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The finite element approach has previously been used, with the help of the ATILA code,
to model the propagation of acoustic waves in waveguides [A.-C. Hladky-Hennion, Journal
of Sound and Vibration 194, 119–136 (1996)]. In this paper an extension of the technique
to the analysis of the propagation of acoustic waves in immersed waveguides is presented.
In the proposed approach, the problem is reduced to a bidimensional problem, in which
only the cross-section of the guide and the surrounding fluid domain are meshed by using
finite elements. Then, wedges, the top angles of which vary, are studied and the finite
element results of the wedge wave speed are compared with experimental results. Finally,
the conclusion indicates a way to extend this approach to waveguides of any cross-section.
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1. INTRODUCTION

Flexural wedge waves, propagating along the tip of an ideal sharp elastic wedge, attracted
considerable interest in the 1970s, because these waves are dispersionless, their propagation
speed is lower than the Rayleigh wave speed and the acoustic energy is confined at the
tip of the wedge guide. As the boundary conditions of the problem are complex, it is
difficult to use a simple model to study the propagation of acoustic waves in guides. Ash
et al. [1] suggested the use of a simple edge as a guiding structure. Then, Moss et al. [2]
established an analytical model limited to the simple geometry of linear wedges. Lagasse
[3] applied the finite element method to analyze the propagation of acoustic waves in an
infinite waveguide of arbirary cross-section in air. The technique is original because the
problem is reduced to a bidimensional problem, in which only the cross-section of the guide
is meshed by using finite elements. Lately, this technique has also been used in the case
of curved waveguides [4]. Recently, wedge waves have again attracted interest: Krylov et
al. have developed an approximate analytical solution [5] for wedges embedded in water,
the top angle of which is small, whereas Chamuel [6, 7] has measured the effect of water
loading on wedge waves along the apex of an immersed acute-angle solid wedge for
applications in geophysics and underwater acoustics.

To the authors’ knowledge, theoretical or numerical modelling of the immersed solid
wedge has not yet been developed in the general case. Thus, the use of the finite element
method to tackle the problem can strongly broaden the designer’s possibilities, particularly
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because it allows the modelling of any cross-sectional geometry, by simply building specific
meshes, without any new algebraic development.

In this paper the extension of the finite element technique previously described [4] to
the case of immersed waveguides is presented. First, the theoretical formulation is
presented for immersed linear waveguides, which has been incorporated in the ATILA
finite element code [8]. The problem is reduced to a bidimensional problem, in which only
the cross-section of the guide and the surrounding fluid domain are meshed by using finite
elements. Then, the wave speed of a wedge, the top angle of which is variable, is studied,
and the finite element results are compared to experimental results, demonstrating the
accuracy of the model. In this paper, the problem is limited to the propagating waves along
the wedge without re-emission in the fluid. Physical effects are observed and are accurately
analyzed. Finally, the conclusion indicates a way to extend this approach to waveguides
of any cross-section, for applications in signal processing devices, in geophysics and in
underwater acoustics, as well as in solid surface physics.

2. THEORETICAL FORMULATION FOR A LINEAR IMMERSED WAVEGUIDE

2.1.    

An acoustic wave, characterized by its wavenumber kz , is propagating along a uniform,
infinite and immersed waveguide, in the z direction. The displacement field vector u in the
solid domain is written as

u= 2ux(x, y)
uy(x, y)
juz(x, y)3 ejkzz. (1)

To assure the quadrature between two in-plane displacements, the displacement
component in the waveguide direction is multiplied by the imaginary unit j [3]. The time
dependence (e−jvt) is implicit in the equations. In the same way, the pressure in the fluid
domain is written as

p= p(x, y) ejkzz. (2)

2.2.     

Because the section of the waveguide is uniform in the z direction, it is possible to solve
the problem with the help of a bidimensional mesh and to reconstitute the whole solution
[4, 9].

A unit length of the waveguide is meshed with the help of the finite element method.
The whole domain contains a solid domain Vs and a fluid domain Vf separated by the Si

interface surface. The fluid domain is limited by the Sr radiating surface. The whole domain
is split into elements connected by nodes. The trace of the tridimensional solid domain
Vs in the x–y plane is the surface Ss and the trace of the tridimensional fluid domain Vf

in the x–y plane is the surface Sf . So, in the x–y plane (see Figure 1 for notations), the
whole domain is split into the following parts: the fluid domain Sf and the solid domain
Ss ; the interface line li , which is the trace of the Si surface in the x–y plane, separating
the fluid and the solid domains; the radiating elements on the lr line, which is the trace
of the Sr surface in the x–y plane, limiting the finite element mesh. On this line, a
non-reflecting condition is applied, the pressure field being assumed to be essentially
monopolar [10].
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The general system of equations associated to this problem is [8]

$[K]−v2[M]
−r2

f c2
f v

2[L]T
−[L]

[H]−v2[M1]%0UP1=0 F

rfc2
f f1, (3)

where [K] is the stiffness matrix, whereas [M] is the mass matrix in the solid domain Vs .
[H] is the compressibility matrix and [M1] is the mass matrix in the fluid domain Vf . [L]
is the interface matrix, which represents the coupling between the fluid and the solid on
the Si surface. rf and cf are, respectively, the density and the sound speed in the fluid. F

contains the nodal values of the applied forces, which are equal to zero. f contains the
nodal values of the pressure normal derivative on the external fluid boundary. By a modal
analysis, the resolution of the system gives v, the angular frequency and the corresponding
eigenvectors: U, the vector of the nodal values of the displacement field and P, the vector
of the nodal values of the pressure field.

The non-reflecting condition on the external fluid boundary allows one to limit the finite
element mesh. As the pressure is assumed to be monopolar, the relation between the vector
of the nodal values of the normal pressure derivative f and the vector of the nodal values
of the pressure field Pa on the external fluid boundary is [10, 11]

f=−[12 − jkrR][D]Pa/R, (4)

where R is the radius of the external fluid boundary, kr is the radial component of the
wavevector and [D] is the monopolar radiating matrix, which depends only on the
interpolation functions in the elements. This non-reflecting condition is valid if the external
fluid boundary is outside the near field area (kfRw 1). In that case, the decreasing of the
pressure field is proportional to ejkrR/zR.

2.3.    

2.3.1 Solid domain
This part is detailed in reference [4]. Thus, only the main results are reproduced here.

Classically, in the finite element method for a solid structure, the three components of the
displacement field vector u in the x, y and z directions (equation (1), are written with the
help of the interpolation functions [N] and of the vector of the nodal values of the
displacement field U [4, 8, 9]. Thus, the stiffness matrix and the mass matrix of equation
(3) are modified. The stiffness matrix [K] is kz dependent and can be written as [4]

[K]= [K0]+ kz [K1]+ k2
z [K2], (5)

where [K0], [K1] and [K2] are all three real symmetric matrices because the material is
lossless. The [K0], [K1] and [K2] matrices are independent of kz . The stiffness matrix is
calculated by integrating over the x and y variables on the cross-section Ss . Thus, the
displacement field is z dependent but a bidimensional mesh, depending on x and y, is

Figure 1. Traces of the finite element domains in the x–y plane.
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sufficient to calculate the stiffness matrix. In all of the following examples, isoparametric
elements are used, with a quadratic interpolation along the element sides.

In the same way, the mass matrix [M] is calculated by considering the displacement field
of equation (1). The mass matrix is modified but is kz independent [4].

2.3.2. Fluid domain
By following the same formalism as in the case of the solid domain, the pressure field

p is written as

p=[Np ]P=[Np [x, y)] ejkzzP, (6)

where [Np(x, y)] is the interpolation function in the fluid domain. The gradient of the
pressure field, which is needed for the compressibility matrix, is

grad
----#

p=[Bp ]P. (7)

The [Bp ] matrix results in the assembling of the [Bpi ] matrices, which are the matrices of
the spatial derivative of the interpolation functions for the node i are written as

[Bpi ]= &[1[Npi(x, y)]/1x
[1[Npi(x, y)]/1y
jkz [Npi(x, y) ' ejkzz. (8)

The [Bp ] matrix appears in the expression for the compressibility matrix [H],

[H]=ggg
Vf

K[Bp ]*T[Bp ] dVf , (9)

where K is the compressibility module. Changing the expression for [Bpi ] of equation (8)
in the equation (9) allows one to write the [H] compressibility matrix as

[H]= [H0]+ k2
z [H2], (10)

where [H0] and [H2] are real symmetric matrices. The integration relative to the z variable
introduces only the unit length. The compressibility matrix is calculated by integrating over
the x and y variables on the cross-section Sf . Thus, the pressure field is z dependent but
a bidimensional mesh, depending on x and y, is enough to calculate the compressibility
matrix.

The mass matrix for the fluid domain is classically written as

[M1]=ggg
Vf

rf [Np ]*T[Np ] dVf . (11)

Because [Np ] is of the form of equation (6), the mass matrix for the fluid domain is modified
but is kz independent. The [M1] matrix is calculated by integrating the x and y variables
only on the Sf surface.

2.3.3. Fluid–solid interface
Because the whole domain contains a solid part and a fluid part, the [L] matrix of the

finite element formalism, which corresponds to the coupling between the solid and the fluid
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Figure 2. Variations of the wedge wave speeds, as a function of the apex angle of the Plexiglas wedge. ——,
Finite element results; E, experimental results.

domains, has to be modified. Classically, this matrix is written as

[L]=gg
Si

[N]*Tn[Np ] dSi , (12)

where n is the normal vector to the Si surface. The [N] and [Np ] matrices are the
interpolation functions for the solid domain and for the fluid domain. Because the
waveguide is uniform in the z direction, the normal vector to the interface element is in
the x–y plane and has no component in the z direction. Thus, the coupling matrix is
reduced to a curvilinear integral on the li line, which is the trace of the interface element
in the x–y plane. This matrix is kz independent.

2.3.4. External fluid boundary
Finally, because of the non-reflecting condition on the external fluid surface Sr , the trace

of which in the x–y plane is the lr line, the [D] matrix relating the pressure normal derivative
and the pressure on the surface has to be modified (see equation (4)). Classically, the [D]
matrix, for a monopolar pressure, is [10, 11]

[D]=gg
Sr

[Np ]*T[Np ] dSr . (13)

Using equation (6) for the expression of the interpolation functions in the fluid domain
[Np ] leads to a curvilinear integral on the lr line. This matrix is kz independent.

2.4.    

From now on, all of the matrices appearing in the finite element system of equation (3)
are written as a function of kz . The whole system becomes

[K]−v2[M] −[L] U 0

G
K

k
G
L

l
G
F

f
G
J

j
G
F

f
G
J

j−r2
f c2

fv
2[L]T [H]−v2[M1]+

rfc2
f

R
[12 − jkr R][D] P

=
0

. (14)
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With a view to calculating the angular eigenfrequencies of the system, the wavenumber
kz is given. By using a relation between the longitudinal wavenumber kz and the radial
wavenumber kr on the external fluid boundary,

k2 = k2
r + k2

z =v2/c2
f , (15)

the terms depending on kr are replaced in system (14). Upon using equations (5) and (10)
and a variable change

v'2 =v2 − c2
f k2

z , (16)

equation (14) becomes

([A]+v'[B]+v'2[C])X= 0, (17)

where

[A]=
[K0]+ kz [K1]+ k2

z [K2]− c2
f k2

z [M] −[L]
G
K

k
G
L

l−r2
f c4

f k2
z [L]T [H0]+ k2

z [H2]− c2
f k2

z [M1]+
rfc2

f

2R
[D]

,

[B]=$[0]
[0]

[0]
−jrfcf [D]%,

[C]=$ −[M]
−r2

f c2
f [L]T

[M1]−[0]% and X=0UP1.
With a view to solving equation (17), the system is once again modified and is written as

00 [0]
[A]

[A]
[B]1+v'0−[A]

[0]
[0]
[C]110 X

v'X1=0001. (18)

Finally, the system size is 2N×2N, where N is the initial number of equations. For a given
wavenumber kz , the [A], [B] and [C] matrices are built and the system is solved. The
eigenvalues calculation gives the v' values. Then, the angular eigenfrequencies v and the
radial wavenumber kr are deduced, by using equations (16) and (15). The corresponding
eigenvectors give the displacement field and the pressure field in the z=0 plane. It is easy
to reconstitute the displacement field and the pressure field in the z= z0 plane by
multiplying the eigenvectors by ejkzz0. Finally, the propagation modes are characterized by
their wave speed, which is the ratio between the angular eigenfrequencies and the kz

wavenumber.

3. IMMERSED PLEXIGLAS WEDGE

In this section, the variations of the wedge wave speed of Plexiglas linear wedges are
studied, as a function of the apex angle. The physical constants of this material used for
the calculation are a Young’s modulus equal to 5·85×109 Pa, a density equal to
1180 kg/m3 and a Poisson ratio equal to 0·3343. The Rayleigh wave speed (VR) is equal
to 1271 m/s. The height of the wedges is large enough to be considered as infinite in the
wavenumber band of interest. With a view to studying the antisymmetrical flexural modes,
only half of the cross-section is meshed, by applying a specific boundary condition on the
median plane. First, the wedge is in air and in Figure 2 are presented the variations of
the wedge wave speed as a function of the apex angle. In all of the cases, the wedge wave
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Figure 3. The finite element mesh of the immersed wedge.

speed is dispersionless and does not depend on the kz wavenumber given for the
calculation. In Figure 2, the experimental results [12] are indicated by a black square and
concern only the fundamental mode. The continuous lines correspond to the variations
of the wedge wave speed with respect to the wedge angle for the fundamental mode and
for higher order modes. The agreement between the results is good. In the case of narrow
apex angles, several antisymmetrical flexural modes exist [13]. As previously [4], the
theoretical results show that antisymmetrical flexural modes exist only if the apex angle
is smaller than 105°, which corresponds to a wedge wave speed smaller than the Rayleigh
wave speed.

Then, the Plexiglas sample is immersed in water. In Figure 3 is presented the finite
element mesh of the immersed wedge, containing a solid part, a fluid part, the interface

Figure 4. Variations of the wedge wave speeds, as a function of the apex angle of the immersed Plexiglas wedge.
——, Finite element results; E, experimental results.
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Figure 5. The first antisymmetrical wedge mode of a Plexiglas sample immersed in water. Half apex
angle=22·5°; =krR==22·2. (a) The displacement field; dashed lines correspond to the rest position. (b) The
pressure field in the x–y plane; the radius of the displayed fluid domain=1·4lz .

line (li) between the fluid and the solid, and the radiating elements on the external line (lr).
Applying a monopolar condition on the external boundary of the finite element mesh, and
for a given real kz wavenumber, the angular eigenfrequencies are calculated. Then, the
wedge wave speeds and the radial wavenumber kr are deduced, from real angular
eigenfrequencies. Therefore, the problem is limited to the propagating waves along the
wedge, without re-emission in the fluid. Otherwise kz should be taken to be complex, which
has not been done in this study. A monopolar condition on the external fluid boundary
is valid for the study of antisymmetrical wedge modes if =krR= is large (=krR=w 1), which
is experimentally verified. In Figure 4 are presented the variations of the wedge wave speeds
of the immersed Plexiglas sample, as a function of the apex angle. In all of the cases, for
the modes which are found by the finite element method, kr is imaginary. Thus, the pressure
field is exponentially decaying as a function of the distance to the tip. It corresponds to
a located mode near the tip which is evanescent in the radial direction. Because kr is
imaginary and =krR= is always greater than 1, the non-reflecting condition on the boundary
is valid. The kz wavenumber is real, which corresponds to a propagating mode in the z
direction. Good agreement in Figure 4 is shown between the finite element results and the
experimental data obtained for the first mode [12]. Comparing Figure 2 to Figure 4 shows
that the water loading induces a decrease in the wedge wave speeds, which is greater for
small apex angles. Because the Rayleigh wave speed is below the sound speed in water,
all modes remain subsonic and there is no re-emission in the fluid. For 90° apex angle,
the wedge wave speed is equal to 1034m/s. This value is close to the Stoneley–Scholte wave
speed (VS) [14] which is equal to 1044 m/s in Plexiglas. This latter wave propagates at the
interface between the fluid and the solid and its speed VS is analytically calculated [15].
Thus, the limit of the wedge wave speed in water for large apex angles is probably the
Stoneley–Scholte wave speed.
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Figure 6. The second antisymmetrical wedge mode of a Plexiglas sample immersed in water. Half apex
angle=22·5°; =krR==18·3. (a) The displacement field; dashed lines correspond to the rest position. (b) The
pressure field in the x–y plane; the radius of the displayed fluid domain=2·9lz .

In Figure 5(a) is presented the displacement field of the first antisymmetrical wedge mode
in the x–y plane, for an apex angle of a Plexiglas wedge equal to 45°. It shows that the
wave is located at the tip. In Figure 5(b) is presented the corresponding pressure field in
the x–y plane in water, near the tip, at a distance smaller than 1·4 lz , where lz is the
wavelength in the wedge: the isovalues of the pressure are concentrated near the tip. In
Figure 6(a) is presented the displacement field of the second antisymmetrical wedge mode

Figure 7. Variations of the wedge wave speeds, as functions of the apex angle of the immersed brass wedge.
——, Finite element results; E, experimental results.
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Figure 8. The first antisymmetrical wedge mode of a brass sample immersed in water. Half apex angle=22·5°;
=krR==13·5. (a) The displacement field; dashed lines correspond to the rest position. (b) The pressure field in
the x–y plane; the radius of the displayed fluid domain=1·4lz .

in the x–y plane, for an apex angle equal to 45°. It shows that the wave is located at the
tip. In Figure 6(b) is presented the corresponding pressure field in the x–y plane in water,
near the tip, at a distance smaller than 2·9lz , where lz is the wavelength in the wedge: the
isovalues of the pressure are concentrated near the tip. Because the mode is of a higher
order, the pressure field presents two lobes, which correspond to two different phases of
the pressure.

4. IMMERSED BRASS WEDGE

A brass linear wedge is now studied, as a function of the apex angle. The physical
constants of this material used for the calculation are a Young’s modulus equal to
1·04×1011 Pa, a density equal to 8600 kg/m3 and a Poisson ratio equal to 0·3429. The
Rayleigh wave speed (VR) is equal to 1985 m/s. First, the wedge is in air and the variations
of the wedge wave speed as a function of the apex angle are similar to those obtained on
Figure 2.

The brass sample is then immersed in water. By using the finite element mesh of Figure
3, with a monopolar condition on the external fluid boundary and for a given real kz

wavenumber, the eigenfrequencies are calculated. Then, the wedge wave speeds and the
radial wavenumber kr are deduced. In Figure 7 are presented the variations of the wedge
wave speeds of the immersed brass sample, as a function of the apex angle. In all of the
cases, for the modes which are found by the finite element method, kr is imaginary. Thus,
the pressure field is exponentially decaying as a function of the distance to the tip. It
corresponds to a mode located near the tip which is evanescent in the radial direction. The
kz wavenumber is real. Therefore, the problem is limited to the propagating waves, without
re-emission in the fluid. Good agreement is shown in Figure 7 between the finite element
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results and the experimental results [12]. Once again, the water loading induces a decrease
in the wedge wave speeds, which is greater for small apex angles. In Figure 7 it is shown
that the propagating modes in the z direction exist only if the wedge wave speed is below
the sound speed in water. Therefore, for apex angles greater than 60°, wedge modes are
not found with the finite element method. In fact, these modes are supersonic: they are
attenuated in the wedge direction and radiating in the radial direction. Thus, with a given
real kz wavenumber, they are not found. The displacement field of the first antisymmetrical
wedge mode in the x–y plane, for an apex angle equal to 45°, is presented in Figure 8(a).
It shows that the wave is located at the tip. In Figure 8(b) is presented the corresponding
pressure field in the x–y plane in water, near the tip, at a distance smaller than 1.4 lz , where
lz is the wavelength in the wedge: the isovalues of the pressure are concentrated near the
tip. If the apex angle is equal to 45°, only one wedge mode is found, because the second
corresponds to a wedge wave speed greater than the speed of sound in water.

5. CONCLUSIONS

In this paper a detailed analysis has been presented of the propagation of acoustic waves
in immersed linear waveguides. Results computed with the ATILA code have demonstated
the ability of the finite element method to predict the propagation of acoustic waves in
immersed guides, and good agreement has been found between results obtained by the
finite element models and by measurements. Moreover, the efficiency and versatility of this
finite element approach have been demonstrated. Indeed, modifying the waveguide
requires only the modification of the mesh of the cross-section, without any development
related to the method. Moreover, any isotropic or anisotropic material, if the anisotropy
respects the symmetry condition in the waveguide direction, can be considered.

When the samples are immersed, the effect of the water loading induces a decrease in
the wedge wave speed. If the resulting speed is subsonic, it corresponds to a mode which
is propagative in the wedge direction and evanescent in the radial direction. For 90° apex
angle, the wedge wave speed limit is the Stoneley–Scholte wave speed. These modes are
found with the finite element method, because they correspond to a given real wavenumber
in the wedge direction. If the resulting mode is supersonic, it is attenuated in the wedge
direction but is radiating in the radial direction. This latter mode has not yet been found
with the finite element method, because the given wavenumber in the wedge direction is
complex. One of our aims is now to extend this technique to any wavenumber, with a view
to finding either propagating wedge modes or attenuating wedge modes with the finite
element method. In that case, the way to find all modes is to calculate the wavenumbers
kz and kr for a given angular frequency v. This work is now in progress.
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