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1. 

Lord Rayleigh suggested, over a century ago, the inclusion of an undetermined exponential
parameter in the co-ordinate functions when employing his now famous method [1]. Since
his method yields upper bounds for the eigenvalues, one is able to optimize them by
minimizing the characteristic values with respect to the undetermined parameter.* In the
case of a field problem, one minimizes the functional with respect to the exponential
parameter as shown by Bert when solving a heat conduction problem [3].

Professor C. W. Bert (University of Oklahoma) and R. Schmidt (University of Detroit)
have contributed significantly to the development of the method by solving numerous
important applied mechanics problems. Other research groups from Argentina (Institute
of Applied Mechanics; Universidad Nacional del Sur; Facultad Regional Bahía Blanca,
UTN, and Universidad Nacional de Mar del Plata) have also reported some research
performed on the subject matter, based on Schmidt and Bert’s work.

During the past ten years, the approach suggested by Rayleigh (essentially a non-linear
optimization procedure) has been applied to a variety of problems; column buckling, beam
vibration, plate buckling and vibration, elastic torsion, etc.

It is important to point out that, apparently unaware of Lord Rayleigh’s suggestion,
well known authors such as Stodola [4], Pauling and Bright-Wilson [5] and Timoshenko
and Goodier [6] also made use of Rayleigh’s optimization concept.

Exponential co-ordinate functions containing an undetermined exponential parameter
have been employed in references [5–7].

A thorough discussion on application of other deflection functions with undetermined
parameters, namely functions with real exponential and trigonometric terms, is due to
Schmidt in the context of buckling problems [8].

The present note reports some numerical experiments performed on the determination
of the fundamental frequency vibration of a rectangular plate with three simply supported
edges while the fourth is free; see Figure 1. The optimization parameter is contained in
the argument of the sinusoidal terms of a truncated Fourier series. An interesting and
rather novel feature of the approach is the fact that the ‘‘base’’ function allows for very
good engineering accuracy when a single-term approximation is used and constitutes the
exact solution of the problem when the optimization parameter is taken equal to unity and
the plate is simply supported at its four edges.

2.   

Consider the structural system shown in Figure 1 when it executes transverse vibrations
at its fundamental mode.
*Lord Rayleigh suggested the procedure when using a single co-ordinate function and determining one eigenvalue.
The procedure was extended rather recently when a summation of co-ordinate functions was employed, and then
the higher order eigenvalues were optimized [2].
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The expression
W2Wa =A1 sin px/ga sin py/b, (1)

where Wa =approximate plate amplitude and gq 1, is a valid approximation for the plate
under study.

Clearly, the natural boundary conditions at x= a are not satisfied but this is admissible
when making use of the Rayleigh–Ritz method. If g=1 one has the case of a simply
supported rectangular plate and equation (1) constitutes the exact fundamental mode. The
parameter g, contained in the argument of the assumed mode shape expressed in terms
of a sinusoidal function, now constitutes ‘‘Rayleigh’s optimization parameter’’.

Substituting equation (1) in the expression of the maximum strain energy

Umax =
D
2 ggA0
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and in the maximum kinetic energy

Tmax =
rhv2

2 ggA0

W 2 dx dy, (2b)

where A0 is the area of the plate planform, one obtains from the minimization condition

1J
1A1

[W ]=
1

1A1
(Umax −Tmax)=0 (3)

and, after straightforward algebraic manipulations,

V1 =zrh/Dv1a2 = p2 N(g)/M(g), (4)

where

N(g)= {[(1/g)2 + (a/b)2]2(1− (g/2p) sin (2p/g))+ (2/p)(1− m)(1/g)(a/b)2 sin (2p/g)}1/2,

(5a)

M(g)= (1− (g/2p) sin (2p/g))1/2. (5b)

Figure 1. The vibrating structural system under study.
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Figure 2. The variation of the fundamental frequency with respect to g (equation (4)): (a) a/b=1·0: (b) a/b=0·4;
(c) a/b=2·5.

Since
V1 =V1(g),

by requiring

dV1/dg=0 (6)

one obtains an optimized value of the fundamental frequency coefficient V1.
For g=1, equations (4) and (5) yield the exact fundamental frequency coefficient of a

simply supported rectangular plate.
If one now uses a summation of sinusoidal terms, one expresses Wa as

Wa =sin (py/b) s
N

i=1

Ai sin (px/gia), (7)

where, for the ‘‘base function’’ sin (px/g1a) sin py/b, g1 q 1. When approximating the
fundamental mode shape, the remaining values of the gi’s will be smaller that unity, since
each one of the additional terms constitutes an improvement over the assumed
fundamental shape.

3.  

The Poisson ratio has been taken to be equal to 0·30 in all calculations performed in
the present study.

Figure 2 deals with the cases of three rectangular plates: a/b=1, 0·4 and 2·5 when a
single co-ordinate function is used. In all cases, V1 is plotted as a function of g; see equation
(4).
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T 1

A comparison of the fundamental frequency coefficients, V1 =z(rh/D)v1a2, and the
convergence of the method

a/b=2·5 a/b=3/2 a/b=1 a/b=2/3 a/b=0·4

63·2875† 24·0097† 11·685† 6·0937† 3·008 †

63·7505 24·2158 11·784 6·1371 3·0209
(g=50) (g=40) (g=60) (g=70) (g=70)

63·6018 24·1114 11·7197 6·1049 3·0106
y1 =51 g1 =52 g1 =50 g1 =60 g1 =63
g2 =0·62 g2 =0·63 g2 =0·649 g2 =0·674 g2 =0·69

63·4748 24·0531 11·6956 6·0968 3·00862
g1 =70 g1 =75 g1 =75 g1 =80 g1 =80
g2 =0·48 g2 =0·50 g2 =0·51 g2 =0·58 g2 =0·58
g3 =0·45 g3 =0·46 g3 =0·46 g3 =0·48 g3 =0·49

† From reference [9].

One immediately notices the fact that V1 tends to asymptotic values as g acquires large
values. These asymptotic values are excellent approximations to the value of the

fundamental frequency coefficient, as can be inferred form Table 1.
In Table 1 are depicted values of V1 obtained using one-, two- and three-term

approximations, respectively. The first row contains the very accurate results obtained by
Leissa [9]. The maximum difference is of the order of 0·3% for a/b=2·5, while for
a/b=0·4 the approximate eigenvalue practically coincides with the exact result, when three
approximating terms are used.

Consideration of non-uniform thickness, orthotropy, etc., does not present any formal
difficulties.

On the other hand, the procedure can be extended to other types of boundary
conditions. For instance, if the plate is clamped at x=0 and simply supported at y=0,
b, a suitable one-term approximation is

Wa =A1 sin2 (px/ga) sin (py/b), (8)

where, again, gq 1.
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