08 1E
1t1%. (9)

Upon applying the boundary integral method, the formal solution of equation (9) is found
to be

E(x, t)8(x, t)=g
a

−a gR3

G9E · 98 dy dt+g
a

−a gR3

9 · (89E)G dy dt

−
1
c2 g

a

−a gR3

G
1E
1t

18

1t
dy dt−

1
c2 g

a

−a gR3

1

1t 08 1E
1t1G dy dt, (10)

where G is the fundamental solution of the wave equation, given by

G(y− x, t− t)= (−1/4pr)d(t− t+ r/c), (11)

Figure 1. 2-D sketch representing body surface, SB , body volume, DB , wake surface, SW , and surface S'W
surrounding the volume DW occupied by a thin fluid region containing the wake.
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where r= >y− x>, d denotes the Dirac delta function, and x and t are observer location
and time in the air frame of reference, whereas y and t are source location and time also
in the air frame of reference.

Next, note that the integrals in equation (10) contain two Dirac delta functions, one
stemming from the derivatives of E, and the other from the expression for G. In order
to perform the integrations, note that DB +DW = 9 implies E=EBEW , where EB =1 in
R3�DB and EB =0 in DB (similarly for the wake); hence, using properties of the Dirac delta
function, one has 9E=9EB +9EW and 1E/1t= 1EB /1t+ 1EW /1t. Thus, the contri-
butions from body and wake decouple and equation (10) may be written in the symbolic
form

E(x, t)8(x, t)= IB + IW , (12)

where IB and IW represent integral contributions of the body and wake surface, respectively.
Thus, each contribution may be evaluated in the most convenient frame of reference.

For instance, for IB one may choose a frame of reference fixed with the body volume, DB ,
where EB is not a function of time.

3.1.  

In order to derive an expression for the integral contributions from the body that is more
suitable for applications, let x
 and t
 (with t
 0 t) denote space and time variables in the
space rigidly connected with DB (body space), and let x= xx (x̌, t
 ) be the transformation
relating the two spaces.

Then, observe that for any differentiable function f, one has

1/1t= 1/1t
 − vR · 9:=d/dt
 , (13)

where vR (x̌, t
 )= 1xx (x̌, t
 )/1t
 denotes the velocity of a point x̌ of the body space with respect
to air space.

Next, recall that, for any h and g,

g
a

−a

h(t)d[g(t)] dt= s
k $ h(t)

=ġ(t) =%t= tk

= s
k g

a

−a

h(t)
=ġ(t) = d(t− tk ) dt, (14)

where tk are the roots of g(t)=0. In our case, from equation (11) one has, in the body
space, g= g(ť)= ť− t
 + >xx (y̌, ť)− xx (x̌, t
 )>/c, and hence ġ=1+Mr, with Mr = r · vR /
rc, where r= xx (y̌, ť)− xx (x̌, t
 ) (akin to the air frame of reference, y̌ and ť denote source
location and time in the body frame of reference).

As mentioned above, here the cases are limited to subsonic flow, and hence the equation
g=0 has only one root, which one denotes with t
 − u. Thus, combining the above
expressions with equation (10) and performing an integration by parts over the second and
fourth integral on the right hand side (with 8=0 at infinity and zero initial conditions),
and taking advantage of the fact that 9 · vR =0 (since vR is the velocity of a point of the
body space with respect to the undisturbed air, i.e., a velocity corresponding to a
rigid-body motion), one obtains

IB (x̌, t
 )=g
a

−a gR3

G
 9EB · 98 dy̌ dť−g
a

−a gR3

89EB · 9G
 dy̌ dť

−
1
c2 g

a

−a gR3

G

dEB

dť

d8

dť
dy̌ dť+

1
c2 g

a

−a gR3

8
dEB

dť

dG

dť

dy̌ dť, (15)
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where

G
 (y̌, x̌, ť, t
 )=G
 0d(ť− t
 + u), (16)

with

G
 0 = (−1/4p)[1/r =1+Mr =]ť= t
 − u . (17)

Next, note that

9G
 =9G
 0d(ť− t
 + u)+G
 0d� (ť− t
 + u)9u (18)

and

1G
 /1ť=G
 0d� (ť− t
 + u). (19)

Also, note that if (as in the present case) DB is time independent, then 1EB /1t
 =0. Hence,
for any a(x̌, t
 ),

g
a

−a gR3

a · 9EBd[t
 − t
 0(x̌)] dx̌ dt
 =gSB

[a · n]t
 = t
 0 dS. (20)

Furthermore, for any f(x̌, t
 ),

g
a

−a gR3

f
dEB

dt
d[t
 − t
 0(x̌)] dx̌ dt
 =−gSB

[ fvR · n]t
 = t
 0 dS. (21)

Hence, recalling that fa

−a f(t)d� (t) dt=−f� (0), and combining equations (18), (19), (20),
and (21) with equation (15), one obtains

IB (x̌, t
 )=gSB
$18

1ñ
G
 0 −8

1G
 0

1ñ %ť= t
 − u

dS+gSB
$G
 0

18

1ť 01u

1ñ
+2

vR · n

c2 1%ť= t
 − u

dS

+
1
c2 gSB

$8G
 0
1

1ť
[vR · n(1− vR · 9u)]%ť= t
 − u

dS, (22)

where

1

1ñ
=

1

1n
−

1
c2 vR · n vR · 9. (23)

3.2.  

Note that for airplanes in uniform translation and for helicoptor rotors in hover,
the wake surface may be assumed to be rigidly connected to the body. Whenever the
wake may be assumed to be fixed in the body frame, the formulation (used here for
the hover results) is relatively simple and is available in reference [14]; thus, for the
sake of conciseness, it is not discussed here. Here, the formulation for rotors in forward
flight is discussed, under the assumption that the motion of the wake surface with
respect to the air frame of reference is negligible (this assumption is also acceptable
for airplanes in maneuvering for which the present formulation is also applicable). (If
this were not true (e.g., in configurations where the BVI occurs), one would use a
generalization of the formulation to bodies that move in arbitrary (not rigid body)
motion. The formulation for deforming surfaces has been examined by Morino [13] for
translating frames of reference, and by Morino and Tseng [14] for frames of reference in
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arbitrary motion. An extension of these formulations was introduced by Gennaretti [22]
and is (i) compatible with the present formulation, (ii) applicable to N disjoint surfaces,
and (iii) capable of dealing with a deforming wake in a frame of reference different from
that of the corresponding blade.)

Under the assumption that the motion of the wake surface with respect to the air frame
of reference is negligible, the volume DW (see Figure 1) is fixed with respect to the air frame
of reference and one obtains 1EW /1t=0. Therefore, integrating by parts the second
integral in equation (10), and observing again that 8=0 at infinity, yields

IW (x, t)=−g
a

−a gS'W
018

1n
G−8

1G
1n1 dS dt, (24)

where S'W is the boundary of DW (i.e., a closed surface that surrounds the open wake surface
SW . Performing the limit as the two sides of S'W approach the wake surface, SW , (see
Figure 1) and using the first wake boundary condition, equation (6), one obtains

IW (x, t)=−g
a

−a gSW

D8
1G
1n

dS dt. (25)

In order to perform the time integration, it is convenient to introduce a system of
co-ordinates, l and a, over the surface of the wake as defined below. Having assumed that
the motion of the wake in the air frame of reference is negligible, one has that the wake
surface coincides with that swept by the trailing edge during its motion. Hence, it is
convenient (and legitimate) to identify one of the two co-ordinates with the arclength l

along the trailing edge (in other words, the lines l=constant identify the trajectory of a
trailing-edge point). Also, it is natural to identify the other co-ordinate, a, with the time
at which the trailing edge occupied that location. Next, consider the covariant base vectors
of the above coordinate system, al = 1x/1l and aa = 1x/1a. Note that, because of the
above choices made for the co-ordinates l and a, al = 1x/1l is the unit tangent to the
trailing edge at time t= a, whereas aa = 1x/1a is the velocity, vTE , of the trailing edge
point, also at time t= a. In this co-ordinate system, we have dS=za da dl with
za= >aa × al >= vn , where vn is the absolute value of the component of the velocity of
the trailing edge point in the direction of n (normal to the trailing edge in the tangent plane
of the wake).

Next, note that the wake surface grows progressively in time because of the sweeping
motion of the trailing edge. Hence, because of the fact that in compressible flows a signal
has a finite speed of propagation, a point x at time t will be influenced not by the entire
wake surface already generated at time t, but only by the points y that were present at
the retarded time t= t− u (with u a function of both x and y). As shown later, this yields
a line-integral contribution from the line separating the influencing and the non-influencing
portion of the wake (see Figure 2). In order to show this, one starts by noting that in
equation (24) the complete wake surface generated up to time t is included (including the
non-influencing portion of the wake). Correspondingly, the doublet intensity must be
defined as one which is equal to D8
 (a, l) on the portion of the wake already generated
at time t= t, and equal to zero otherwise (note that D8
 is time independent because of
equation (7)). In other words, noting that, by definition of a, the co-ordinate aTE (t) of the
trailing-edge at time t coincides with t, one has

D8(a, l, t)=D8
 (a, l)H(t− a) (26)

where H is the Heaviside function.
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Figure 2. Surface of integration S
 W and line of integration L
 W on the wake, for a control point, x, placed
on an advancing-rotor blade.

Combining equations (25) and (26), one has, setting a= t,

IW (x, t)=−g
a

−a g
l2

l1

D8
 H( f1)
1G0

1n
d( f2)vn da' dl dt

−g
a

−a g
l2

l1
g

a

0

D8
 H( f1)G0
1r
1n

d� ( f2)
vn

c
da' dl dt

=−g
l2

l1
g

a

0

D8
 H( f3)
1G0

1n
vn da' dl

+g
a

−a g
l2

l1
g

a

0

D8
 d(f1)G0
1r
1n

d( f2)
vn

c
da' dl dt, (27)

where G0 =−1/4pr, f1 = t− a', f2 = t− t+ r/c and f3 = f1 − f2 = t− r/c− a', whereas l1

and l2 denote the extremes of the trailing edge.

Figure 3. Pressure coefficient at section r/R=0·75 of the hovering BO-105 main rotor. ——, present results;
W, experimental results [28].
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Figure 4. Pressure coefficient at section r/R=0·97 of the hovering BO-105 main rotor. ——, present results;
W, experimental results [28].

In order to evaluate the last integral it is convenient to integrate first with respect to
t. Then, the integration with respect to the variable a' is performed by using equation (14)
with g(a')= a'− t+ r(a')/c. This yields

IW (x, t)=−gS
 W

D8

1G0

1n
dS+g

l2

l1
$D8
 G0

1
1+Mr

1r
1n

vn

c%a'= a0

dl, (28)

where S
 W is the portion of the wake influencing the potential at the point x at time t,
whereas a0(l, x, t) is defined implicitly by g(a0)=0, and

1+Mr = 1g/1a'=1+ r · vTE /rcq 0. (29)

In addition, the last integral is evaluated for a'= a0: i.e., on line L
 W which separates the
two regions of the wake (see Figure 2).

Figure 5. Acoustic signal of the hovering BO-105 main rotor, at observer located 2·3 m below the rotor disk
and at a distance of 3·4 m from the rotor axis. - - - - -, present results with Landgrebe wake model; — — —,
present results with helicoidal wake model; ——, experimental results [28].
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Figure 6. Acoustic signal of the hovering BO-105 main rotor, at observer located 2·3 m below the rotor disk
and at a distance of 4·0 m from the rotor axis. - - - - -, present results; ——, experimental results [28].

3.3.  

Equation (12), with IB expressed by equation (22) and IW by equation (28) is the
boundary integral representation (for the specific problem under consideration, i.e., rigid
body with a wake fixed in the air space) for the solution to linearized equation (3) (with
the initial conditions and infinity boundary condition defined above). If x tends to the
boundary, equation (12) yields a compatibility condition that must be satisfied by the
solution of the problem. In our case 18/1n is known from the boundary condition of
impermeability of the body surface, and therefore such a compatibility condition is an
integral equation for 8 on the boundary. Once 8 on the surface is known, 8 and hence
v may be evaluated anywhere in the field.

The numerical formulation utilized for the results is briefly outlined (for details on the
discretization, see reference [15]). The body and wake surfaces are divided into
quadrilateral elements and 8, 18/1ñ, 18/1t and D8 are assumed to be constant within each
element (zeroth order boundary element discretization). The resulting discretized equations

Figure 7. Acoustic signal of the hovering BO-105 main rotor, at observer located 2·3 m below the rotor disk
and at a distance of 4·826 m from the rotor axis. - - - -, present results; ——, experimental results [28].
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Figure 8. Convergence analysis for the acoustic signal of the hovering BO-105 main rotor, at observer located
2·3 m below the rotor disk and at a distance of 3·4 m from the rotor axis. - - - - -, N=2; – – –, N=3; — · — · —,
N=4; ——, N:a.

are satisfied at the centers of the elements (collocation method). The equations are
discretized in time (with piecewise linear interpolation). This yields a system of difference
equations, the solution of which is obtained step by step. The pressure at the centers of
the elements is evaluated from the solution of the potential field via the Bernoulli theorem,
by applying a central finite difference algorithm for the evaluation of the tangential
components of the velocity from the values of the potential, also at the centers of the
elements. The acoustic pressure is obtained by first evaluating the potential at observer
locations, and then applying the linearized Bernoulli theorem, with the velocity obtained
by finite differences, from the potential evaluated at appropriate points in the
neighbourhood of observer locations.

Figure 9. Convergence analysis for the acoustic signal of the hovering BO-105 main rotor, at observer located
2·3 m below the rotor disk and at a distance of 3·4 m from the rotor axis. Convergence rate of signals at three
different times: w, time/period=0·056; q, time/period=0·112, u, time/period=0·168.
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Figure 10. Pressure coefficient at section r/R=0·75 of the BO-105 main rotor at azimuthal position c=30°.
——, present results, W, experimental results [28].

3.4.      

It may be worth noting that the above formulation may be extended to the case on N
disjoint bodies (e.g., a helicopter main-rotor/tail-rotor/fuselage configuration), each
moving in arbitrary rigid-body motion, and M disjoint wake surfaces (each of which is
rigid in a suitable frame of reference). In this case,

E= tN+M
n=1 En ,

where

En (x)=0 if x$Dn , and En (x)=1 otherwise.

As mentioned above, the fact that the bodies are disjoint implies

9E= s
N+M

n=1

9En and 1E/1t= s
N+M

n=1

1En /1t.

Figure 11. Pressure coefficient at section r/R=0·75 of the BO-105 main rotor at azimuthal position c=120°.
——, present results, W, experimental results [28].
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Figure 12. Pressure coefficient at section r/R=0·75 of the BO-105 main rotor at azimuthal position c=210°.
——, present results, W, experimental results [28].

Thus, it is legitimate and convenient to evaluate each of these integrals in a frame of
reference fixed with the corresponding body (or wake), since, in such a frame of reference,
En is not a function of time. Thus, one has

E(x, t)8(x, t)= s
N+M

n=1

In , (30)

where In denotes the integral contribution from the nth body or wake (each expressed in
the most convenient frame of reference). As mentioned above, the formulation for
non-rigid surfaces has been presented by Gennaretti [22].

Figure 13. Pressure coefficient at section r/R=0·75 of the BO-105 main rotor at azimuthal position c=300°.
——, present results, W, experimental results [28].



1.0

1.0

–1.0

0.0
x /c

C
p 0.0

0.2 0.4 0.6 0.8

–0.5

0.5

1.0

1.0

–1.0

0.0
x /c

C
p 0.0

0.2 0.4 0.6 0.8

.   .482

Figure 14. Pressure coefficient at section r/R=0·97 of the BO-105 main rotor at azimuthal position c=30°.
——, present results, W, experimental results [28].

4. NUMERICAL RESULTS

In order to validate the boundary integral formulation presented above, in this section
some comparisons are presented between the present numerical results and experimental
data as well as numerical results available in the literature, for subsonic rotors in hover
and forward flight.

In the following, N1, N2, and NW define, respectively, the number of discretization
elements used chordwise, spanwise and along the wake. Furthermore, NS is the number
of wake spirals used to describe the wake geometry.

4.1.  

For the analysis of subsonic hovering rotors, the configuration analyzed at the DNW
under the experimental program within the HELINOISE project has been considered. As
reported in reference [28], in that experimental program, the rotor tested is a 40%
geometrically and dynamically scaled model of a four-bladed, hingeless BO-105 main
rotor. The rotor has a diameter of 4 m with a root cut-out of 0·35 m and a chord length

Figure 15. Pressure coefficient at section r/R=0·97 of the BO-105 main rotor at azimuthal position c=120°.
——, present results, W, experimental results [28].
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Figure 16. Pressure coefficient at section r/R=0·97 of the BO-105 main rotor at azimuthal position c=210°.
——, present results, W, experimental results [28].

of 0·121 m. The blades have −8° of linear twist, with a modified NACA 23012 profile,
and a coning angle of 2·5°. The nominal rotor operational speed is 1044 r.p.m. For the
hovering configuration the tip Mach number is MTIP =0·645. For the numerical
aerodynamic analysis the following discretization grid has been employed N1 =20,
N2 =14, and NW =60, with NS =5. In Figures 3 and 4 the pressure distributions computed
at the blade sections r/R=0·75 and r/R=0·97, respectively, are compared with
measurements [28]; the truncation of the plots near the trailing edge is due to the fact that
the pressure (evaluated according to the finite-difference algorithm discussed above) is
available only as shown. The agreement between the numerical results and the
experimental data is fairly good. For the same configuration the acoustic signal has also
been examined. Specifically, three observer locations have been considered, placed 2·3 m
below the rotor disk and located, respectively, at 3·4 m, 4 m, and 4·826 m from the rotor
axis. Figures 5, 6 and 7 depict, for the three observer locations, the comparison between
the measured acoustic signal and the computed acoustic signatures. In Figure 5, two
numerical results are shown: one has been obtained by using a simple helicoidal wake

Figure 17. Pressure coefficient at section r/R=0·97 of the BO-105 main rotor at azimuthal position c=300°.
——, present results, W, experimental results [28].
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Figure 18. Acoustic signal of the advancing BO-105 main rotor, at observer location xW =−4·01 m,
yW =−2·16 m, zW =−2·3 m. - - - - -, present results; ——, experimental results [28].

shape, whereas the other has been obtained (like the rest of the present results concerning
hovering configurations) by a wake shape model defined by Landgrebe [29], which is much
closer to the actual shape of a hovering rotor wake.

Furthermore, a convergence analysis has been considered. Figure 8 depicts the computed
signal at the first observer location (according to the Landgrebe wake model) for the three
discretizations corresponding to N=2, N=3, and N=4 (with N1 =N2 =4N, NW =20N
and NS =5), and the converged result for N:a. The latter has been obtained by
extrapolating linearly the computed signals. Indeed, Figure 9 (where computed signals

Figure 19. Acoustic signal of the advancing BO-105 main rotor, at observer location xW =−2·01 m,
yW =−2·7 m, zW =−2·3 m. - - - - -, present results; ——, experimental results [28].
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Figure 20. Acoustic signal of the advancing BO-105 main rotor, at observer location xW =−2·01 m,
yW =0·0 m, zW =−2·3 m. - - - - -, present results; ——, experimental results [28].

at three different times are plotted as a function of the inverse of N as defined above) shows
a linear convergence rate that yields the converged solution for 1/N=0. Note that the
acoustic results presented in Figures 5, 6 and 7 for the hovering configuration have to be
considered converged solutions obtained by this approach.

Observing the figures described above, it is possible to note the capability of the
formulation presented to predict with acceptable accuracy the aerodynamic solution as
well as the acoustic one. Furthermore, Figure 5 demonstrates the importance of the wake

Figure 21. Convergence analysis for the acoustic signal of the advancing UH-1H rotor, at observer location
xW =0·407 m, yW =−0·675 m, zW =−0·716 m. - - - - -, N=8; – – –, N=10; — · — · —, N=12; ——, N:a.
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Figure 22. Convergence analysis for the acoustic signal of the advancing UH-1H rotor, at observer location
xW =0·407 m, yW =−0·675 m, zW =−0·716 m. Convergence rate of signals at three different times: w,
time/period=0·11; u, time/period=0·22; q, time/period=0·33.

geometry employed in the potential solution in the case of hovering rotors, where the wake
generated remains in the vicinity of the rotor, and hence has a strong effect on the
aerodynamic field around the blades. Finally, considering the computational cost, note
that in order to obtain the results shown in Figures 3 and 4, the CPU time required was
of about 20 minutes on an IBM workstation RS 6000 model 360 with a 32Mb RAM.

4.2.  

For the case of rotors in forward flight, we have analyzed a test case studied in reference
[28] as well as one of the cases studied by Brentner [30].

For the problem of the BO-105 main-rotor studied by reference [28] (see the description
above) one considers here the case in ascent forward flight, with an effective tip-path-plane
angle a'TPP =−14·63°, advance ratio m=0·148, hovering hip Mach number MTIP =0·645,
and feathering motion (see reference [28]). Figures 10, 11, 12 and 13 show the comparison

Figure 23. Acoustic signal of the advancing UH-1H rotor, at observer location xW =0·407 m, yW =−0·675 m,
zW =−0·716 m. ——, present results, - - - - -, numerical results of reference [30].
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between the measured pressure distributions and those calculated by the present
methodology at the radial section r/R=0·75, at the blade azimuthal positions c=30°,
c=120°, c=210°, and c=300°, respectively. The numerical results have been obtained
by the following discretization grid: N1 =15, N2 =16, and NW =48, with NS =2. The
agreement between the numerical and the experimental data is satisfactory and is of the
same level of accuracy as that presented for the hover test case. This proves the capability
of the formulation to capture the unsteady effects in the forward flight configuration that
are not present in the hovering one. A similar comparison, for the pressure distribution
on the radial section r/R=0·97, is illustrated in Figures 14, 15, 16 and 17. Also in this
case, the agreement between the experimental data and the numerical results is as
satifactory as that obtained in the hover configuration. The simplifying assumption of
undeformed wake (introduced in section 3.2) appears to be acceptable for aerodynamic
analysis; this is not surprising, since for rotors in ascent forward flight the wake rapidly
moves away from the blade and BVI effects on aerodynamics are negligible (as mentioned
above, they can be accurately predicted only if a free-wake analysis is performed).
Nonetheless, moderate BVI effects are observable in the acoustic signal measurements.
Indeed, for the same rotor configuration, the acoustic signal was also computed at three
observer positions. In the wind tunnel frame of reference (with co-ordinates denoted by
xW , yW , zW , with origin located at the hub and xW-axis in the direction of undisturbed flow
and zW-axis opposite to the direction of gravity) the first observer is located at
xW =−4·01 m, yW =−2·16 m, zW =−2·3 m, the second observer is located at
xW =−2·01 m, yW =−2·7 m, zW =−2·3 m, whereas the third one is located at
xW =−2·01 m, yW =0·0 m, zW =−2·3 m. The comparisons between measured acoustic
signals and calculated acoustic signals in the positions mentioned above are shown in
Figures 18–20, and demonstrate a good agreement for blade-passage frequency signals,
whereas higher harmonics (see Figure 18) are not correctly captured; this is to be expected,
because the BVI effects (moderately present in this case) cannot be captured with the simple
undeformed wake geometry used in this analysis (as mentioned above this requires the use
of a free-wake analysis not included in this work).

Finally, one of the forward-flight cases studied by Brentner [30] has been considered.
It consists of the articulated UH-1H rotor with an angle of attack of the rotor shaft
aF =−8°, advance ratio m=0·124, and both flapping and feathering motions (see
reference [30]). For this configuration a convergence analysis has been performed.
Considering the acoustic signal calculated at xW =0·407 m, yW =−0·675 m,
zW =−0·716 m, for N1 =N2 =N, NW =12N and NS =2, Figures 21 and 22 depict,
respectively, time history and convergence rate with N=8, 10, 12, and the converged
solution for N:a. Similarly to the hovering-case analysis, the rate of convergence is linear
as well, and converged results are obtained by a linear extrapolation law. These are
compared in Figure 23 with the acoustic-pressure time history computed by Brentner [30].
The two numerical results appear to be in a good agreement, confirming the capability
of the presented formulation to capture the aerodynamic/aeroacoustic solution for rotors
in forward flight.

5. CONCLUDING REMARKS

A boundary integral formulation for the unified aerodynamic and aeroacoustic analysis
of rigid lifting bodies in arbitrary motion has been presented.

Numerical results concerning hovering and advancing rotor configurations have been
presented in order to demonstrate the capability of the methodology to capture
aerodynamic and aeroacoustic solutions. For subsonic-flow rotors in hover and forward
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flight, the comparison with existing numerical results and available experimental data has
shown a satisfactory agreement for both the aerodynamic and the aeroacoustic solutions.

As noted above, a considerable improvement in the results is obtained by using the
Landgrebe [29] wake geometry, instead of the helicoidal one. It appears desirable to use
a wake geometry obtained from a free-wake analysis. Such a methodology is not available
for compressible flows (although the wake geometry obtained from the incompressible
free-wake analysis of reference [17] could be used on the basis of the experimental results
showing that the wake geometry is not strongly affected by the compressibility). Also, the
use of a wake geometry from a free-wake analysis appears essential for advancing rotor
configurations with lower values of the tip-path-plane angle, where the wake and the rotor
are very close (BVI problem). Indeed, an accurate prediction of the wake vorticity location
is the main feature in a BVI analysis, and may be determined by the present formulation
considering the wake shape as part of the solution (free-wake analysis, see reference [17]).
This work is currently under development, along with that on transonic flows for hover
and forward flight where the contribution of non-linear terms becomes essential and
generates the characteristic high-speed impulsive noise.
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