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Theoretical and numerical analyses and some observations on the physical phenomena
of free vibration of solid cylinders having square and hexagonal cross-sections with
combinations of fixed and free ends are reported. The formulation is established based on
the linear, small-strain, three-dimensional elasticity principle, and the p-Ritz method is
employed for computing the solution of the problem. By expanding the displacements in
spatial co-ordinates, integral expressions for strain and kinetic energies in a
three-dimensional setting are derived in Cartesian form. Sets of one- and two-dimensional
orthogonal polynomials are constructed to represent the three-dimensional variations in the
longitudinal and lateral surface directions. A basic function is introduced in these
polynomials to cater for the stress free lateral surfaces and the kinematic constraints at both
ends. Several examples are solved to demonstrate the applicability of the method. First
known results in terms of vibration frequency parameters and mode shapes of cylinders
having square and hexagonal cross-sections for various symmetry classes and end
constraints are presented and the physics behind the results is highlighted. These new results
may serve as benchmark data for future research development in simplified beam theories.
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1. INTRODUCTION

The mathematical and computational complexities in three-dimensional modelling of solid
cylinders of polygonal cross-section have led to the development of simple refined beam
theories [1, 2]. It is well known that certain limitations exist in any simplified beam theories;
therefore, an exact three-dimensional solution of this problem is always necessary for
checking and defining the limitations and accuracies of these theories.

Contemporary engineering practice demands highly accurate engineering prediction of
the dynamic behaviour of high speed mechanisms. This replaces the use of unrealistic
safety factors. The most direct approach to accurate frequency solutions, however, is to
base the analysis on exact three-dimensional linear elasticity theory. This is more attainable
nowadays due to the rapid advancement in computer hardware technology. Researchers
have at their disposal a much wider array of mathematical tools and numerical processors
for developing computational models that are closer to the true dynamic behaviour of
structures in three dimensions. The aim of this study is to develop one such model
specifically for the accurate vibration study of solid cylinders with polygonal cross-sections.

Several researchers have attempted to provide frequency results based on the
three-dimensional elasticity approach. Different types of series functions have also been
proposed to approximate the displacement variations in three dimensions. Hutchinson [3]
proposed a formulation that works well with the Bessel series function for the analysis of
stress free circular cylinders. His work was further extended to study the free vibration of
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rectangular parallelepipeds and beams of rectangular cross-section [4, 5]. Simple
polynomial functions have been employed by Leissa and Zhang [6] to analyze the
three-dimensional vibration of cantilevered parallelepipeds. The simple polynomials used
in their analysis were constructed specifically to satisfy only the cantilevered boundaries
of the rectangular elastic solid. These series functions have proven to be effective for the
specific purpose; however, extrapolation to more general cases may not be feasible. To
make possible the analysis of a wider class of three-dimensional elastic solids, it is
imperative to devise displacement functions that can efficiently accommodate the
geometric complexity of the three-dimensional analysis [7–10]. It is toward this end that
the current research is initiated.

In this paper, the detailed formulation of the three-dimensional linear elasticity solutions
for the free vibration of elastic solid cylinders of polygonal cross-section is discussed. In
the numerical implementation, the p-Ritz method [7–10] is employed, in which the
polynomial-based displacement functions are uniquely constructed from sets of one- and
two-dimensional orthogonal polynomials. The one-dimensional polynomial expansion
approximates the displacement variations in the longitudinal direction [7]. The
two-dimensional polynomial series, on the other hand, represents the lateral surface
variations of the elastic cylinder in the Cartesian frame [8–10]. Basic functions are
introduced in these polynomials with which to account for the stress free lateral surfaces
and to satisfy the kinematic constraints at both ends of the elastic cylinders. The accuracy
of these polynomials in the present three-dimensional p-Ritz formulation is established
through convergence and comparison studies.

The primary objectives of this paper are (1) to present a detailed formulation of the
polynomial-based, three-dimensional, linear elastic solution approach for free vibration
problems, (2) to supplement the existing literature with new free vibration data of elastic
solid cylinders, and (3) to provide possible benchmarking reference for research
development in simplified beam theories.

2. MATHEMATICAL FORMULATION

2.1.  

The geometric configuration of a solid cylinder of polygonal shape, as shown in Figure 1,
is defined in a right-handed Cartesian co-ordinated system (x1 , x2 , x3 ). The cross-section
of the cylinder is denoted by a in the x1 direction and b in the x2 direction. The cylinder
is of finite length L. In general, the spatial displacement field is resolved into u1 , u2 in the
lateral direction and u3 in the longitudinal direction, respectively. The energy functional
is expressed in terms of u1 , u2 and u3 components. The aim of this study is to determine
the vibration frequencies and three-dimensional displacement mode shapes of cylinders
with combinations of free and clamped (fixed) ends.

2.2.    

With o= {oij }, i, j=1, 2, 3 and s= {sij }, i, j=1, 2, 3 denoting the strain and stress
tensors, the strain energy, U, can be expressed as

U=
1
2 gggV

sTo dV (1)

where the integration is performed over the volume of cylinder.
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Figure 1. Geometry and dimensions of an elastic solid polygonal cylinder.

The constitutive relationship between the stress and strain is given by

s=Do (2)

in which D is the compliance matrix.
For a three-dimensional transversely isotropic elastic solid, equation (2) can be written

in full as
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s12 d44 0 0 o12

s23 Sym d55 0 o23

s13 d66 o13

where sii , i=1, 2, 3 are the normal stresses, s12 , s23 , s13 are the tangential stresses and oij

are the corresponding strain components.
For isotropic materials, the components dij are given by

dii = g+2G, i=1, 2, 3, d12 = d13 = d23 = g, dii =2G, i=4, 5, 6, (4a–c)

where the Lamé constant g and shear modulus G are defined as

g= nE/[(1+ n)(1−2n)], G=E/2(1+ n), (5a,b)

in which E is the modulus of elasticity and n is the Poisson ratio.
In general, the linear strain components can be defined as

oii = 1ui /1xi , i=1, 2, 3, o1i = 1u1 /1xi + 1ui /1x1 , i=2, 3, o23 = 1u2 /1x3 + 1u3 /1x2 .

(6a–c)
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Upon substituting equations (2)–(6) into equation (1), the strain energy becomes

U=
1
2 gggV 6g0s

3

i=1

ui,i1
2

+2G0s
3

i=1

u2
i,i1

+G[(u1,2 + u2,1 )2 + (u2,3 + u3,2 )2 + (u1,3 + u3,1 )2]7 dV, (7)

in which the comma denotes partial differentiation.
The kinetic energy for the solid cylinder can be expressed as

T=
r

2 gggV 601u1

1t 1
2

+01u2

1t 1
2

+01u3

1t 1
2

7 dV, (8)

where r is the mass per unit volume.
The periodic displacement components, for simple harmonic motion, can be expressed

in term of displacement amplitude functions,

ui =Ui (x1 , x2 , x3 ) eivt, i=1, 2, 3 (9)

where v is the angular frequency of vibration.
The maximum strain energy Umax and kinetic energy Tmax of the solid cylinder are

obtained from equations (7)–(9) by eliminating the periodic elements and replacing the
displacement components by the corresponding amplitude functions.

3. METHOD OF SOLUTION

3.1.   

The assumed spatial displacement field is based on a separate assumption for the
Ui (x1 , x2 , x3 ), and each of them is expressed as a summation of a series of terms which
are products of one-dimensional functions cn (x3 ) in the longitudinal direction and
two-dimensional functions fm (x1 , x2 ) for the cross-section. The displacement field is
therefore given by

Ui (x1 , x2 , x3 )= s
M

m=1

s
N

n=1

ci
mn

ifm (x1 , x2 )icn (x3 ), i=1, 2, 3, (10)

where ci
mn are the unknown coefficients.

The one-dimensional longitudinal function cn (x3 ) is generated orthogonally through a
recurrence process [7].

For Ck (x3 )${ick (x3 ), i=1, 2, 3}, the orthogonalization process gives

Ck+1 (x3 )= {f(x3 )−J1
k }Ck (x3 )−J2

k Ck−1 (x3 ), k=1, 2, 3, . . . , (11)



    509

where

J1
i = 1Dk /2Dk , J2

i = 2Dk /3Dk−1 , (12a)

1Dk =g
L/2

−L/2

f(x3 )C2
k (x3 ) dx3 , 2Dk =g

L/2

−L/2

C2
k (x3 ) dx3 ,

3Dk−1 =g
L/2

−L/2

C2
k−1 (x3 ) dx3 , (12b–d)

in which C0 (x3 )=0 and f(x3 ) is the generating function that can be arbitrary chosen but
with the higher polynomial series satisfies the essential geometric boundary conditions.

It should be noted that the functions generated satisfy the orthogonality condition

g
L/2

−L/2

Cm (x3 )Cn (x3 ) dx3 = nij dij , (13)

where dij is the Kronecker delta and the values of nij are assigned during the normalization
process.

The two-dimensional cross-sectional function fm (x1 , x2 ) is generated through a
recursive relation. The function is formed of the product of a two-dimensional polynomial
space and a basic function [8–10]. The details are as follows.

For Fk (x1 , x2 )${ifk (x1 , x2 ); i=1, 2, 3}, the recurrence process gives

Fk (x1 , x2 )= gk (x1 , x2 )F1 (x1 , x2 )− s
k−1

j=1

UjkFj (x1 , x2 ), (14)

where

Ujk = 1&jk /2&j , (15a)

1&jk =ggA

gk (x1 , x2 )F1 (x1 , x2 )Fj (x1 , x2 ) dx1 dx2 , (15b)

2&j =ggA

F2
j (x1 , x2 ) dx1 dx2 , (15c)

in which the limit of the double integral, A, represents the surface area of the cross-section
of the cylinder.

The generating functions are generated according to the procedure

s
m

k=1

gk (x1 , x2 )= s
p

q=0

s
q

l=0

x2(q− l)
1 x2l

2 , (16)

in which the total number of terms, m is related to p by

m=(p+1)(p+2)/2. (17)
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Similarly the two-dimensional functions satisfy the orthogonality condition

ggA

Fm (x1 , x2 )Fn (x1 , x2 ) dx1 dx2 = nij dij , (18)

where dij and nij have been defined earlier.
In the above formulation, two basic (starting) functions are needed. One is for the

longitudinal direction and the other for the cross-section surfaces. These functions are
generated to satisfy the essential boundary conditions.

The geometric and natural boundary conditions of the ends of the cylinder are (1) stress
free, s13 = s23 = s33 =0 (no geometric boundary condition), and (2) clamped (fixed),
u1 = u2 = u3 =0 (only geometric boundary conditions). Now a basic function is
constructed to satisfy only the geometric boundary conditions (since they are the only
criteria of the Ritz method). Therefore the basic function in the longitudinal direction is
constructed by the products of the respective boundary equation at each end,

ca1 (x3 )= (x3 −L/2)w· a1(x3 +L/2)w· a2, (19)

in which for the in-plane directions (U1 and U2 ), the value of w· takes on 0 for stress free,
and 1 for clamped (fixed). However, for the longitudinal direction (U3 ), w· takes on 0 for
stress free, and 1 for clamped (fixed) ends.

The basic function for the cross-section must satisfy the stress free conditions at the
lateral surfaces: snn = snt = sn3 =0. For a symmetric cylinder, the modes can be classified
into four symmetry classes: double-symmetry (SS), symmetry–antisymmetry (SA),
antisymmetry–symmetry (AS), and double-antisymmetry (AA), about the x1x3- and
x2x3-planes, respectively.

The basic functions that satisfy the essential geometric boundary conditions of different
symmetry classes are as follows: (a) for the double-symmetry mode (SS), if1 (x1 , x2 ) are
given by

1f1 (x1 , x2 )= x1 , 2f2 (x1 , x2 )= x2 , 3f1 (x1 , x2 )=1; (20a–c)

(b) for the symmetry–antisymmetry mode (AS), if1 (x1 , x2 ) are given by

1f1 (x1 , x2 )= x1x2 , 2f1 (x1 , x2 )=1, 3f1 (x1 , x2 )= x2 ; (21a–c)

(c) for the antisymmetry–symmetry mode (SA), if1 (x1 , x2 ) are given by

1f1 (x1 , x2 )=1, 2f1 (x1 , x2 )= x1x2 , 3f1 (x1 , x2 )= x1; (22a–c)

(d) for the double-antisymmetry mode (AA), if1 (x1 , x2 ) are given by

1f1 (x1 , x2 )= x2 , 2f1 (x1 , x2 )= x1 , 3f1 (x1 , x2 )= x1x2 . (23a–c)

3.2.   

The energy functional, Umax −Tmax , expressed in terms of the polynomial functions is
now minimized with respect to the unknown coefficients,

(1/1ca
ij ){Umax −Tmax}=0, a=1, 2, 3, (24)

which leads to the governing eigenvalue equation

(K− l2M){c}= {0}, (25)
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where

K= & k11

sym

k12

k22

k13

k23

k33' , M= &m
11

sym

0

m22

0

0

m33' , (26, 27)

and {c}= {c1
ij , c2

ij , c3
ij }T� is the column vector of the unknown coefficients.

The elements in the stiffness matrix kab are given by

k11
minj =(L1 /L2 )(E1010

mi F00
nj )11 + 1

2 (E
0100
mi F00

nj )11 + 1
2 [a/L]2(E0000

mi F11
nj )11 , (28a)

k12
minj =(n/L2 )(E1001

mi F00
nj )12 + 1

2 (E
0110
mi F00

nj )12 (28b)

k13
minj =[a/L]{(n/L2 )(E1000

mi F01
nj )13 + 1

2 (E
0010
mi F10

nj )13}, (28c)

k22
minj =(L1 /L2 )(E0101

mi F00
nj )22 + 1

2 (E
1010
mi F00

nj )22 + 1
2 [a/L]2(E0000

mi F11
nj )22 , (28d)

k23
minj =[a/L]{(n/L2 )(E0010

mi F01
nj )23 + 1

2 (E
0001
mi F10

nj )23}, (28e)

k33
minj =[a/L]2{(L1 /L2 )(E0000

mi F00
nj )33 + 1

2 (E
0101
mi F00

nj )33}+ 1
2 (E

0101
mi F00

nj )33 , (28f)

and the elements for the mass matrix mab are given by

m11
minj =L3{E0000

mi F00
nj }11 , m22

minj =L3{E0000
mi F00

nj }22 , m22
minj =L3{E0000

mi F00
nj }33 ,

(29a–c)

where the product of integrals in equations (28) and (29) are defined as

{Edefg
mi }ab =ggA�$1

d+ e{afm (x̄1 , x̄2 )}
1x̄d

1 1x̄e
2 %$1f+ g{bfi (x̄1 , x̄2 )}

1x̄f
1 1x̄g

2 % dx̄1 dx̄2 , (30a)

{Frs
nj }ab =g

1/2

−1/2 $1
r{acn (x̄3 )}

1x̄r
3 %$1s{bcj (x̄3 )}

1x̄s
3 % dx̄3 , (30b)

in which L1 =1− n, L2 =1−2n, and L3 =1+ n. The normalized variables, x̄1 , x̄2 and
x̄3 , are defined as

x̄1 = x1 /a, x̄2 = x2 /b, x̄3 = x3 /L . (31)

With the establishment of the stiffness K and mass M matrices, the frequency parameters
and mode shapes can be obtained by solving a standard eigenvalue problem through the
QR algorithm. The frequency parameters l are related to the natural frequencies v by

l=vazr/E . (32)

4. RESULTS AND DISCUSSION

The above procedures have been written into a FORTRAN programme which is used
to determine the non-dimensional frequency parameter, l, and vibration mode shapes of
elastic cylinders with square and hexagonal cross-sections subject to different constraints
at the ends. In the following study, the symbols, F, and C denote free, and clamped (fixed)
conditions at the ends, respectively.
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4.1.    

Table 1 shows the rate of convergence of the frequency parameter, l, for a cylinder of
square cross-section. From the symmetry inherent in the geometry, the vibration mode
shapes are conveniently classified into double-symmetry (SS), symmetry–antisymmetry
(SA), antisymmetry–symmetry (AS), and double-antisymmetry (AA) modes about the
planes, x1 x3 and x2 x3 . This symmetry classification has significantly reduced the
determinant size of the eigenvalue matrix and leads to better computational efficiency. The
order, p, of the two-dimensional polynomial and the number of terms, q, of the
one-dimensional polynomial are varied in different steps to demonstrate the relative effect
on the overall convergence behaviours of the present method. Generally it is observed that
the Ritz method tends to over-estimate the natural frequencies of the cylinders. As more
and more terms are taken in the polynomial functions for the displacement function, the
accuracy improves and the results converge monotonically to an acceptable frequency
solution. It is found that satisfactory converged solutions to four significant figures are
attainable with p=5 and q=8 for most modes of interest.

For an elastic solid cylinder with a square cross-section, comparison is made between
the present solutions and that of Leissa and Zhang [6]. In the latter, the vibration frequency
of the cantilevered square cylinder is computed from a Ritz energy approach with simple
polynomial shape functions. Table 2 presents the comparison study of the first five modes
at each symmetry class of vibration calculated from both approaches. The percentage
discrepancies are in the range of 0·1% to 9·0%. The first two lowest modes are found to
be well within 1·0%. The maximum difference is registered at higher modes with a
percentage discrepancy of 9·0% with the present solutions being lower. A detailed study
of the convergence table in the reference reveals that the number of terms employed does
not ensure sufficiently converged results for the higher modes. This fact may account for

T 1

Convergence of frequency parameters, l=vazr/E, for a free-free cylinder with square
cross-section (a/b=1·0, L/a=2·0 and n=0·3)

Orders of Mode sequence number
polynomials ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
p q 1 2 3 4 5

(a) SS mode
5 5 1·53723 2·48768 2·57564 2·75548 2·75549
6 5 1·53722 2·48764 2·57563 2·75546 2·75546
5 6 1·53722 2·48761 2·57561 2·75543 2·75543
5 7 1·53721 2·48760 2·57561 2·75541 2·75541
5 8 1·53721 2·48760 2·57560 2·75539 2·75539

(b) SA mode
5 5 1·02144 1·70719 2·42924 2·45019 2·73797
6 5 1·02142 1·70716 2·42921 2·45017 2·73794
5 6 1·02141 1·70714 2·42920 2·45013 2·73793
5 7 1·02140 1·70712 2·42919 2·45011 2·73789
5 8 1·02140 1·70712 2·42919 2·45011 2·73789

(c) AA mode
5 5 0·89354 1·77936 2·04725 2·13129 2·44497
6 5 0·89352 1·77933 2·04724 2·13126 2·44494
5 6 0·89351 1·77930 2·04721 2·13125 2·44492
5 7 0·89351 1·77929 2·04720 2·13122 2·44490
5 8 0·89351 1·77929 2·04720 2·13121 2·44489
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T 2

Comparison of frequency parameters, l=vazr/E, for cantilevered elastic solid cylinder
of square cross-section with length-to-width ratio L/a=2·0

Mode sequence number
Symmetry ZXXXXXXXXXXXCXXXXXXXXXXXV

classes Source of results 1 2 3 4 5

SS mode Leissa and Zhang [6] 0·79690 2·2906 2·5323 2·7480 2·9305
Present 3D solution 0·79422 2·2743 2·5260 2·7425 2·8578

(−0·337)† (−0·717) (−0·249) (−0·201) (−2·54)
SA mode Leissa and Zhang [6] 0·22186 0·83555 1·8619 2·3138 2·7160

Present 3D solution 0·22007 0·83061 1·7314 2·2214 2·6421
(−0·813) (−0·595) (−7·53) (−4·16) (−2·80)

AA mode Leissa and Zhang [6] 0·45202 1·3596 2·0894 2·4429 2·4719
Present 3D solution 0·45092 1·3502 2·0855 2·2414 2·4697

(−0·244) (−0·696) (−0·187) (−8·99) (−0·089)

† Figures in parenthesis denote the discrepancies in %.

the significant discrepancy between the present solutions and those values of Leissa and
Zhang [6] at the higher modes.

To facilitate a comparison with the work of Hutchinson and Zillmer [4], the frequency
parameters from different sources are plotted in Figure 2 for a/b ratios varying from 0·2
to 0·5. The comparison has shown that the present predictions and those of Hutchinson
and Zillmer [4] for a free–free square beam are found to be in close agreement.

4.2.  

After having established the numerical convergence and accuracy of the three-
dimensional p-Ritz model, sets of frequency results and mode shape plots were computed.
The vibration characteristics of elastic solid cylinders of each symmetry class can be

Figure 2. Comparison of frequency parameters for a free–free square cylinder. w, Hutchinson and Zillmer
[4]; ----, present 3D analysis.
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Figure 3. Vibration mode shapes of square cylinders subjected to different end support conditions (a/b=1·0,
L/a=2·0, n=0·3, l=vazr/E).

clarified by considering the respective deformed mode shapes. Figures 3 and 4 depict the
corresponding deformed mode shape plots of cylinders with square and hexagonal
cross-sections. Each figure demonstrates the influence of boundary constraints at both ends
for the mode of vibration. From these figures, the following remarks can be made.

It is observed that the fundamental modes of the distinct symmetry classes, namely the
SS-1, SA-1, AS-1 and AA-1 modes, are exhibiting axial extensional, transverse bending
about x1 , transverse bending about x2 and axial torsional motions, respectively. A
cross-examination of these figures further reveals the interesting fact that the
cross-sectional geometries of the polygonal cylinder do not have a significant effect on the
fundamental vibration mode shapes. However, for the cylinder with a square cross-section,
it is found that the frequency values for SA (AS) modes are higher than those for the
cylinder with a hexagonal cross-section. The vibration frequencies for torsional modes (AA
modes) are 7·0–8·0% higher than those of the hexagonal cylinder.

Figure 4. Vibration mode shapes of hexagonal cylinders subjected to different end support conditions
(L/a=2·0, n=0·3, l=vazr/E).
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Figure 5. Plots of frequency parameters, l�=(L/a)zl, versus length-to-width ratio, L/a, for a square cylinder
with stress free ends (F-F).

Plots of frequency parameters versus length-to-width ratio for elastic cylinders of square
and hexagonal cross-sections are presented in Figures 5–10, respectively, for F-F, C-F, and
C-C support conditions. To allow for direct comparison between different cross-sectional
shapes, the width a is assumed to be the same for all shapes. The frequency parameter
l� corresponds directly to the vibration frequency. In these plots, the first two frequencies
corresponding to each symmetry class are presented. For the square cross-section,

Figure 6. Plots of frequency parameters, l�=(L/a)zl, versus length-to-width ratio, L/a, for a square cylinder
with cantilevered ends (C-F).
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Figure 7. Plots of frequency parameters, l�=(L/a)zl, versus length-to-width ratio, L/a, for a square cylinder
with clamped ends (C-C).

symmetry–antisymmetry (SA) and antisymmetry–symmetry (AS) modes possess identical
frequencies. As to the effect of length-to-width ratio on the vibration frequency, it is
observed that the frequency decreases monotonically as the length-to-width ratio increases.
The decline is most steep for L/aQ 4·0. Beyond this range the vibration of frequency with
L/a is more gradual and tends to converge asymptotically to the solution for an infinitely
long beam.

Figure 8. Plots of frequency parameters, l�=(L/a)zl, versus length-to-width ratio, L/a, for a regular
hexagonal cylinder with stress free ends (F-F).
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Figure 9. Plots of frequency parameters, l�=(L/a)zl, versus length-to-width ratio, L/a, for a regular
hexagonal cylinder with cantilevered ends (C-F).

Several frequency crossings are evident in these plots. For instance, at length-to-width
ratios L/aQ 3·0, the lowest vibration frequency for a F-F square cylinder corresponds to
the AA-1 mode. At a higher length-to-width ratio, however, the flexural stiffness of
transverse bending motion (AS-1) decreases rapidly and results in a frequency crossing
with the AA-1 mode. Further frequency crossings at higher modes for the cylinder with
a hexagonal cross-section are also evident. For cylinders with other boundary conditions,
similar trends are also observed for the frequency spectra. Generally, it can be deduced

Figure 10. Plots of frequency parameters, l�=(L/a)zl, versus length-to-width ratio, L/a, for a regular
hexagonal cylinder with clamped ends (C-C).
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that, irrespective of the boundary conditions at both ends, the axial extensional (SS modes)
motions always occur at a higher frequency of vibration.

5. CONCLUSIONS

A computational model, the p-Ritz method, for three-dimensional vibration analysis of
elastic cylinders of polygonal cross-section has been developed on the basis of linear,
small-strain, three-dimensional elasticity theory. The unique coupling of a two-
dimensional lateral surface function with a one-dimensional longitudinal function allows
the treatment of cylinders with a wide range of cross-sectional shapes and sizes. Extensive
frequency results and vibration mode shapes have been presented in graphical forms. The
effects of different end support conditions and the length-to-width ratios upon the natural
vibration frequency of elastic cylinders of polygonal shape have been studied in detail. It
is noted that the square cylinder possesses bending frequencies which are relatively higher
than those of the hexagonal cylinder. However, the hexagonal cylinder has the highest
torsional vibration frequency for all boundary conditions considered.
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